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Prokaryotic interactions in recirculating aquaculture systems (RAS)

environmental communities may play a crucial role in driving their functional

potential. However, these interactions are often neglected. The aim of this

work is to detect prokaryotic interactions in a Solea senegalensis RAS, through

the definition of relevant taxa and cluster identification using co-variance and

co-occurrence tools. Amplicon sequence variants (ASV) were obtained from

the water, tank biofilm, and biofilters of two systems, pre-ongrowing and

weaning, and the study focuses on two microbial target groups, the

potentially pathogenic and the nitrifying prokaryotes. No significant negative

correlations were found with any target ASVs, indicating a mostly cooperative

environment. As expected, ammonia oxidizing bacteria (Nitrosomonas) and

archaea (Candidatus Nitrosopumilus) were found to be positively interacting

with the nitrite oxidizing bacteria Nitrospira. However, no interactions were

found between them, and results hint at a niche differentiation based on

ammonia competition. Nitrospira also showed subcommunities with no

ammonia oxidizing archaea or ammonia oxidizing bacteria correlations,

hinting at a separate functional role of complete ammonia oxidation to

nitrate for some Nitrospira ASVs. Two taxa commonly associated with

pathogenic outbreaks, Tenacibaculum and Vibrio, had a significant positive

correlation in one of the systems. With no outbreaks reported, this association

may prove relevant in disease preventions and to improve outbreak predictions.

Future studies may further elucidate this interaction, as cumulative evidence is

still needed to better understand this correlation.
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Introduction

Sole aquaculture, particularly of the species Solea

senegalensis, has high potential for aquaculture diversification

in southern Europe (Morais et al., 2016). With disease outbreaks

identified as one of the main challenges in sole farms (Howell,

1997), the industry has turned to Recirculating Aquaculture

Systems (RAS), that enable a tight control on the environmental

parameters and eliminate contact with wild species. This type of

system has the additional advantage of making intensive

aquaculture compatible with environmental sustainability

objectives, since it allows a reduction in water usage and an

improvement in waste management and nutrient recycling

(Piedrahita, 2003; Martins et al., 2010).

Monitoring the composition of bacterial communities

established in aquaculture systems is of paramount importance

to evaluate their potential to serve as reservoirs for pathogenic

bacterial strains (Rud et al., 2017; Canada et al., 2020). This

community influences the water quality and health of the fish

being reared in the system (Blancheton et al., 2013) with a

complex network of microbial roles (Martıńez-Porchas and

Vargas-Albores, 2017). Alterations to this structure, translated

in changes in bacterial diversity, have been linked to animal

performance and health (Infante-Villamil et al., 2020). One of

the main outcomes, dysbiosis, has been defined as a shift in the

structure of a commensal community that may result in

perturbations in the immune system and mediated diseases

(Petersen and Round, 2014). Among the diverse roles

microbial communities play in RAS, the presence/absence of

pathogens and active nitrogen cycling are crucial for fish health

and well-being.

Despite technological improvements, disease outbreaks are

still one of the great concerns in sole aquaculture management,

particularly of the bacterial disease flexibacteriosis (Tenacibaculum

maritimum) (Toranzo et al., 2005). A previous study (Wynne et al.,

2020) reported high relative abundance of T. maritimum in

healthy fish and suggested that this is a complex multifactorial

disease, and the interactions with other taxa may play a key

role in disease progression.

A vital feature of a RAS is the conversion of ammonia (a

metabolite from protein catabolism) to nitrate in the nitrification

process, performed by a microbial community incubated in the

biofilter carriers (Ebeling et al., 2002). Nitrification is the

naturally occurring pathway where ammonia oxidizing

bacteria (AOB) oxidize ammonia to nitrite, and coupled to

this reaction, nitrite oxidizing bacteria (NOB) oxidize nitrite to

nitrate (Sharma and Ahlert, 1977), thus removing ammonia

from the system. Some of the main genera that have been

identified as performing the nitrification process in marine

biofilters are the AOB Nitrosomonas (Paungfoo et al., 2007;

