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Slow-sinking particulate organic
carbon and its attenuation
in the mesopelagic water
of the South China Sea

Weifeng Yang1,2*, Xiufeng Zhao1,2 and Minfang Zheng2

1State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China, 2College
of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Coastal acidification has been widely investigated in terms of its rationale and

ecological effects in the last decade. However, the driving mechanism for

acidification in open seawater, especially in mesopelagic water, is still poorly

understood. Here, the sinking velocity and flux attenuation of particulate

organic carbon (POC) were examined based upon the radioactive
210Po-210Pb tracer to reveal the remineralization of POC in the mesopelagic

zone in the northeastern South China Sea (SCS). Overall, the profiles of 210Po

followed those of 210Pb, lending support to the particle sinking controlled top-

down deficits of 210Po. Using an inverse model, the sinking velocity of particles,

for the first time in the SCS, was estimated to vary from 3 to 34 m d-1 with the

mean value of 15 ± 9 m d-1, indicating that the slow sinking particles largely

contribute to the POC flux in the SCS. Beneath the euphotic zone, a consistent

descending of the sinking speed implied continuous remineralization of sinking

POC in the twilight zone. A preliminary estimate revealed that 1.9-5.4 mmol-C

m-2 d-1 remineralized back to carbon dioxide within 100-500 m, representing

about 70% of the exported autochthonous POC from the euphotic zone. In

100-1000m, 2.4-6.6 mmol-Cm-2 d-1 (i.e., 84%) remineralized. Thus, the upper

twilight zone (i.e., 100-500 m) is the dominant layer of POC remineralization,

and POC-induced acidification could be unneglectable there. These results

provided insights into the POC-induced acidification mechanism in the

mesopelagic water, especially in the upper mesopelagic layer.
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Introduction

Ocean acidification has attracted attention in the past decade

due to its significant environment effects, especially for calcifying

organisms (e.g., shellfish) (Ekstrom et al., 2015; Fujii et al., 2021).

Reports indicate that ocean acidification is associated with many

factors, e.g., CO2 sequestration, organic degradation, biological

respiration, upwelling, extreme events, etc. (Guo et al., 2022). On

the global scale, the increase in atmospheric CO2 is the main

forcing of ocean acidification while local processes (e.g.,

eutrophication and extreme events) sometimes dominate in

regional seas (Cai et al., 2011; Niemi et al., 2021; Na et al.,

2022). With the increase of CO2 in atmosphere, it is expected

that ocean acidification would be enhanced in the near future via

more sequestration of CO2 and stratification induced by global

warming (Guo et al., 2022). To date, most studies of acidification

focused geographically on coastal seas and shelf regions

(Yamamoto-Kawai et al., 2021) because these areas are often

subjected to enhanced acidification result ing from

eutrophication-associated hypoxia (Cai et al., 2011; Song et al.,

2020). With extensive investigations, the driving forcing and

mechanisms of acidification in shallow seas are well understood

(Guo et al., 2022). In contrast, ocean acidification in the open

seawater offshore has been less examined though it probably

occurs with the climate change. In fact, A few case studies reveal

discernible acidification in open seawater, even mesopelagic and

deep water. For example, acidification has been confined in the

upper halocline and deep water of the Canada Basin and the

Beaufort Sea as revealed by the declined aragonite saturation

since the 1970s (Miller et al., 2014; Zhang et al., 2020) and was

observed below 150 m in the Amundsen Gulf (Niemi et al.,

2021). A recent study reported that the concentration of

dissolved inorganic carbon increased by ~11 mmol kg-1 below

500 m since 1999 in the Japan Sea, showing fast acidification (Na

et al., 2022). Thus, acidification research in open seawater is

needed to improve our understanding of the ocean acidification

in various oceanic settings.

Although acidification in the open oceans has already

received attention, the driving forces, mechanisms, and

temporal evolution are still poorly understood (Guo et al.,

2022). The concurrently occurring increase in acidification and

apparent oxygen utilization (AOU) indicate the organic matter

decomposition-induced acidification in deep water of the Japan

Sea (Na et al., 2022). Globally, the surface ocean exports a large

amount of POC to the ocean interior (Buesseler et al., 2020).

However, the worldwide deployment of sediment traps reveals

that POC sinking into the lower mesopelagic and even abyssal

waters were much less than the magnitude out of the euphotic

zone (Lutz et al., 2002; Boyd and Trull, 2007). During settling, a

part of POC remineralized or decomposed back into CO2 in the

ocean interior (Kwon et al., 2009) as highlighted by the Martin

curves (Martin et al., 1987). Thus, the remineralization or
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decomposition of sinking POC could enhance the acidification

in the mesopelagic water in the open seas. Owing to the costs of

sediment trap deployment, the big data set of trap-collected POC

flux is usually limited to low vertical resolution (Boyd and Trull,

2007), which disapproves our evaluation of the acidification

driven by POC remineralization in the ocean interior. Recently,

an inverse model approach has been developed based upon the

traditional 210Po-210Pb box model to constrain the relatively

high-resolution sinking velocity of particles (Villa-Alfageme

et al., 2014, 2016; De Soto et al., 2018). This approach set up a

foundation for using 210Po-derived sinking speed to estimate the

POC flux in the twilight zone.
210Po is a particle-active nuclide produced by 210Pb via the

intermediate 210Bi in seawater with a little input from

atmospheric deposition (Verdeny et al., 2009; Ma et al., 2017).

