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Exposure to global change and
microplastics elicits an
immune response in an
endangered coral
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Nicola G. Kriefall 1, Alexa K. Huzar1, Annabel M. Hughes1,
Koty Sharp3, Nicole D. Fogarty2 and Sarah W. Davies1*

1Department of Biology, Boston University, Boston, MA, United States, 2Department of Biology and
Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington,
NC, United States, 3Department of Biology, Marine Biology, and Environmental Science, Roger
Williams University, Bristol, RI, United States
Global change is increasing seawater temperatures and decreasing oceanic pH,

driving declines of coral reefs globally. Coral ecosystems are also impacted by local

stressors, including microplastics, which are ubiquitous on reefs. While the

independent effects of these global and local stressors are well-documented,

their interactions remain less explored. Here, we examine the independent and

combined effects of global change (ocean warming and acidification) and

microplastics exposures on gene expression (GE) and microbial community

composition in the endangered coral Acropora cervicornis. Nine genotypes

were fragmented and maintained in one of four experimental treatments: 1)

ambient conditions (ambient seawater, no microplastics; AMB); 2) microplastics

treatment (ambient seawater, microplastics; MP); 3) global change conditions

(warm and acidic conditions, no microplastics; OAW); and 4) multistressor

treatment (warm and acidic conditions with microplastics; OAW+MP) for 22

days, after which corals were sampled for genome-wide GE profiling and ITS2

and 16Smetabarcoding. Overall A. cervicornisGE responses to all treatments were

subtle; however, corals in the multistressor treatment exhibited the strongest GE

responses, and genes associated with innate immunity were overrepresented in

this treatment. ITS2 analyses confirmed that all coral were associated with

Symbiodinium ‘fitti’ and 16S analyses revealed similar microbiomes dominated

by the bacterial associate Aquarickettsia, suggesting that these A. cervicornis

fragments exhibited remarkably low variability in algal and bacterial community

compositions. Future work should focus on functional differences across

microbiomes, especially Aquarickettsia and viruses, in these responses. Overall,

results suggest that when local stressors are coupled with global change, these

interacting stressors present unique challenges to this endangered coral species.

KEYWORDS

global change, microplastics, gene expression, Acropora cervicornis, coral
microbiome, ocean acidification, ocean warming
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1 Introduction

Anthropogenic global change represents one of the greatest

scientific challenges of our time. As atmospheric concentrations

of carbon dioxide (CO2) continue to increase, the world’s

ecosystems face unprecedented challenges from the resulting

warming, sea level rise, and extreme weather events (Rosenzweig

et al., 2008). The effects of global change are being documented

across ecosystems, from declines in terrestrial plant diversity

(Harrison, 2020) to shifts in species distributions (Cristofari

et al., 2018). However, marine environments are faced with

additional threats not present in terrestrial ecosystems (e.g., sea-

level rise and ocean acidification), and these threats are especially

pressing for tropical coral reefs (Hoegh-Guldberg and

Bruno, 2010).

Coral reef ecosystems are experiencing major declines under

global change stressors, especially ocean warming that causes the

breakdown of the symbiosis between the coral host and

dinoflagellate algae [family Symbiodiniaceae; (Muller-Parker

et al., 2015; LaJeunesse et al., 2018)]. These declines are

particularly evident across the Caribbean where reefs have

experienced significant coral loss since the late 20th century,

largely due to major disease outbreaks, overfishing leading to

macroalgal blooms, and thermal stress events (Contreras-Silva

et al., 2020; Bove et al., 2022b; Randazzo-Eisemann et al., 2022).

In addition to warming, ocean acidification represents a

significant challenge to reef-building corals that can lead to

reduced growth rates, dissolution of existing reef framework, and

reduced holobiont (animal host, algal symbionts, bacteria,

viruses, etc.) physiology and metabolic rates (Anthony et al.,

2008; Aichelman et al., 2021; Cornwall et al., 2021). While

responses of corals under ocean acidification and warming can

vary both within and across species (Bove et al., 2022a), it is clear

these global stressors represent immediate threats to the future

of coral reefs.

Along with changing oceanic conditions, coral reefs are

susceptible to pollution via terrestrial input, which includes

microplastics (Hall et al., 2015; Soares et al., 2020; Hankins

et al., 2021; Oldenburg et al., 2021). Microplastics are small

plastics, such as beads or fibers, smaller than 5 mm, that come

from a variety of sources, including synthetic clothing and

personal care products, that enter the waterways via runoff

and wastewater treatment (Ivar do Sul and Costa, 2014).

Microplastics are ubiquitous across coastal ecosystems, and

pose risk to ecosystems via adsorbed chemical pollutants and

novel microbiomes (Browne et al., 2011; Rochman et al., 2019).

Microplastic particles have been found within coral

gastrovascular cavities, suggesting corals ingest plastics (Hall

et al., 2015; Hankins et al., 2018; Rotjan et al., 2019). Active

ingestion of microplastic particles can reduce coral growth

(Reichert et al., 2019; Hankins et al., 2021; Huang et al., 2021)

directly via blockages of coral digestive cavities (Allen et al.,
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2017). Further, interaction with microplastics may impact the

energetic budget of the coral, altering polyp behavior and

feeding, impeding gamete fertilization success, and affecting

the holobiont immune system and coral disease prevalence

and susceptibility (Tang et al., 2018; Berry et al., 2019; Rotjan

et al., 2019; Hankins et al., 2021; Huang et al., 2021). Passive

surface interactions/surface adhesion with the plastics (Reichert

et al., 2018) can cause abrasion and injury, increasing coral

susceptibility to infection and disease (Page and Willis, 2008;

Lamb et al., 2016). While the impacts of microplastics on corals

are an active area of research, little is known about how this

emerging stressor interacts with other stressors, especially ocean

warming and acidification.