Foesel et al., 2008) and Nitrosococcus (Foesel et al., 2008) and the

NOB Nitrospira (Tal et al., 2003; Foesel et al., 2008). Previous
Frontiers in Marine Science 02
studies (Brailo et al., 2019) have found, through Next Generation

Sequencing (NGS) techniques, bacteria with the capacity to carry

out ammonia and nitrite oxidation in a RAS nitrification

biofilter. Active biofilters have also shown to possess a more

diverse community when compared with water samples from

the same systems (Ruan et al., 2015; Almeida et al., 2021). One of

the challenges in managing a RAS microbial community is the

competition between chemoautotrophic nitrifiers (such as AOB

and NOB) and heterotrophs for oxygen, nutrients, and space

(Michaud et al., 2006) in the biofilter. A disbalance could lead to

an increase in ammonia and nitrite concentrations in detriment

of the nitrifying populations (Blancheton et al., 2013). As a

sector for optimal, but undifferentiated, bacterial growth, there is

a risk that disruptions in the system may cause pathogenic

outbreaks by opportunist bacteria (Blancheton et al., 2013).

In general, microbiomes are strongly influenced by the

multiplicity of ecological processes that affect community

assembly (Goldford et al., 2018), such as selective pressures

and nutrient availability, generating cross-feeding networks. In

these, microbes communicate and trade metabolites and services

(Marx, 2009). RAS develop complex and dynamic microbial

ecosystems, with differential composition between systems and

matrices (Almeida et al., 2021). Co-variance network models are

useful to infer the complex taxonomic architectures of these

communities in their multitude of ecological processes

(Goldford et al., 2018) by attributing to targeted taxa (nodes)

the connections between them (edges) (Newman, 2003).

Previous studies in freshwater RAS have used this method to

conclude that interactions decrease in complexity during the

biofilter start-up, after an initial peak (Jiang et al., 2019).

Biofilters have been found to have more nodes but less

interactions than biofloc reactors used in wastewater treatment

(Deng et al., 2019). These, in turn, have been found to be more

complex than water (Wei et al., 2020). Interestingly, a recent

study revealed a competitive interaction between taxa

responsible for ammonia removal and nitrate removal

processes (Deng et al., 2021), justifiable by different

niche requirement.

In this work, we targeted our networking analysis to two

groups as important model microorganisms for RAS

sustainability: potentially pathogenic and nitrifying

prokaryotes. For this analysis, hub taxa are defined as highly

connected with other taxa (Faust et al., 2012) and cosmopolitan

taxa have a wide-spread occurrence across different

environments, linked to a tendency to form positive

connections (Faust et al., 2015).

The biotic relationships between microorganisms present in

these communities may play a crucial role in driving their

functional potential. However, these interactions are often

neglected in engineered environments. The aim of this work is

to detect prokaryotic interactions among relevant taxa in RAS,

using network correlations and cluster identification.
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Methods

Sample collection and DNA extraction

This study was performed in partnership with an aquaculture

production unit, a sole hatchery (Safiestela S.A.), located in Estela,

Portugal. The analysis was performed using the dataset from

Almeida et al. (2021), details about the equipment used for

physical, chemical, and biological description of the collected

samples are presented in the mentioned paper. Samples of water

column, tank biofilm and biofilter carrier were collected from the

two parallel recirculating systems: pre-ongrowing (PO) and

weaning (WE) (Figure 1). Total DNA was isolated from the

water column using the DNeasy PowerWater Sterivex DNA

Isolation Kit (QIAGEN, Merck KGaA, Darmstadt, Germany),

following the manufacturer instructions. In tank wall biofilm and

biofilter carrier samples, the DNA was isolated with DNeasy Power

Soil Kit (QIAGEN, Merck KGaA, Darmstadt, Germany) with some

adaptations to the manufacturer protocol. For the biofilter carriers,

to ensure maximum release of biofilm from the matrix, additional

steps were performed before starting the extraction protocol:

biofilter carriers were centrifuged inside 15 mL tubes for 15 min

at maximum speed (4300 g), followed by a quick vortex and

additional 5 min centrifugation. For both biofilter carriers and

tank biofilm samples, additional beads were added to facilitate

cell lysis.
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The V4-V5 region (515F/926R primers, amplicon size

approximately 410 bp) of the 16S rRNA gene (Caporaso et al.,

2011; Caporaso et al., 2012; Apprill et al., 2015; Parada et al.,

2016) was used for the NGS Analysis. The PCR protocol

involved a 3 min denaturation step at 95°C, followed by 25

cycles of 98°C for 20 s, 60°C for 30 s and 72°C for 30 s and a final

extension at 72°C for 5 min. PCR products were purified and

normalized using SequalPrep 96-well plate kit (ThermoFisher

Scientific, Waltham, USA) (Comeau et al., 2017), pooled and

pair-end sequenced in the Illumina MiSeq® sequencer at

Genoinseq (Cantanhede, Portugal). Sequence data was pre-

processed at Genoinseq (Cantanhede, Portugal), by exporting

sequences in fastq format, quality filtering with PRINSEQ

version 0.20.4 (Schmieder and Edwards, 2011) removing

sequencing adapters and reads with less than 100 bases, and

trimming bases with an average quality lower than Q25 in a

window of 5 bases. Forward and reverse reads were merged by

overlapping paired-end reads with AdapterRemoval version

2.1.5 using default parameters.
Bioinformatic and statistics

To obtain the amplicon sequence variant (ASV) table, the

DADA2 pipeline was implemented on our filtered sequences

dataset. This was done using R 3.6.1 (R Core Team, 2019) and
FIGURE 1

Representation of the aquaculture unit in study. The pre-ongrowing and weaning operate with water recirculation.
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the package dada2 (v1.12.1). For taxonomic attribution, the

SILVA database version 132 was used (Quast et al., 2012).

Taxa classified at the Kingdom level as Eukaryota, at the

Order level as Chloroplast and at the Family level as

Mitochondria were removed. The water column, tank biofilm

and biofilter carrier overall prokaryotic diversity and

composition analysis is described in Almeida et al. (2021).

The biotic relationship between microorganisms was

inferred using eLSA software (Xia et al., 2011; Xia et al., 2013)

and the Spearman correlation coefficient (SCC) between ASVs

pairs (Spearman, 1987). To avoid misleading correlations, the

ASV table was pre-filtered to remove low frequency ASVs (not

present in at least three samples). Samples were split by system

(pre-ongrowing and weaning) before the correlation analysis to

avoid spurious autocorrelations. The correlations set obtained

for each system was trimmed to include only significant

interactions (SCC > |0.7|, p-value < 0.001). Network vertexes

were selected based on a significant correlation with one (or

more) of the ASVs belonging to the targeted pathogenic and

nitrifying genera (taxa identification described below).

Correlation networks were plotted in the R environment

version 4.1.2 (R Core Team, 2019) using iGraph v. 1.2.7

(Csardi and Nepusz, 2006) and sub-communities were

identified with the Louvain algorithm (Blondel et al., 2008).

Vertexes with 0 significant correlations (degrees) were removed.

As mentioned in the introduction, this study was based on the

definition of two target groups in a recirculating aquaculture

system, the potentially pathogenic and nitrifying, the later

subdivided into ammonia oxidizing bacteria (AOB), nitrite

oxidizing bacteria (NOB) and ammonia oxidizing archaea

(AOA). The selection was based on the taxonomic attribution.