With the sorption of both 210Po and 210Pb onto particles and

successive sinking, parts of the two nuclides are carried to deeper

water. Owing to the very short half-life of 210Po (t1/2 = 138.4d)

comparing with 210Pb (t1/2 = 22.3 yr) and the stronger particle

reactivity of 210Po (Yang et al., 2013), 210Po often showed deficit

relative to 210Pb in the surface-mesopelagic waters (Yang et al.,

2021). Usually, the extent of 210Po deficit is associated with the

magnitude of particle sinking. Thus, the disequilibrium has been

used to constrain particle-associated particle dynamic

parameters, e.g., the sinking flux (Yang et al., 2021) and

sinking velocity (Villa-Alfageme et al., 2014, 2016).

To preliminarily attest the application of 210Po-210Pb to

constraining the sinking flux of POC in the mesopelagic water

and the potential influence of POC remineralization on

acidification in the ocean interior, here, POC, particulate black

carbon (chemo-thermal oxidation, i.e., CTO-defined soot), 210Po,

and 210Pb were examined at two stations in the northeastern SCS

(Figure 1). The SCS is an oligotrophic marginal sea in the western

Pacific Ocean with a well-constrained carbon budget in the

surface layer (Liu et al., 2018). Our objectives are i) to attest the

validity of the application of the inverse 210Po model to quantify

the high-resolution sinking velocity of particles in themesopelagic

water in the SCS; ii) to quantify the sinking flux of POC in the

mesopelagic zone, and iii) to preliminarily evaluate the

remineralization or decomposition degree of autochthonous

POC in the twilight zone.
Materials and methods

Sampling

Seawater was collected at two stations, i.e., E1 and F2

(Figure 1). Station E1 is located in the northeastern South

China Sea (SCS) with a water depth of 3110 m. Station F2 is

located in the western Pacific near the SCS with a water depth of

4712 m. Both E1 and F2 represent the open oceanic settings.
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Seawater at different depths was collected using Niskin bottles

attached to a Conductivity, Temperature, Depth (i.e., CTD)

rosette system aboard the R/V Dongfanghong 2 from July 15 to

19, 2017, for the measurements of 210Po, 210Pb, total particulate

matter (i.e., TPM), particulate black carbon (i.e., PBC, here it is

CTO-defined soot), and POC. At each depth, 7-8 L of water was

filtrated through a piece of pre-combusted (at 450°C) QMA filter

(Whatman™), and POC collected on the filter was de-salted

with Milli-Q water and kept at -18°C. 10 L of seawater was

filtered through a polycarbonate membrane (Isopore™) to

collect TPM and solution for particulate and dissolved 210Po

and 210Pb analyses based on the protocols (Church et al., 2012;

Rigaud et al., 2013). At selected depths (Table 1), >29 L of

seawater was also filtrated through the QMA filters to collect

soot samples as described in our previous studies (Yang and

Guo, 2014; Yang et al., 2021).
Analyses of TPM, POC, and soot

All TPM samples (i.e., particulate 210Po samples) were de-

salted with Milli-Q water and dried at 60°C to a constant weight.

The contents of TPM are based on the difference in weight

between blank membranes and membranes with TPM. The POC

samples were fumigated using concentrated HCl to remove

inorganic carbon. The POC content was measured using an

elemental analyzer (Thermo-Fisher Scientific, 1112). The

standard material used for POC and soot was IAEA-C8.

For soot measurements, the samples were de-salted and de-

carbonated using Milli-Q water and HCl respectively like the
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POC samples. The contents of soot were determined using the

CTO-375 method (Gustafsson et al., 1997, 2001), which has been

validated to quantify soot in sediments (Elmquist et al., 2004;

Lohmann et al., 2009) and TPM as reported in our previous

studies (Yang and Guo, 2014). A NIST standard of 1941b was

adopted to ensure data quality. In brief, de-carbonate samples

were combusted at 375°C in the presence of air for 24 h to

remove organic carbon except for soot. Then, soot on the filters

was measured using the same elemental analyzer used for

POC determination.
210Po and 210Pb analyses

Briefly, dissolved samples for 210Po and 210Pb analyses were

added known amounts of 209Po and stable Pb (in PbNO3) as the

chemical yield tracers of 210Po and 210Pb respectively and kept

for 24 h to reach the isotopic partition equilibrium. Then, the pH

values of the samples were adjusted to 8.0 by adding ammonium

hydroxide to form Fe(OH)3 precipitates. After a day, the

precipitates were collected via centrifugation. Po- and Pb-

contained precipitates were dissolved in 0.5 mol L-1 HCl

solution. Ascorbic acid and hydroxylamine hydrochloride were

added to reduce Fe3+ and other metal ions and thus prevent the

oxidation of silver discs. 209Po and 210Po were auto-plated onto a

silver disc at 90°C for 4 h under stirring (Yang et al., 2013,

2015a). Po isotopes on the disc were counted using alpha-

spectrometry (ORTEC) after drying.