Of the work to date examining global change stressors and

microplastics, results are variable and species dependent

(Axworthy and Padilla-Gamiño, 2019; Huang et al., 2021). For

example, recent work found that warming led to consistent

reductions in fitness-related traits in corals, while microplastics

resulted in mixed responses (Reichert et al., 2021). Similarly,

another study found that microplastics had no effect on

Symbiodiniaceae cell density under ambient or elevated

temperatures (Plafcan and Stallings, 2022), suggesting that

microplastics may represent a minor stressor when compared

to warming. Little is known about the combined effects of ocean

warming and microplastics on corals and even less work has

explored how ocean acidification may interact with microplastic

pollution to impact corals. Previous work in other marine

invertebrates reports impaired immunity in adult mussels

(Huang et al., 2022) and altered larval development in urchins

(Bertucci et al., 2022) in response to microplastics and ocean

acidification, suggesting that the interaction of these stressors

may exacerbate coral stress.

One way to gain a more mechanistic understanding of how

an organism is responding to a stressor is to profile their gene

expression in response to multiple stressors [reviewed in Rivera

et al., (2021)]. Currently, gene expression responses of corals to

the combined effects of global change and microplastics remain

underexplored. Corals have been shown to shuffle their algal

symbionts in response to a variety of stressors (Ros et al., 2021;

Rodriguez-Casariego et al., 2022), representing a potential

acclimation strategy for corals under stress. In addition to

their obligate, intracellular photosymbionts (Symbiodiniaceae),

corals maintain diverse but specific microbiomes consisting of

bacteria, archaea, fungi, viruses, and protists (Bourne et al., 2016;

van Oppen and Blackall, 2019). Research has demonstrated that

coral health and survival is mediated by their microbiomes

(Glasl et al., 2016; Ziegler et al., 2017; Ricci et al., 2019), and

that exposure to stressors is reflected in dysbiosis, or a

microbiome-wide disturbance/shift in taxonomic composition

(Zaneveld et al., 2016; Apprill, 2017; McDevitt-Irwin et al.,

2017). Laboratory experiments have demonstrated the capacity

of microplastic particles to transmit bacteria into corals via
frontiersin.org
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particle ingestion (Rotjan et al., 2019). Moreover, microplastics

are known to harbor microbial biofilms that are taxonomically

distinct [the “plastisphere”, (Zettler et al., 2013; Amaral-Zettler

et al., 2020)] from those found in naturally occurring particles

suspended in seawater, and bacteria associated with coral

diseases have been detected on microplastic pieces (Goldstein

et al., 2014; Feng et al., 2020). However, the implications of

exposure to microplastics and microplastics-associated microbes

on the composition and activity of the coral microbiome,

including vectoring pathogens to corals, is not yet

well understood.

Understanding how all of the members of the coral

holobiont respond in highly endangered coral species, such as

Acropora cervicornis, remains a top research priority given the

current rates of coral decline (Miller et al., 2002; Schutte et al.,

2010; Contreras-Silva et al., 2020). Caribbean A. cervicornis

populations are experiencing dramatic declines and are the

focus of major restoration efforts (Schopmeyer et al., 2017;

Ware et al., 2020). Disease susceptibility in A. cervicornis

appears to be mediated by host genotype, environment, and

the microbiome (Klinges et al., 2020; Williams et al., 2022). The

recently described “Candidatus Aquarickettsia rohweri”

(hereafter, Aquarickettsia) (Klinges et al., 2019) is extremely

widespread across Caribbean acroporids and can represent as

much as 99% of the detected sequences in 16S-based studies

(Klinges et al., 2020). Aquarickettsia appears to be parasitic to

acroporids and is likely an indicator and determinant of disease

susceptibility. Conversely, taxa from the genus Endozoicomonas

appear to be significantly and directly correlated with disease

resistance and resilience (Chu and Vollmer, 2016). After

bleaching/thermal stress, Aquarickettsia abundance declines

dramatically in the host, suggesting that disease is the indirect

result of Aquarickettsia depletion of holobiont nutritional

deficiencies, providing a niche for opportunistic pathogens

during/following thermal stress (Klinges et al., 2020).

Understanding how the microbiomes of these important reef-

building corals are involved in holobiont response to stressors is

an important consideration for informed conservation,

restoration, and management (Ware et al., 2020).

Here, we reared fragments of Acropora cervicornis under

projected global change (ocean acidification and warming),

microplastic pollution, and their interaction for 22 days. We

assessed responses of the holobiont to these stressors via coral

gene expression profiling, Symbiodiniaceae community ITS2

metabarcod ing , and microb iome communi ty 16S

metabarcoding. Overall, we hypothesized that the combined

stressor treatment (ocean acidification, warming, and

microplastics) would elicit the strongest responses by all

holobiont members given that these stressors may interact to

cause cellular disruption and limit heterotrophy through

microplastic ingestion.
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2 Materials and methods

2.1 Coral collection and experimental
design

In June 2020, Nova Southeastern University staff collected

nine putative Acropora cervicornis genotypes off coastal Fort

Lauderdale, FL, USA from the Nova Southeastern University in

situ coral nursery (Florida Fish and Wildlife Conservation

Commission permit #SAL-19-2200A-SRP). These genotypes

were maintained in outdoor tanks for one week in ambient

conditions, after which they were transported to the University

of North Carolina Wilmington. Fragments were acclimated to

recirculating laboratory tank conditions (27.6–28.9 ˚C; 34–36

ppt salinity) for three months. Two weeks before the start of the

experiment, four branches (~5 cm) from each genotype were

glued to ceramic plugs, allowed to recover for one week, and

then acclimated to individual experimental tanks for one week.

Coral fragments were randomly assigned to one of four

experimental treatments (mean ± SD): 1) ambient treatment

(AMB; temperature: 28.6 ± 0.03°C, pH: 8.07 ± 0.07), 2)

microplastics treatment (MP; temperature: 28.6 ± 0.03°C, pH:

8.06 ± 0.06; 1.25 x 10-4 g/ml of microplastics), 3) ocean

acidification and warming treatment (OAW; temperature: 30.1 ±

0.57°C, pH: 7.96 ± 0.08), and 4) multistressor treatment (OAW

+MP; temperature: 30.1 ± 0.53°C, pH: 7.95 ± 0.11; 1.25 x 10-4 g/ml

of microplastics) (Figure 1; see Supplemental Table S1 for details on

seawater conditions at tank and treatment levels). Ambient seawater

temperature and pH were based on oceanic averages in Fort

Lauderdale, FL, while OAW conditions were intermediate

predictions for 2075 following IPCC data (Shukla et al., 2019).