Potentially pathogenic bacteria are those belonging to either the

Tenacibaculum or Vibrio genus. For the nitrification target group,

ASVs were identified at different taxonomic levels to include

unclassified sequences, as described by (Semedo et al., 2021):

Thaumarchaeota, Nitrospinae, Nitrospirae, and Nitrospinota were

selected at the phylum level; Nitrosomonadaceae and

Nitrosococcaceae at the family level; and Nitrosococcus,

Nitrospirae, Nitrobacter, Candidatus Nitrotoga, Nitrotoga,

Nitrospina, Nitrococcus, Nitrolancea, Candidatus Nitromaritima,

and Nitromaritima at the genus level. However, only members of

the families Nitrosococcaceae, Nitrosomonadaceae and

Nitrospiraceae. The Nitrososphaeria class were identified. To

evaluate the effect of the system and matrix variables on the

abundance response, a two-way ANOVA test was performed,

also in the R environment.
Results

The dataset generated for the downstream analysis has a

minimum read count per sample (after trimming) of 10,396, a

mean per sample of 28,850 and a max sample read count of
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70,487. The complete list of read counts per sample and

observed ASVs, before and after filtering (for nitrifying and

pathogenic genus), can be found in Table S1.
Nitrifying and potentially pathogenic
genus distribution

The relative distribution of the two target groups is

presented in Figure 2, mean values per system and matrix can

be found in Table S2. The potentially pathogenic genus

Tenacibaculum (that includes a total of 81 ASVs) is most

predominant in the weaning samples across all matrices (p-

value < 0.05), while Vibrio (13 ASVs) seems to be associated with

the water matrix, regardless of the RAS system (p-value < 0.05).

The AOBNitrosomonas (24 ASVs) is more present in the biofilm

samples (both in the biofilter carriers and tank wall; p-value <

0.05), as well as the NOB Nitrospira (28 ASVs, p-value p-value <

0.05) and the AOA Candidatus Nitrosopumilus (11 ASVs, p-

value p-value < 0.05). In these matrices, the average relative

abundance of putative AOB and NOB are 3 and 2 times higher in

the pre-ongrowing than the weaning system, respectively, while

AOAs are 30 times higher in the weaning (being almost absent in

the pre-ongrowing). Computed two-way ANOVA test p-values

can be found in Table S3. The matrix appears to influence taxa

presence and abundance. The genera Vibrio, Nitrospira and

Nitrosomonas show a cosmopolitan nature between systems, as

they show a similar distribution between them. With the inverse

behaviour, Tenacibaculum and Candidatus Nitrosopumilus are

shaped by the systems.
Inter-ASVs interactions in the pre-
ongrowing system

The spearman correlation network in the pre-ongrowing

system is composed by 343 ASVs (nodes/taxa) and 743 links

(significant correlations) (Figure 3). Links were selected based on

a significant correlation with one (or more) of the ASVs

belonging to pathogenic or nitrifying genera. Nine

subcommunities were identified with the multi-level

modularity optimization algorithm. In this network, there is

one genus associated with AOB, Nitrosomonas, with 2 ASVs and

86 correlations, and one genus associated with NOB, Nitrospira,

with 7 ASVs and 629 correlations. The two genera associated

with pathogenic outbreaks are also present in the pre-ongrowing

network. Vibrio is present with 3 ASVs and 26 correlations,

while Tenacibaculum has 2 ASVs with a total of 13 correlations.

The remaining ASVs are classified between 110 genera in total.

The complete summary of the pre-ongrowing community can be

found in the Table S4-A, with the number of ASVs from the

assigned ASVs, respective number of correlations and the mean

number of correlations per node.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1038196
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bastos Almeida et al. 10.3389/fmars.2022.1038196
No ASVs were found to be functionally exclusive, that is,

correlated only with a specific target group, and a total of 15

different phyla correlated strongly with our target groups in the

pre-ongrowing. Of these, Proteobacteria and Bacteroidetes had

the highest number of correlations (respectively, 361 and 182).

In unclassified genera, the families Rhodobacteraceae

(85 correlations), Saprospiraceae (43 correlations) and

Flavobacteriaceae (39 correlations) had the highest number of

correlations, and of the classified genera, Sphingorhabdus (24

correlations), Litoreibacter (22 correlations) and Blastopirellula

(17 correlations) had a higher number of correlations.
Frontiers in Marine Science 05
The sub-communities III to IX have an individualist nature

between the functions studied, meaning that only one genus

from the assigned groups is present. The reverse behaviour

(where there is a cluster of positive correlations between target

groups) can be found in Community I, composed of an

interaction between two Nitrospira ASVs and in community II

between four Nitrospira and one Nitrosomonas.