Particulate samples for 210Po and 210Pb analyses were

digested using the mixed HNO3-HClO4-HF after adding
FIGURE 1

Sampling stations in the northeastern South China Sea (station E1) and western Pacific Ocean (station F2).
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TABLE 1 Temperature (T) and salinity (S) at stations E1 and F2, concentrations of total particulate matter (TPM), particulate organic carbon (POC), and activity concentrations of dissolved, particulate,
and total 210Po and 210Pb, as well as the activity ratios of 210Po to 210Pb.

210 210 210PoT
210PbD

210PbP
210PbT

210Po/210Pb

(dpm 100L-1) Diss. Part. Total

6.8 ± 0.9 14.0 ± 1.5 0.62 ± 0.08 14.6 ± 1.5 0.44 ± 0.08 1.06 ± 0.23 0.46 ± 0.08

5.9 ± 0.7 10.2 ± 1.2 0.87 ± 0.10 11.1 ± 1.2 0.50 ± 0.09 0.98 ± 0.19 0.53 ± 0.09

14.2 ± 1.7 18.8 ± 2.2 0.81 ± 0.10 19.6 ± 2.2 0.70 ± 0.12 1.29 ± 0.25 0.72 ± 0.12

12.3 ± 1.3 17.6 ± 1.9 0.59 ± 0.08 18.2 ± 1.9 0.64 ± 0.10 1.55 ± 0.32 0.67 ± 0.10

15.0 ± 1.4 16.4 ± 1.9 1.04 ± 0.11 17.4 ± 1.9 0.90 ± 0.13 0.32 ± 0.08 0.86 ± 0.12

19.6 ± 1.6 16.8 ± 1.9 0.98 ± 0.11 17.8 ± 1.9 1.14 ± 0.16 0.48 ± 0.10 1.10 ± 0.15

16.2 ± 1.9 19.1 ± 2.2 1.00 ± 0.11 20.1 ± 2.2 0.81 ± 0.14 0.80 ± 0.15 0.81 ± 0.13

18.3 ± 2.1 20.2 ± 2.2 3.58 ± 0.31 23.8 ± 2.2 0.77 ± 0.13 0.78 ± 0.15 0.77 ± 0.11

13.0 ± 1.5 17.1 ± 2.0 1.56 ± 0.16 18.7 ± 2.0 0.68 ± 0.12 0.89 ± 0.17 0.70 ± 0.11

13.9 ± 1.4 13.1 ± 1.5 0.95 ± 0.10 14.0 ± 1.5 0.97 ± 0.16 1.30 ± 0.25 0.99 ± 0.15

8.3 ± 1.0 14.2 ± 1.7 0.85 ± 0.10 15.1 ± 1.7 0.51 ± 0.09 1.24 ± 0.25 0.55 ± 0.09

5.9 ± 0.8 11.4 ± 1.4 1.36 ± 0.14 12.8 ± 1.4 0.40 ± 0.08 1.00 ± 0.20 0.46 ± 0.08

13.5 ± 2.4 24.7 ± 2.1 1.12 ± 0.12 25.8 ± 2.1 0.47 ± 0.10 1.66 ± 0.29 0.52 ± 0.10

11.2 ± 2.2 21.4 ± 2.0 1.17 ± 0.12 22.6 ± 2.0 0.49 ± 0.11 0.65 ± 0.13 0.50 ± 0.11

14.3 ± 2.4 23.0 ± 1.9 1.27 ± 0.15 24.2 ± 2.0 0.55 ± 0.12 1.38 ± 0.25 0.59 ± 0.11

14.3 ± 2.5 24.4 ± 2.1 1.00 ± 0.13 25.4 ± 2.1 0.53 ± 0.11 1.22 ± 0.25 0.56 ± 0.11

17.2 ± 2.9 25.2 ± 2.3 0.33 ± 0.06 25.6 ± 2.3 0.62 ± 0.13 4.53 ± 0.93 0.67 ± 0.13

19.2 ± 2.9 27.8 ± 2.6 0.51 ± 0.07 28.6 ± 2.6 0.63 ± 0.12 3.25 ± 0.62 0.68 ± 0.12

23.3 ± 3.1 24.5 ± 2.2 0.53 ± 0.07 25.0 ± 2.2 0.92 ± 0.15 1.56 ± 0.35 0.93 ± 0.15

24.3 ± 3.1 24.7 ± 2.3 0.62 ± 0.09 25.3 ± 2.3 0.95 ± 0.15 1.45 ± 0.29 0.96 ± 0.15

16.5 ± 1.8 19.4 ± 2.5 1.04 ± 0.12 20.5 ± 2.5 0.79 ± 0.14 1.04 ± 0.19 0.81 ± 0.13

13.6 ± 1.7 20.0 ± 2.5 0.99 ± 0.13 20.9 ± 2.5 0.63 ± 0.12 1.04 ± 0.20 0.65 ± 0.11

13.3 ± 1.5 17.2 ± 1.9 1.26 ± 0.13 18.5 ± 1.9 0.66 ± 0.11 1.54 ± 0.25 0.72 ± 0.11

13.6 ± 1.6 13.7 ± 1.7 1.37 ± 0.13 15.0 ± 1.7 0.88 ± 0.16 1.17 ± 0.21 0.91 ± 0.15
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Stn. Depth T S TPM POC Soot PoD PoP