One branch from each genotype (N=9) was placed in each

treatment, resulting in a total of 36 samples. Each fragment was

housed in its own non-recirculating 37.85-liter experimental tank

that received frequent water changes and thus can be considered a

true biological replicate.

The microplastic treatments were achieved by weighing out

UV-fluorescent blue polyethylene microspheres in equal

amounts of two different size classes (density: 1.13 g/cc,

Cospheric, LLC; diameters: 180-212 µm and 355-425 µm) to

obtain a concentration of 1.25 x 10-4 g ml-1 per tank. This

microplastic concentration was selected based on previous

studies to represent moderate microplastic exposure and two

size classes were used to ensure the corals could ingest the

plastics, which would make the treatment more ecologically

relevant (Reichert et al., 2018). The microplastics were added to

clean tripour containers within each experimental tank to allow

the microplastics to acquire a biofilm over 48 hours before a

single coral fragment was placed into each tripour container.

The microplastics were then gently resuspended within the

individual tripours three times a day using a turkey baster. All
frontiersin.org
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tripours were treated the same and this process was repeated

throughout the experiment to maintain microplastic densities

within each replicate.

Water temperature and pH were controlled using Neptune

Systems’ Apex microcontrollers. Each tank contained a pH

probe, temperature probe, and aquarium heater to control

individual tank conditions. The OAW and OAW+MP tanks

also each contained a tube for bubbling in CO2 to control the pH

in these systems. The Neptune System allowed for precise

control of individual tank parameters by modulating the

aquarium heaters and the solenoids connected to the CO2

tubes to achieve desired treatment conditions. Fragments in

OAW/OAW+MP treatments were acclimated by starting at

28.6°C and then raising the temperature by 0.5°C each day

until 30.5°C was achieved. Similarly, the pH in OAW/OAW

+MP treatments started at 8.05 and was reduced by 0.05 pH

units each day until 7.94 was reached. Corals were maintained at

these experimental conditions for 22 days while monitoring

salinity, temperature, pH, and dissolved oxygen daily

(Supplemental Figure 1 and Table S1). Ammonia, nitrate,

phosphate, and alkalinity were also measured daily in two

randomly selected experimental tanks, one ambient and one

ocean acidification and warming. Lights were on a 12:12 light:

dark schedule with a PAR of 195 mmol m2 S-1 that is similar to

those recorded for waters across southeast Florida (Yates et al.,

2019). All fragments were fed Reef-Roids coral food following

manufacturer’s instructions (2 mL aliquots) three times weekly

and 30% water changes were conducted for all tanks the day after
Frontiers in Marine Science 04
feeding. Immediately following the 3-week experiment, tissue

samples (1 cm) from each fragment were placed in cryovials,

flash frozen in liquid nitrogen, and maintained at –80°C before

being transported to Boston University for downstream analyses.
2.2 RNA isolation and TagSeq
library preparation

Tissue samples were crushed with a razor blade and RNA

was isolated using RNAqueous kits (ThermoFisher Scientific)

following manufacturer instructions with the exception of

eluting in 30 µl of elution buffer. DNA was then removed

using DNA-free DNA Removal kits (ThermoFisher Scientific).

Of the nine genotypes, the top six (Figure 1 and Supplemental

Table S2) with the highest concentration and quality of RNA

were normalized to 15 ng/µl. Normalized samples were sent to

UT Austin’s Genome Sequencing and Analysis Facility, where

TagSeq libraries were prepared following Meyer et al. (2011) and

sequenced (single end 100 bp) on a NovaSeq 6000.
2.3 Identifying Acropora cervicornis
clones

Acropora cervicornis is well-known for its ability to

reproduce asexually via fragmentation (Tunnicliffe, 1981). To

identify potential A. cervicornis clones in our dataset, we called
FIGURE 1

Experimental design to test the effects of ocean warming, acidification, and microplastics on the endangered coral Acropora cervicornis. Four
fragments from each of six A. cervicornis genotypes that were used in downstream sequencing were assigned one of four experimental
treatments: ambient conditions (AMB; blue), ocean acidification and warming (OAW; orange), microplastics (MP; dark blue), and OAW and MP
(OAW+MP; red). Fragments were maintained individually in isolated tanks not depicted in this diagram. The dark blue rectangle (left) showcases
two corals that were identified as clones via SNP calling from TagSeq gene expression data and the ^ symbol indicates the clone pair that was
removed. The asterisk (*) indicates one gene expression library that was removed from downstream analysis due to low read counts.
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single nucleotide polymorphisms (SNPs) from TagSeq reads.

Briefly, 104.64 million raw reads were generated, with individual

library counts ranging from 4.17 to 6.58 million reads per sample

(mean = 5.23 million reads) (Supplemental Table S2).

Fastx_toolkit removed 5’-Illumina leader sequences and poly

(A)+ tails. Sequences <20bp in length with <90% of bases having

quality cutoff scores <20 were also trimmed. In addition, because

degenerate bases were incorporated during cDNA synthesis,

PCR duplicates were removed from all libraries. After quality

filtering 0.63 to 3.00 million reads remained (mean = 2.07

million) and these resulting quality filtered reads were mapped

to the Acropora millepora genome (Fuller et al., 2020) using

Bowtie2.2.0 (Langmead and Salzberg, 2012) (Supplemental

Table S2). Resulting SAM files were converted to BAM files

using samtools (Li et al., 2009). ANGSD (Korneliussen et al.,

2014) calculated pairwise identity-by-state (IBS) matrices using a

minIndDepth filter of five. IBS matrices were used as input to

hclust(), which visualized relatedness of individuals and allowed

for the identification and removal of clones. We note here that

mapping was also conducted using the Acropora cervicornis

transcriptome (Libro et al., 2013) and the A. cervicornis

genome (Kitchen et al., 2019), however the transcriptome was

found to contain symbiont data and the genome resulted in

lower mapping efficiencies relative to the A. millepora genome.