(m) (°C) (mg L-1) (mmol L-1)

E1 5 29.99 33.71 0.058 0.85 0.033 6.1 ± 0.8 0.66 ± 0.11

25 29.99 33.70 0.077 0.55 0.032 5.1 ± 0.7 0.85 ± 0.13

50 27.55 34.61 0.039 0.61 0.038 13.1 ± 1.7 1.04 ± 0.16

75 26.01 34.74 0.032 0.47 0.036 11.4 ± 1.3 0.92 ± 0.14

100 22.70 34.68 0.026 0.51 0.037 14.7 ± 1.4 0.33 ± 0.07

150 19.51 34.77 0.021 0.40 0.026 19.1 ± 1.6 0.47 ± 0.09

200 15.98 34.63 0.030 0.50 0.027 15.4 ± 1.9 0.80 ± 0.12

300 11.31 34.37 n.d. 0.50 15.5 ± 2.0 2.79 ± 0.48

400 9.69 34.38 0.012 0.33 11.6 ± 1.5 1.39 ± 0.22

500 7.64 34.34 0.019 0.33 0.036 12.6 ± 1.4 1.23 ± 0.19

800 5.48 34.46 0.010 0.21 7.2 ± 1.0 1.06 ± 0.17

1000 4.25 34.52 n.d. 0.29 4.5 ± 0.7 1.36 ± 0.24

F2 5 30.68 34.45 0.075 1.91 0.068 11.6 ± 2.4 1.86 ± 0.25

25 30.53 34.53 0.026 0.42 0.037 10.5 ± 2.2 0.76 ± 0.13

50 27.79 34.66 0.028 0.51 0.049 12.6 ± 2.5 1.75 ± 0.23

75 26.48 34.94 n.d. 0.81 0.044 13.0 ± 2.5 1.22 ± 0.20

100 25.30 35.06 0.014 0.62 0.035 15.7 ± 2.9 1.48 ± 0.17

150 23.72 35.03 n.d. 0.52 0.044 17.5 ± 2.8 1.66 ± 0.22

200 22.50 35.04 0.040 0.47 0.050 22.5 ± 3.1 0.83 ± 0.14

300 18.30 34.82 0.020 0.38 0.043 23.4 ± 3.1 0.91 ± 0.13

400 14.93 34.58 0.036 0.44 15.4 ± 1.8 1.08 ± 0.15

500 11.00 34.40 0.028 0.42 0.048 12.6 ± 1.7 1.03 ± 0.15

800 5.66 34.39 n.d. 0.31 11.3 ± 1.5 1.93 ± 0.24

1000 4.30 34.43 0.041 0.26 12.0 ± 1.6 1.60 ± 0.23
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209Po and stable Pb as the chemical yields. The solutions were

evaporated to nearly dryness and re-dissolved in 0.5 mol L-1 HCl

solution. Po isotopes were deposited onto the silver disc and

counted like dissolved samples. 210Pb was determined via the in-

growth 210Po 2 years later after the first plating of Po isotopes.

Stable Pb after Po plating was determined using atomic

absorption spectrometry. The recoveries of 210Po and 210Pb were

calculated through the measured 209Po and stable Pb to those of

initially added amounts. The uncertainties for the presented data

were propagated from the counting errors. The activity

concentrations of 210Po and 210Pb were corrected to the

sampling time.
Sinking speed calculation

Villa-Alfageme et al. (2014) developed an inverse modeling

approach to constrain the sinking speed of particles based on the

traditional 210Po-flux model (Verdeny et al., 2009; Ma et al.,

2017). Here, we used this approach to preliminarily estimate the

sinking speed of TPM in the marginal SCS. In the study area, the

activity of 210Po is determined by its source terms (i.e.,

generation from in situ decay of 210Pb and sinking from above

layer) and sinking terms (i.e., decay itself and sinking to deeper

water). Thus, the variation in the total 210Po (APo,T) with time

can be expressed as (Villa-Alfageme et al., 2014, 2016):

dAPo,T z, tð Þ
dt

= lPo APb,T z, tð Þ − APo,T z, tð Þ� �
−
dPPo z, tð Þ

dz
(1)