Given that results remained the same (e.g., clones were identified

and similar overall gene expression patterns were observed), A.

millepora has superior annotations, and Cooke et al. (2020)

found high synteny among acroporids, we opted to move

forward mapping to the A. millepora genome. When clones

were detected, only one clonemate was maintained in

downstream analyses of gene expression patterns (see

Supplemental Table S2).
2.4 Read mapping, differential gene
expression and gene ontology
enrichment analysis

Reads were trimmed as described above and these reads were

mapped to the Acropora millepora genome (Fuller et al., 2020)

using Bowtie2 (Langmead and Salzberg, 2012). A custom Perl

script (samcount.pl) was used to count the number of reads and

the resulting raw counts file was then imported into R v. 3.4.2 (R

Core Team (2017) for further analyses. Only samples

representing clonemates from SNP analyses above and samples

with < 400k counts were removed leaving 19 samples in

downstream analyses. Differentially expressed genes (DEGs)

were identified using DESeq2 v. 1.32.0 in R, with the model:

design = ~ genotype + treatment. A contig was considered

significantly differentially expressed if it had an FDR adjusted

p-value < 0.1.

Data were rlog-normalized and effects of genotype and

treatment on global gene expression profiles were tested using
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a PERMANOVA [adonis() function; vegan (Oksanen, 2007)]

and visualized using principal components analysis (PCA) using

Euclidean distances. An additional PCA was computed using

only the top 1000 differentially expressed genes for experimental

treatment based on raw p-values to further explore sample

clustering when only the genes whose profiles were the most

divergent were included.

Gene expression plasticity was then calculated using the first

two principal component (PC) axes as the distance between a

genotype’s gene expression in its treatment condition relative to

its expression in ambient conditions using a custom function

(Bove, 2022a). The effect of treatment on calculated distances

(i.e., gene expression plasticity) was assessed using an analysis of

variance (function aov) with treatment as a fixed effect.

Genotype was not included in the model because it was

accounted for in the PC distance calculations. Differences

between treatment levels were tested using Tukey’s Honest

Significant Differences (HSD) tests.

To determine whether global gene expression patterns

showed enrichment of different gene ontology (GO) classes,

the collection of scripts ‘GO_MWU’ from Wright et al. (2015)

was used (https://github.com/z0on/GO_MWU). Here, the GO

database (go.obo v.1.2) was used to test for enrichment of GO

terms based on the ranked −log signed p-values of each gene.

Gene ontology terms that were over-represented or under-

represented were then visualized in a tree format that groups

GO terms with other terms of similar function. All GO

enrichment results for all treatment comparisons can be found

on the github repository (https://github.com/daviessw/Acer_

OAW-Microplastics); however only results of the double

stressor treatment (OAW+MP) relative to ambient conditions

(AMB) are described in detail here. Within this comparison, a

heatmap of genes (raw p-value 0.10) assigned to GO terms

associated with immunity was constructed using the R package

pheatmap to illustrate gene expression patterns associated with

OAW+MP.
2.5 ITS2 and 16S metabarcoding

DNA was extracted using an RNAqueous kit (ThermoFisher

Scientific) as described above, except samples were not subjected

to the DNA removal step. Internal transcribed spacer region 2

( ITS2 ) PCR amp l ifi c a t i on wa s pe r f o rmed us ing

SYM_VAR_5.8S2 and SYM_VAR_REV primers (Hume et al.,

2013; Hume et al., 2015) using the following PCR profile: 26

cycles of 95°C for 40 s, 59°C for 2 min, 72°C for 1 min and a final

extension of 72°C for 7 min. A negative control was included and

failed to amplify so it was not sequenced. PCR products were

cleaned using the GeneJET PCR Purification kit (ThermoFisher

Scientific) according to the manufacturer’s instructions with the

exception of eluting in 30 µl of elution buffer. A second PCR was

performed to dual-barcode samples before pooling, which was
frontiersin.org
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done based on the visualization of band intensity on a 1%

agarose gel. After pooling, the sample was cleaned using the

GeneJET PCR Purification kit (ThermoFisher Scientific)

according to the manufacturer’s instructions with the

exception of using 40 ml of elution buffer. 20 ml of the pool

was run on a 2% SYBR Green gel, the target band was excised

and placed in 30 ml of Milli-Q water overnight at 4°C before

submission for sequencing as detailed below. The V4 region of

the 16S rRNA gene was amplified via PCR using Hyb515f

(Parada et al., 2016) and Hyb806R (Apprill et al., 2015)

primers and the following PCR profile: 30 cycles of 95°C for

40 s, 63°C for 2 min, 72°C for 1 min and a final extension of 7

min. The same procedure as described above for the ITS2

samples was then followed, but with the addition of two

negative controls using Milli-Q water which were included in

sequencing submission. Concentrations of the ITS2 and 16S

pools (via DeNovix DS-11+ Spectrophotometer) were used to

combine the two pools in a 1:3 ratio, respectively. Libraries were

sequenced on Illumina MiSeq (paired-end 250 bp) at Tufts

Genomics Core Facility.

Demultiplexed reads were pre-processed using bbmap

(Bushnell, 2014) to split ITS2 and 16S reads based on primers,

while tossing reads that included neither primer. Resulting ITS2

reads were then analyzed by submitting paired fastq.gz files

directly to SymPortal, which identifies specific sets of defining

intragenomic ITS2 sequence variants (DIVs) to define ITS2 type

profiles that are indicative of genetically differentiated

Symbiodiniaceae taxa (Hume et al., 2019).

16S primers were removed using cutadapt (Martin, 2011),

then DADA2 (Callahan et al., 2016) was used to conduct quality

filtering and inference of 3,493 amplicon sequence variants

(ASVs) (see Supplemental Table S3 to track reads lost through

filtering). Taxonomy was assigned with DADA2 using the Silva

v. 138.1 database (Quast et al., 2013) and National Center for

Biotechnology Information’s nucleotide database using blast+

(Camacho et al., 2009). ASVs matching mitochondria,

chloroplasts, or non-bacterial kingdoms were removed (216

total) and 5 ASVs were removed based on negative controls as

contaminants [Decontam; (Davis et al., 2018)]. Cleaned counts

were rarefied to 9,409 using vegan (Oksanen, 2007) and trimmed

usingMCMC.OTU (Wright et al., 2015) to remove ASVs present

in less than 0.01% of counts, resulting in 260 ASVs across all

36 samples.

Beta diversity of the 16S trimmed counts based on treatment

and genotype was assessed using a PCoA on Bray–Curtis

dissimilarity [Phyloseq; (McMurdie and Holmes, 2013)] and a

PERMANOVA [vegan; (Oksanen, 2007)]. We then calculated

alpha diversity (Shannon index, Simpson’s index, ASV richness,

and evenness) of the rarefied counts using Phyloseq [function

estimate_richness(); (McMurdie and Holmes, 2013)]. Finally, to

test for differences in background 16S communities, we removed
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all ASVs from the dominant genus MD3-55 [Candidatus

Aquarickettsia rohweri, referred now as “Aquarickettsia”;

(McMurdie and Holmes, 2013; Klinges et al., 2019)] and

performed the same beta and alpha diversity assessments. All

ITS2 and 16S data, figures, and analyses were completed in R

[version 3.6.3; (R Core Team, 2020) and can be found on GitHub

(h t tp s : / / g i thub . com/s eabove7 / ac e r_mic rop l a s t i c s ;

(Bove, 2022b)].
3 Results

3.1 Identification of coral genotypes

A total of 4,018 SNPs were identified and of the six putative

genotypes that were sequenced, one pair of clones was identified

(G10a and G12) (Supplemental Figure 2). Thus, genotype G12

samples from each of the four experimental treatments were

removed to retain only one representative clone (genotype

G10a) in each treatment (Supplemental Table S2).
3.2 All coral fragments are dominated by
the algal symbiont Symbiodinium ‘fitti’

Raw ITS2 counts before submission to SymPortal ranged

from 4,684 to 613,872 per sample, with a mean of 169,246. After

classification by SymPortal, ITS2 counts ranged from 730 to

121,515 per sample across all 36 samples with mean 32,774

counts. All coral fragments hosted Symbiodinium ‘fitti’ (ITS2

type A3) with 44% (N=16) hosting small background amounts

(less than 5%) of Breviolum minutum (ITS2 type B2) (Figure 2).
3.3 Double stressor treatment elicits
strongest gene expression plasticity

A total of 20 samples were sequenced, which resulted in a

total of 104.6 million reads, 41.4 million of which remained after

trimming, and 13.9 million of which mapped successfully to the

A. millepora reference genome. One sample - genotype G2, from

the OAW treatment - was removed from the dataset due to low

counts (166,828 total; Supplemental Table S2). Mean counts

across samples after outlier removal was 661,358.

Pairwise comparisons between each stressor (MP, OAW, OAW

+MP) and ambient conditions (AMB) showcased that individuals

in the double stressor (OAW + MP) treatment had the highest

number of differentially expressed genes (DEGs) (83 up, 60 down),

followed by microplastics (48 up, 9 down) and then OAW (18 up,

18 down) with relatively few genes overlapped between treatments

(pFDR<0.10, Supplemental Figure 3). A principal component
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analysis (PCA) on all rlog-transformed counts found that there was

no overall effect of treatment on A. cervicornis gene expression;

however, there was a significant effect of genotype on overall

expression patterns (Figure 3A; pGENOTYPE<0.001). A PCA of the

top 1,000 DEGs showcased stronger clustering by experimental

treatment and the effect of genotype remained significant

(Figure 3B; pGENOTYPE<0.001, pTREATMENT<0.001). This second

PCA also showcased that the double stressor (OAW+MP) had

the strongest effect on gene expression, which corroborated the
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numbers of observed DEGs. A gene expression plasticity analysis

confirmed this pattern, which showcased a significant effect of

treatment on gene expression plasticity (pTREATMENT=0.041), with

the OAW+MP treatment exhibiting the highest plasticity

(Figure 3C). However, these differences in plasticity between

corals in the OAW+MP treatment relative to corals in the OAW

and MP treatments were only marginally significant after

multiple test correction (OAW+MP~MP, p=0.07; OAW

+MP~OAW, p=0.06).
A B C

FIGURE 3

Transcriptomic responses to local and global stressors in Acropora cervicornis. (A) Principal component analysis (PCA) of rlog-transformed
counts for all genes and, (B) the top 1000 differentially expressed genes by treatment in DESeq2. PERMANOVA results for the effect of genetic
background (genotype) and treatment are included. (C) Gene expression (GE) plasticity +/- standard deviation (SD) estimates calculated from PC
distances from (B) where each point is the distance that genotype moved from its ambient fragment (AMB) in PC space.
FIGURE 2

Relative abundance of major ITS2 types across each sample grouped by treatment. Light grey represents Symbiodinium ‘fitti’ (A3) and dark grey
represents Breviolum minutum (B2).
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3.4 Corals exhibit mixed functional
responses to single stressor treatments

Gene ontology enrichment analysis between microplastics

(MP) relative to ambient conditions (AMB) revealed

underrepresentation of oxidoreductase (GO: 0016491),

suggesting down regulation of stress response in corals in MP

treatment. In addition, overrepresentation of GO terms

associated with ribosomal processes was observed including

structural constituent of ribosome (GO:0003735) and large

ribosomal subunit (GO:0015934), suggesting upregulation of

terms associated with increased growth under the presence

of microplastics.