where APo,T(z,t) and APb,T(z,t) represent the total
210Po and

210Pb activity at the depth of z (in dpm 100L-1) at a specific time

of t, respectively. l is the decay constant of 210Po (in the unit of

d-1). PPo,T(z,t) denotes the sinking flux of
210Po (in dpm m-2 d-1)

at z depth and the time of t. For a specific depth of z, lPo·APb,T(z,

t) and lPo·APo,T(z,t) are the generation rate of 210Po from 210Pb

decay and the decay rate of 210Po, respectively. The term of dPPo

(z,t)/dz is the net sinking rate of 210Po with particulate sinking,

i.e., the difference between the input from the upper layer and

output to the layer beneath. The flux of particles can also be

quantified by its sinking speed (v in m d-1) multiplied by its

concentration (Giering et al., 2016; De Soto et al., 2018), i.e.,

PPo zð Þ = APo,P zð Þ · v zð Þ = APo,T zð Þ · APo,P zð Þ
APo,T(zÞ

· v zð Þ

= APo,T zð Þ · f zð Þ · v zð Þ (2)

where APo,P(z,t) is the particulate
210Po (dpm 100 L-1), f(z)

denotes the percentage of particulate 210Po in the total 210Po.

Thus, at a steady state and with the replacement of derivative

with a finite difference,

APb,T(z) − APo,T(z) =
1
lPo

·
d APo,T(z) · f (z) · v(z)
� �

dz
Frontiers in Marine Science 05
                                         

=
APo,T z + hð Þ · f z + hð Þ · v z + hð Þ − APo,T zð Þ · f zð Þ · v zð Þ

lPo · h
(3)

where (z+h) denotes the depth below the point at z with a

distance of h. Defining

d (z) =
f zð Þ · v zð Þ

lPo
(4)

as proposed by Villa-Alfageme et al. (2014). Eq. (3) is thus

converted into Eq. (5),

APb,T(z) − APo,T(z)

=
APo,T z + hð Þ · d z + hð Þ − APo,T(z) · d (z)

h
(5)

To obtain d(z) from Eq. (5) and thus v(z) from Eq. (4), Villa-

Alfageme et al. (2014) proposed an inverse utilization of this

model. Using the measured APb,T(z) and appropriately tuned

d(z), we can simulate APo,T(z+h) (i.e., APo,T,mod(z+h)) by

incorporating the initial value of APo,T(z), which is usually the

data collected at the shallowest depth (Villa-Alfageme et al.,

2014). When the model well simulates APo,T(z+h), the model-

computed APo,T,mod(z+h) should follow Eq. (5), i.e.,

APb,T(z) − APo,T,mod(z)

=
APo,T,mod z + hð Þ · d z + hð Þ − APo,T,mod zð Þ · d zð Þ

h
(6)

Modeled APo,T,mod(z+h) is calculated via the following

equation,

   APo,T,mod z + hð Þ

=
1

d z + hð Þ d zð Þ · APo,T,mod zð Þ + h · APb,T zð Þ − APo,T,mod zð Þ� �� �

(7)

Using a least squares method, the best d(z) would be

obtained when APo,T,mod fits the measured APo,T well with the

least chi-square (Villa-Alfageme et al., 2014). Finally, the sinking

velocity can be estimated through Eq. (4).
Carbon flux calculation

To convert the sinking velocity of TPM (i.e., v) to that of

POC, the multi-variable relationship was adopted (Xiang et al.,

2008) here,

v · CTPM = vPOM · CPOM + vPIM · CPIM (8)

where vPOM and vPIM represent the sinking velocities of

particulate organic matter (i.e., POM) and inorganic matter

besides POM (i.e., PIM), CPOM and CPIM are the contents of
frontiersin.org
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POM and PIM (in mg L-1), and CTPM is the concentration of

TPM in mg L-1. POM was estimated using the content of POC

and the conversion factor of 1.87 in the oceanic regimes with low

organic matter (Anderson, 1995; Boyd and Trull, 2007). PIM

content is estimated using the content of TPM subtracting POM.

The earlier study reported that the sinking velocity of PIM is

about 5.5 times that of POM (Xiang et al., 2008). Thus,

vPOM =
v · CTPM

CPOM + 11
2 CTPM − CPOMð Þ (9)

The fluxes of organic carbon components (i.e., POCtot, soot,

and soot-subtracted POC of POCauto) were estimated using

Fi = vPOM · ci (10)

where Fi and ci represent the flux and concentration of a

specific carbon component i.
Results

Overall, E1 showed a comparable temperature (T) to that of F2

within the euphotic zone (0-100 m) (t-test, p>0.61) (Figure 2A).

However, E1 was more influenced by river water discharged into

the SCS than F2, as was illustrated by the salinity (S) of 33.70-34.74

at E1 and that of 34.45-35.06 at F2 in the euphotic zone (Table 1). In

the upper mesopelagic zone (100-500 m), both T and S showed a
Frontiers in Marine Science 06
discernible difference between E1 and F2, showinghigher T and S at

station F2 (Figure 2A). Below, T and Swere consistent at E1 and F2.

The total POC (POCtot) concentrations varied from 0.21 to

0.85 mmol-C L-1 at E1 (avg.: 0.46 ± 0.17 mmol-C L-1, mean ± sd)

and from 0.26 to 1.91 mmol-C L-1 at F2 (avg.: 0.59 ± 0.44 mmol-C

L-1) (Table 1), showing no difference between the two stations (t-

test, p>0.36). Similar to other reports in adjacent northeastern

SCS (Yang et al., 2021, 2022), high POC values were observed

between 50 m and 75 m. Below the euphotic zone of ~100 m,

POCtot decreased with depth, exhibiting a typical re-

mineralization pattern. The soot concentrations varied from

0.026 to 0.038 mmol-C L-1 and from 0.035 to 0.068 mmol-C L-1

(Table 1) at E1 and F2, respectively. On average, E1 (avg.: 0.035 ±

0.007mmol-C L-1) showed lower value than F2 (avg.: 0.046 ± 0.010

mmol-C L-1) (t-test, p<0.01). The soot contents were much lower

than those of 0.064 to 0.165 mmol-C L-1 reported over the slope of

the northeastern SCS (Yang et al., 2021), corresponding to the less

influence of black carbon emission offshore. Overall, the soot

concentration did not show a clear increase or decrease pattern

with depth (Figures 2B, C), consistent with its refractory nature.

The total 210Po and 210Pb activity concentrations varied from

5.9 to 19.6 dpm100L-1 (avg.: 12.4 ± 4.7 dpm 100L-1) and from 11.1

to 23.8 dpm 100L-1 (avg.: 16.9 ± 3.5 dpm 100L-1) at E1, respectively

(Table 1). At station F2, the total 210Po and 210Pb ranged from 11.2

to 24.3 dpm100L-1 (avg.: 16.2 ± 4.1 dpm 100L-1) and from 15.1 to

28.4 dpm 100L-1 (avg.: 22.9 ± 3.7 dpm 100L-1). At both E1 and F2,
A B C

FIGURE 2

Profiles of T and S at stations E1 and F2 (A), and concentrations of TPM, POC, and soot at E1 (B) and F2 (C).
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210Po showed an overall deficit relative to 210Pb in the water

column (Figure 3).

The sinking velocity varied from3 to34md-1with an average of

15 ± 9 m d-1, showing similar profiles at E1 and F2 (Figure 4). The

sinking fluxes of POCtot showed descending patterns with depth

(Figure 5), ranging from0.42±0.09 to3.05±0.73mmol-Cm-2d-1 at

E1 and from 0.82 ± 0.14 to 8.34 ± 1.71 mmol-C m-2 d-1 at F2. Soot
Frontiers in Marine Science 07
showed little variation in thefluxbelow the euphotic zone, averaging

0.107 ± 0.038mmol-Cm-2 d-1 and 0.363 ± 0.039mmol-Cm-2 d-1 at

E1 and F2 respectively. By subtracting the allochthonous soot, the

autochthonous POC (i.e., POCauto) flux exhibited classic decrease

patternswithdepth from the baseof the euphotic zone (i.e., ~100m)

to the twilight zone (Figure 5). The POCauto fluxes were 2.83 ± 0.73

and 7.87 ± 1.72mmol-Cm-2 d-1 out of the euphotic zones of E1 and
FIGURE 4

Comparisons between measured and model-computed total 210Po and 210Po-derived sinking velocity of TPM at stations E1 and F2.
FIGURE 3

Profiles of in situ 210Po and 210Pb in dissolved (210PoD), particulate (210PoP), total fractions (
210PoT), and the 210Po/210Pb ratios at stations E1 and F2.
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F2, respectively. In the twilight zones, E1 showed a POCauto flux

range of 0.94-1.98 mmol-Cm-2 d-1, and F2 showed a range of 2.47-

3.28 mmol-C m-2 d-1 (Figure 5).
Discussion

Control of 210Po deficits in
the water column

As shown in Figure 3, the profiles of 210Po overall followed

those of 210Pb in the whole water column at both E1 and F2

although the magnitudes of deficit, depending on the sinking

intensity of 210Po with TPM, were different at various depths.

Similar observations were reported in the SCS basin (Wei et al.,

2014; Ma et al., 2017; Yang et al., 2021). These distribution

patterns lent support to the application of 210Po-210Pb to

constrain the sinking velocity of particles below the euphotic

zone (Villa-Alfageme et al., 2014; De Soto et al., 2018). This

scenario indicated that 210Po is dominantly from in situ decay

of 210Pb, and that particle sinking largely controls the deficit

of 210Po relative to 210Pb in the study basin. In fact, the profiles of

different particulate components lent support to this view

(Figure 2). For example, TPM showed a classical pattern with

high contents in the productive euphotic zone and decreased

with depth below. POCtot also exhibited an exponential

descending below the euphotic zones (Figures 2B, C), showing

characteristics of the open ocean. A series of recent

investigations observed the cross-shelf disperse of benthic
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shelf/slope nepheloid into the northern SCS basin (Ma et al.,

2017; Shih et al., 2019), as was verified by the elevated TPM and

POCtot contents in the twilight water than the productive

euphotic zones (Yang et al., 2021, 2022) and mechanically

interpreted by the internal solitary waves (Jia et al., 2019).