In response to OAW, we observed an enrichment of

regulation of defense response to virus (GO:0050688), terms

associated with amino acid catabolism (aromatic amino acid

family catabolic process (GO:0009074), cellular amino acid

catabolic process (GO:0009063) and alpha-amino acid catabolic

process (GO:1901606)), and two terms associated with stress

response (chaperone-mediated protein folding (GO:0061077)

and unfolded protein binding (GO:0051082)). In addition, we

observed downregulation of processes associated with sensory

detection including detection of stimulus (GO:0051606), sensory

perception (GO:0007600), and cognition (GO:0050890). Lastly,

several GO terms associated with synapse were down regulated

including synapse (GO:0045202), synaptic membrane
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(GO:0097060), and cell junction (GO:0030054). All resulting

GO trees from these single stressor treatments can be found on

the accompanying GitHub repository (https://github.com/

daviessw/Acer_OAW-Microplastics).
3.5 Enrichment of immune-related
functions under multiple stressors

Gene ontology enrichment analysis between our double

stressor (OAW+MP) relative to ambient conditions (AMB)

revealed many significantly enriched GO terms within

‘Biological processes’, of which the OAW+MP-enriched

categories were dominated by GO terms associated with

immunity (green box, Supplemental Figure 4). These enriched GO

terms included: regulation of defense response to virus by host

(GO:0050691), activation of innate immune response (GO:0002218),

regulation of immune effector process (GO:0002697), NIK/NF-kappaB

signaling (GO:0038061), regulation of cytokine production

(GO:0001819), suggesting that the combined stressor elicited an

upregulation of innate immunity in the coral host. When a heatmap

was made of all genes belonging to these 30 GO terms that met our

alpha cut-off (unadjusted p-value < 0.10), strong differences in gene

expression were observed between corals in OAW+MP relative to

those inAMB treatments (Figure 4). Of particular interest, many classic

stress response genes were upregulated in OAW+MP relative to AMB
FIGURE 4

Differentially expressed genes (DEGs, unadjusted p-value < 0.10) with annotations associated with immunity gene ontology (GO) terms from
Supplemental Figure 4 (green box). Heatmap showing annotated immunity genes where each row is a gene and each column is a unique gene
expression sample. The color scale is in log2 (fold change relative to the gene’s mean) and genes and samples are clustered hierarchically based
on Pearson’s correlation of their expression across samples. Colored blocks indicate treatment. Hierarchical clustering of libraries (columns)
demonstrates strong differences in gene expression of immunity genes by treatment condition.
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including: superoxide dismutase, two heat shock proteins, several

ubiquitin genes, tumor necrosis factors/receptors, a proto-oncogene,

and several genes associated with apoptosis (bcl2-like 1) and response

to cytokines (p38 map kinase).
3.6 Acropora cervicornis microbiomes
dominated by order Rickettsiales

Cleaned 16S reads before trimming and rarefaction

averaged 42,577 ± 25,010 ( ± SD) per sample across all A.

cervicornis samples with a minimum of 9,409 (Sample 11 A -

1) and a maximum of 107,941 (Sample 10a C - 1). Fragments

were dominated by taxa from the phylum Proteobacteria

(Figure 5A), which was dominated by a single ASV (Genus

MD3-55; “Candidatus Aquarickettsia rohweri”) within the
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order Rickettsiales (Figure 5B; see Supplemental Figure 5).

This dominant ASV was a 100% match to the published 16S

rRNA sequence for the putative bacterial parasite “Ca.

Aquarickettsia rohweri” (hereafter, Aquarickettsia) (Klinges

et al., 2019) that is common in A. cervicornis across the

Caribbean (Godoy-Vitor ino et a l . , 2017; Wil l iams

et al., 2022).

Beta diversity analyses did not identify any statistical

differences across samples based experimental treatment or

genotype (Figures 5C, D and Supplemental Table S4).

Similarly, alpha diversity was indistinguishable across

treatments (Supplemental Figure 6 and Table S5). After

removing Aquarickettsia from all samples to assess

background bacterial communities, there were still no

differences in alpha or beta diversity across treatments or

genotypes (Supplemental Figure 7 and Table S6).
A

B DC

FIGURE 5

Acropora cervicornis bacterial (16S) relative abundance across fragments and experimental treatments. Diversity at the phylum level (A) depicts
dominance of all samples by taxa from Proteobacteria and this (B) phylum was dominated by the order Rickettsiales in most samples. Bacterial
diversity color was assigned alphabetically, not based on abundance. Beta diversity was visualized through (C) multivariate ordination plots
(PCoA) of between-sample Bray–Curtis dissimilarity of rarefied ASVs of all taxa and (D) distance to treatment centroids. PCoA ellipses depict
95% confidence intervals and p-values indicate significance of treatment and genotype. Treatment is depicte-d by color in all panels: light blue =
ambient conditions (AMB), dark blue = ocean acidification and warming (OAW), orange = microplastics (MP), and red = OAW and MP (OAW+MP).
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4 Discussion

4.1 Microplastics alone do not drive
strong gene expression responses in
Acropora cervicornis

Tropical coral reef ecosystems are facing extraordinary

challenges from both local and global stressors that are

altering their function (Eddy et al., 2021). On the local scale,

pollution in the form of microplastics may threaten the health

and physiology of reef-building corals (Soares et al., 2020;

Nanthini devi et al., 2022). While there is evidence that corals

ingest microplastics, which can lead to a variety of physiological

responses (Hall et al., 2015; Rotjan et al., 2019), here we detected

only a muted gene expression response in A. cervicornis exposed

to microplastics. In fact, overall gene expression profiles were

indistinguishable between the ambient and microplastics

treatments, and an effect of microplastics was only apparent

when looking at the expression of top 1,000 genes. This result

corroborates previous work reporting negligible effects of

microplastics on coral physiology, bleaching susceptibility, and

mortality (Reichert et al., 2021; Plafcan and Stallings, 2022) and

supports the hypothesis that corals that rely more heavily on

heterotrophy may be more impacted by microplastic pollution.