However, these phenomena were not observed at stations E1

and F2 (Figure 2), supporting little influence of shelf-basin

interaction on the study area. In addition, soot did not show a

discernible increase with depth at the two stations (Figure 2),

further corroborating the view. Thus, all the vertical patterns of

TPM, POCtot, and soot indicated that the deficits of 210Po in the

study basin are dominantly controlled by the particle sinking,

i.e., TPM-driven top-down control, which enabled us to evaluate

the sinking speed of TPM using the 210Po-210Pb pair (Villa-

Alfageme et al., 2014, 2016).
210Po-derived sinking speed of particles

As shown in Figure 4, model-computed 210Po well predicted

the measured 210Po activity concentrations at both E1 and F2,

lending support to the validity of the application of the inverse

model approach to the SCS. The 210Po-derived sinking velocity

of TPM ranged from 3 to 21 m d-1 at E1 and from 9 to 34 m d-1

at F2 (Figure 4), averaging 10 ± 6 m d-1 and 20 ± 9 m d-1,

respectively. These values fell within the scope of the slow

sinking particles, e.g., operationally termed 0.7-11 m d-1

(Alonso-González, et al., 2010),< 10 m d-1 (Riley et al., 2012;

Villa-Alfageme et al., 2014), and< 20 m d-1 (Baker et al., 2017).
FIGURE 5

Variations of POC and soot fluxes at stations E1 and F2.
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The mooring-sediment traps at 1003 m and 3226 m depths

estimated the sinking velocity of the diatom-related particles

was ~30-50 m d-1 in the SCS basin (Ran et al., 2015). Based upon

radioactive cesium (137Cs) collected by a time-series mooring

sediment trap, particles showed the sinking velocity of about

50 m d-1 at station K2 in the northwestern Pacific Ocean (Honda

and Kawakami, 2014). Usually, this type of traps collects fast

sinking particles and diatom detritus have large sinking speed

due to its ballasting effect (Boyd and Trull, 2007; Hung et al.,

2012). Thus, the filter-collected particles in our study mainly

represent the slow sinking particles.

The sinking velocity showed similar profiles at E1 and F2,

i.e., lower values in the euphotic zones, maxima at the base of the

euphotic zones or beneath, then a downward decrease to

different depths, and an increasing pattern to deep water

(Figure 4). The euphotic zones, characterized by active

primary production, grazing, and water mixing, usually

showed the lowest sinking velocity of particles as observed at

the Porcupine Abyssal Plain (PAP) site in the North Atlantic

(Villa-Alfageme et al., 2014). The euphotic zone is about 100 m

in the SCS basin (Cai et al., 2015) and about 117 m determined at

a station P4 close to F2 (Hung et al., 2012). The high primary

production often occurs in the lower euphotic zone in the SCS

(Cai et al., 2015; Yang et al., 2015b). Planktonic organisms can

accelerate the aggregation of an individual particle by acting as

nucleation and thus increase their sinking rate (Riley et al.,

2012). In addition, our recent study found that the sticky

transparent exopolymer particles (TEP) largely favor the

formation of aggregates in the northern SCS (Ge et al., 2022).

It is likely that the two factors jointly resulted in the maxima

velocity beneath the euphotic zones at E1 and F2. In the upper

mesopelagic zones, the sinking velocity decreased from 21 m d-1

(100 m) to 3 m d-1 (300 m) and from 34 m d-1 (200 m) to

14 m d-1 (800 m) at E1 and F2 (Figure 4), respectively. Given the

lack of primary production, the net remineralization process

could occur in the twilight zone. Results from the Indented

Rotating Sphere (IRS) sediment traps indicate that fast sinking

particles dominantly contribute to the abyssal POC flux

(Alonso-González et al., 2010), supporting the large

remineralization of slow sinking particles. Direct biomarker

analysis (Riley et al., 2012), compiled from datasets (Lee et al.,

2000; Sheridan et al., 2002) suggested that high bioavailability

seems to be a general nature of the slowly settling particles (Riley

et al., 2012). Probably, aggregates remineralized via the activity

of microbes and zooplankton (Sheridan et al., 2002), as was

supported by the concurrently descending POC contents

(Figure 2) and the quick decrease in the diameter of sediment

trap collected particles from 150 m to 300 m at station ALOHA

(Cael and White, 2020). With the remineralization, the sinking

velocity showed a downward decrease at both E1 and F2 in the

upper mesopelagic zones (Figure 4). Owing to the larger speeds

at F2, the remineralization spanned a longer distance than E1.

When most of the labile components are remineralized, particles
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mainly consist of small minerals, which usually have higher

densities and ballasting effects (Boyd et al., 2019; Li et al., 2022)

and high sinking velocities. The increase in sinking velocity with

depth in the twilight zone was first reported in the North

Atlantic (Villa-Alfageme et al., 2014, 2016). Although the

reason behind this pattern is unclear, Villa-Alfageme et al.

(2016) suggested possible biogeochemical mechanisms,

including shallow remineralization of slow sinking particles,

preferential remineralization of POC of larger particles and

aggregates, aggregation of ballasting biominerals, and

repackaging of sinking matter. Which of the processes that

control the downward decrease in the sinking velocity of TPM

is a question we cannot address here and is an area for future

investigation in the SCS.
Attenuation of the POC flux in the
mesopelagic zone

Overall, the sinking fluxes of POCtot showed descending

patterns with depth (Figure 5) at E1 and F2. Soot showed little

variation in the flux below the euphotic zone, corresponding to

its refractory nature in the aphotic zone as observed in our

previous studies (Yang and Guo, 2014; Yang et al., 2021). The

autochthonous POC (i.e., POCauto) flux showed classic decrease

patterns with depth from the base of the euphotic zone (i.e.,

~100 m) to the twilight zone (Figure 5). The magnitudes of

POCauto flux were comparable to recent reports on the slope of

the northern SCS (Yang et al., 2021, 2022) and the northwestern

Pacific Ocean (Hung et al., 2012). In the twilight zones, the

available POCauto fluxes varied from 1.87 ± 0.94 to 5.97 ± 0.55

mmol-C m-2 d-1 in the northern SCS (210Po-soot coupling

method, Yang et al., 2021) and from 0.7 ± 0.3 to 6.0 ± 0.3

mmol-C m-2 d-1 at sites to the north of F2 (sediment trap

method and calculated by the flux in mmol-C m-2 h-1 multiplied

by 24 h) (Hung et al., 2012). Our results were comparable to

these results, lending supports to the validity of using 210Po-

derived sinking velocity to constrain the POC flux in the

mesopelagic water in the SCS.

The profiles of POCauto flux at E1 and F2 enable us to evaluate

the attenuation of autochthonous POC during settling in the

study areas. By normalizing the POCauto flux at a specific depth in

the twilight zone, we obtained the Martin curves of Fz/F100 = (z/

100)-0.77 ± 0.09 (R2 = 0.79, p<0.05) at station E1 and Fz/F100 = (z/

100)-0.80 ± 0.07 (R2 = 0.84, p<0.05) at F2 (Figure 6). The consistent b

values of 0.77 ± 0.09 and 0.80 ± 0.07 at the two stations were

seemingly comparable to 0.70 ± 0.01 observed in August on the

slope of the northern SCS (Yang et al., 2021). They are smaller

than the 1.33 ± 0.15 observed at station ALOHA (Buesseler et al.,

2007), similar to 0.83 ± 0.04 evaluated using data at station BATS

(Lutz et al., 2002), and lower than the global mean value of 0.9-1.0

(Kwon et al., 2009). Using the in situ b values, 1.9 ± 0.8 mmol-C

m-2 d-1 and 5.4 ± 1.8 mmol-C m-2 d-1 were estimated to
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remineralize back to CO2 at E1 and F2 before POCauto settling to

themid-mesopelagic depth (i.e., 500m), representing 68 ± 42% of

the POCauto sinking flux out of the euphotic zone. At the bottom

of the mesopelagic zone (i.e., 1000 m), the magnitude reached 2.4

± 0.8 mmol-C m-2 d-1 at E1 and 6.6 ± 1.7 mmol-C m-2 d-1 at F2,

i.e., 84 ± 43% of POCauto exported from the euphotic zone

remineralized. Although we have not yet parameters to quantify

the change in acidification of seawater induced by the POCauto

remineralization during the settling in the twilight zone, these

preliminary results highlighted that the acidification might

mainly occur in the upper twilight layer and POC

remineralization is an unneglectable mechanism for

acidification in the subsurface ocean. In addition, our results

could provide valuable data for further evaluation of the

acidification via either modeling or in situ observation focusing

on the upper twilight layer.
Conclusion

The sinking velocity of particles was, for the first time,

constrained in the northeastern SCS. The results indicated that

the deficits of 210Po were controlled by particle settling in the

basin of the northeastern SCS. The good match between the

computed 210Po and in situ measured 210Po validated

the application of the inverse-modeling approach to quantify
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the sinking speed of particles in the SCS. The sinking velocity

implied that the filter-collected particulate matter is mainly slow

sinking particles. The profiles of sinking velocity, closely relating

to the POC aggregation and remineralization, showed the

maxima around the base of the euphotic zone and a

descending pattern beneath. Using the velocity, the sinking

fluxes of autochthonous POC were estimated in the twilight

and showed a power-law descending with depth, revealing that

about 70% of POC exported from the euphotic zone

remineralized to CO2 before settling to 500 m and 84% before

reaching 1000 m. These preliminary results indicated that POC

sinking and remineralization could play an important role in

driving the acidification of seawater in the upper twilight zone in

the SCS though extensive investigations are needed.
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