Recent studies have considered the physiological impact of

microplastics on tropical corals at the molecular level. These

studies, conducted on the tropical coral Pocillopora damicornis

(Tang et al., 2018) and the habitat-forming octocoral Corallium

rubrum (Corinaldesi et al., 2021), report evidence of elevated

stress response after exposure to microplastics in as little as a few

hours. In contrast, we identified enrichment of GO terms

associated with growth (structural constituent of ribosome, large

ribosomal subunit) and an underrepresentation of terms

associated with stress response (oxidoreductase). Our gene

expression results suggest that A. cervicornis is not exhibiting

signs of molecular stress after a 3-week exposure to microplastics,

and that these corals may actually be growing more compared to

those reared under ambient conditions. It should be noted,

however, that the enrichment of growth GO terms in response

to microplastics may be due to other compensatory mechanisms,

such as increasing photophysiology as a way to counteract

declining coral host energy reserves (Reichert et al., 2019;

Lanct ô t e t a l . , 2020) . While we did not quant i fy

photophysiology or gene expression of the algal symbionts in

this study, it is possible that algae associated with corals in the

microplastic treatment may have exhibited enriched

photophysiology, which may have led to the enrichment of

molecular signatures of growth. However, it is possible that a

longer-term exposure to microplastics may have eventually led to

signs of physiological stress (Reichert et al., 2019). While these

contrasting results may be due to experimental design differences
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duration, etc.), it is more likely due to species-specific responses

(Hankins et al., 2021; Mendrik et al., 2021). Previous work on A.

cervicornis suggests that exposure to microplastics in the presence

of warming does not impact bleaching, likely because this species

may not ingest the microplastics under otherwise ideal conditions

(Plafcan and Stallings, 2022). Instead, A. cervicornis relies on

photosynthetically-derived carbon from its algal symbionts as the

primary source of nutrition rather than heterotrophy, thus

avoiding the potential pitfalls of microplastics ingestion

observed in other coral species that are largely heterotrophic

(Reichert et al., 2019; Rotjan et al., 2019; Hankins et al., 2021;

Mendrik et al., 2021). Overall, we recommend that future work

incorporate additional physiological assessments along with coral

host and algal symbiont molecular responses to disentangle the

role that nutritional source (i.e., dependence on heterotrophy vs.

autotrophy) serves in coral physiological response to

microplastic pollution.

While these findings suggest that microplastics exposure

alone does not elicit a severe stress response in A. cervicornis, it is

unclear whether prolonged exposures may eventually impact the

host (Hankins et al., 2021) and their algal symbionts (Lanctôt

et al., 2020; Ripken et al., 2020). Further, microplastic pollution

is occurring alongside global stressors (Soares et al., 2020),

including widespread shifts in the microbial landscape of

seawater (Cavicchioli et al., 2019) and increased prevalence of

pathogens and disease across the Caribbean (van Woesik and

Randall, 2017). Because microplastics have been shown to be a

vehicle for microbial transmission into a corals (Rotjan et al.,

2019), there is emerging concern for microplastics pollution in

combination with increased pathogen exposure that has long

been a predicted component of global change (Cavicchioli

et al., 2019).
4.2 Global change treatment elicits
subtle stress signatures

Along with local concerns, global stressors, such as ocean

acidification and warming, are contributing to the wide-scale

degradation of coral reef ecosystems. Like its response to

microplastics, A. cervicornis in the ocean acidification and

warming (OAW) treatment exhibited similar overall gene

expression profiles to those in the ambient treatment and only

gene expression profiles of the top 1,000 genes resulted in a clear

response. This subtle response to OAW in A. cervicornis is

surprising since this species is known to be sensitive to these

global stressors (Enochs et al., 2014; Towle et al., 2015b;

Kaufman et al., 2021; Muller et al., 2021). These contrasting

results may be due to different experimental design

considerations across studies (Bove et al., 2020), especially
frontiersin.org

https://doi.org/10.3389/fmars.2022.1037130
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bove et al. 10.3389/fmars.2022.1037130
given that the heat stress temperature employed here (~30.5 ˚C)

was lower than most other warming studies. However, there is

also significant genetic variation within A. cervicornis (Drury

et al., 2017; Million et al., 2022), thus it is also possible that the

genotypes used in this study were particularly resistant.

Alternatively, these corals are already exposed to warmer

seawater conditions where they were collected compared to

other Caribbean reefs (Muñiz-Castillo et al., 2019; Bove et al.,

2022b), suggesting the potential for acclimatization to

elevated temperatures.

While we only observed minor gene expression differences

in A. cervicornis reared in the OAW treatment, these shifts were

associated with an enrichment of stress-related GO terms. For

example, corals in OAW treatment exhibited enrichment of GO

terms linked to protein folding and protein binding, which have

been reported previously in heat-stressed corals in situ (Ip et al.,

2022). This pattern was accompanied by enrichment of terms

associated with amino acid catabolism, suggesting A. cervicornis

may have mediated physiological stress through protein

catabolism (Davies et al., 2016; Aguilar et al., 2019; Rädecker

et al., 2021). While we did not assess host or symbiont

physiological traits along with these gene expression profiles, it

is likely that the growth and/or energy reserves may have been

impacted as a result of treatment conditions (Aichelman et al.,

2021; Scucchia et al., 2021; Bove et al., 2022a).

Most interestingly, we identified enrichment of GO terms

associated with defense against viruses. Previous work has

suggested that corals become more susceptible to infection

when water temperatures increase (Bruno et al., 2007). Indeed,

patterns of Caribbean coral disease have become more prevalent

in recent decades (Randazzo-Eisemann et al., 2022) and

population declines of A. cervicornis have been specifically

linked to increases in disease associated with seawater

temperature increases (Muller et al., 2018; Goergen et al.,

2019). While the temperature stress applied here was not high

enough to induce a classic heat stress response, it suggests that

even subtle increases in temperature may make this species of

coral more susceptible to infection.
4.3 Global change stressors interact with
microplastics to invoke an
immune response

Ecological stressors can interact to pose further threats to

marine organisms that may not be accounted for when assessing

responses to stressors independently (Darling and Côté, 2008;

Ellis et al., 2019). Indeed, our multistressor treatment (ocean

acidification, warming, and microplastics; OAW+MP) resulted

in the strongest gene expression response, suggesting that

microplastic pollution may interact with ocean acidification

and warming to elicit a more severe molecular response. This
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strong response to multiple stressors is commonly observed in

coral (Coles and Jokiel, 1978; Reynaud et al., 2003; Courtial et al.,

2017; Muller et al., 2021) and has been reported previously in

studies assessing gene expression as well (Ogawa et al., 2013).

The observed response of A. cervicornis to the multistressor

treatment in this study may be due to the corals experiencing

physiological stress from the acidification and warming exposure

(i.e., bleaching), which then led to an increase in reliance on

heterotrophy to meet their energetic needs (Ferrier-Pagès et al.,

2010; Towle et al., 2015a). This increased heterotrophy in turn

may have resulted in the corals consuming more microplastics

that do not contribute nutritional value to the coral host, thus

furthering the energetic deficit and potentially making them

more susceptible to harmful pathogens (Mendrik et al., 2021).

While it is unlikely that global change and microplastic pollution

are directly interacting, the physiological mechanisms employed

by corals in response to these single stressors likely lead to a

more severe physiological response.

Here, we identified GO terms enriched in the multistressor

treatment related to response to viruses and innate immunity,

indicating these stressors may invoke an immune response by

the coral. Interestingly, a similar response was observed in OAW

alone, however, to a lesser extent, suggesting that the presence of

microplastics magnified this stress response. While no studies to

date have assessed gene expression responses in corals to the

stressors together tested here, previous work in the marine

mussel, Mytilus coruscus, exposed to ocean acidification and

microplastics identified signals of a repressed immunity that

may lead to higher disease susceptibility (Huang et al., 2022).

Further, gene expression patterns consistent with an

upregulation of immune stress response were reported in the

brine shrimp Artemia franciscana exposed to microplastics and

warming (Han et al., 2021). This is particularly interesting

because Artemia is also frequently used as a nutrition source

in coral experiments, including microplastic ingestion

experiments (Hall et al., 2015; Axworthy and Padilla-Gamiño,

2019; Lanctôt et al., 2020), potentially altering the nutritional

value of the Artemia and impacting coral health. Overall, these

results suggest that the combination of global change stressors

and microplastics will likely lead to suppressed immunity in

corals in tandem with higher disease transmission associated

with warming (Randazzo-Eisemann et al., 2022) and

microplastic pollution (Rochman et al., 2019; Rotjan et al., 2019).
4.4 Acropora cervicornis microbial
communities dominated
by Aquarickettsia

Similar microbiome compositions were observed across the

four treatment conditions. A total of 31 of the 36 fragments were

high-Aquarickettsia (i.e., greater than 50% dominance), with
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relative abundances ranging from 17.5% up to 98.8% of the total

sequence reads. This sequence dominance in A. cervicornis

microbiomes is not uncommon and has been documented in

this species in the Florida Keys and throughout the Caribbean

(Baker et al., 2022), although previous work has also showcased

variation among individual genotypes (Aguirre et al., 2022).

Even when Aquarickettsia-affiliated ASVs were removed from

analysis, microbiome composition did not significantly differ

across treatments. Importantly, the microbiome composition of

these corals before collection from the wild is unknown,

therefore we cannot determine if the universally high

Aquarickettsia levels were a result of captivity muting

microbiome signatures (Galand et al., 2018). Future work

leveraging experiments on individuals representing a larger

number of host genotypes and previously identified as high-

Aquarickettsia and low-Aquarickettsia (e.g., (Aguirre et al.,

2022)) may further clarify factors that drive differential coral

vulnerability to microplastics, acidification, and warming,

especially since low-Aquarickettsia individuals exhibit higher

resistance to disease, relative to high-Aquarickettsia individuals

(Klinges et al., 2022).

Genes implicated in the coral immune response were

upregulated in response to the OAW and multistressor

treatment, suggesting that some sort of external stimulus

triggered this response. Microbiome taxonomic profiling did

not reveal significant differences in microbiomes across

treatments, so we suggest that further research should

investigate the transcriptomic and metabolomic responses of

the bacterial and viral fractions across these stressors. For

example, it is possible that while Aquarickettsia remained

dominant, it may have differentially regulated genes in

response to OAW conditions and/or OAW+MP. Alternatively,

the immune response may reflect host response to physical

injury/insult by contact with the plastics (van de Water et al.,

2015), but not necessarily microbial infection.

Another potential explanation for the observed immune

response is a host response to viruses. Indeed, GO categories

consistent with a viral response were enriched in OAW+MP

treatments (i.e., cellular response to virus). Coral viromes have

been implicated in directing holobiont response to

environmental stress (Thurber and Correa, 2011; Leruste

et al., 2012; Nguyen-Kim et al., 2015; Thurber et al., 2017).

It is thought that viruses may play a role in coral bleaching

under thermal stress through host lysis of algal symbiont cells

that precedes bleaching signals (Lawrence et al., 2014;

Grupstra et al., 2022). Additionally, previous work has

demonstrated increased expression of anti-viral transcripts

in hosted algal symbionts (Cladocopium, formerly Clade C) in

response to thermal stress (Levin et al., 2017). Taken together,

it is possible that the A. cervicornis immune response may

suggest a virally driven response that precedes the classic
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bleaching response (Barshis et al., 2013; Dixon et al.,

2020).There is also evidence that microplastics and the

microbial plastisphere can facilitate survival of certain

viruses (Moresco et al., 2021). It is plausible that increased

levels of virus-coral interactions could elicit a host immune

response, if not also facilitate viral infection of coral cells

(Bowley et al., 2021; Loiseau and Sorci, 2022).

We recommend that future work investigating the effects of

microplastic pollution on reef-building corals, especially in

combination with global change stressors, specifically target

the viral dynamics and diversity in the seawater relative to

those associated with the coral holobiont. Additionally,

assessing the microbiome and virome at several time points

throughout stress challenge, coupled with holobiont gene

expression and metabolome profiles, will be crucial for

understanding the timeline and underlying causes of potential

assemblage shifts that inform holobiont phenotypes. Overall, our

results highlight the importance of applying multi-omic

approaches to better understand the consequences of local and

global stressors on reef-building corals.
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