Although ASVs belonging to the target groups have different

correlation patterns, this was not a simple consequence of

different groupings by system or matrix (barplots can be

consulted in Table S5).
A

B

FIGURE 2

Relative distribution of the functional groups, genus associated with nitrification (A), the ammonia oxidizing bacteria (AOB, Nitrosomonas,
Unclassified Nitrosococcaceae), nitrite oxidizing bacteria (NOB, Nitrospira) and ammonia oxidizing archaea (AOA, Candidatus Nitrosopumilus);
and genus with potentially pathogenic activity (B, Vibrio and Tenacibaculum).
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Inter-ASVs interactions in the
weaning system

The weaning system spearman correlation network,

composed by 391 ASVs with 1164 correlations is presented in

(Figure 4). Vertexes were selected with the same criteria as the

previous system. In this system, there are three kinds of

nitrifying ASVs: AOA, AOB, and NOB. The AOA Candidatus

Nitrosopumilus, of the Nitrosopumilaceae family, has 6 ASVs

with 351 total correlations. There is only one ASV belonging to

the AOB genus Nitrosomonas with a total of 6 correlations.

Nitrospira, the only NOB genus detected in this network, has 4

ASVs with 208 total correlations. As for the potentially

pathogenic genus, Tenacibaculum is present with 56 ASVs and

a total of 812 correlations and Vibrio with 5 ASVs, 38 total

correlations. The complete summary of the community can be

found in the Table S4-B.

No ASVs were found to be functionally exclusive, as before,

correlating only with a specific target group, and a total of 12

different phyla correlated strongly with our target groups. Of

these, Proteobacteria and Bacteroidetes had the highest number

of correlations (respectively, 438 and 193), as seen in the pre-

ongrowing system. In unclassified genera, the families

Ardenticatenaceae (90 correlations), Rhodobacteraceae (63

correlations), Bradymonadales (40 correlations) and

Flavobacteriaceae (40 correlations) had the highest number of

correlations with the selected target groups. Of the classified

genera, Polaribacter 2 (23 correlations), Pseudoalteromonas (17
Frontiers in Marine Science 06
correlations) and Thalassobius (17 correlations) had the highest

number of correlations.

Nineteen subcommunities were identified with the multi-level

modularity optimization algorithm. Fifteen subcommunities did

not have correlations between target groups (V to XI, XIII-XVII and

XIX), while eight subcommunities did (I to IV, XII and XVIII). The

cluster of the subcommunities I and II are composed of threeVibrio

ASVs, and 40 TenacibaculumASVs. There are two subcommunities

composed of exclusively inter-Tenacibaculum ASVs (not counting

ASVs with function “other”), III and XII, with four and three ASVs,

respectively. In the subcommunity XVIII, two Nitrospira ASVs

interact with one Tenacibaculum. The only exclusively nitrifying

target group subcommunity is IV with five Candidatus

Nitrosopumilus (AOA) ASVs and one Nitrospira (NOB).

Only three ASVs had significant strong interactions in both

networks, all three of them had opposite natures between systems.

TwoVibrioASVs (126 and 221) had no correlation with other target

groups in the pre-ongrowing system but had significant correlations

in the weaning system (with Tenacibaculum ASVs). The only ASV

attributed to Nitrosomonas in both networks (323) also had no

correlations with other target groups in the weaning system but did

have them in the pre-ongrowing system (with Nitrospira).
Discussion

A previous study from our research group has generally

characterized these two parallel recirculating systems two
FIGURE 3

Correlations network in pre−ongrowing samples, coloured by Genus and shapes by function: pathogenic (squares), nitrifying oxidizing bacteria
(stars), ammonia oxidizing bacteria (circles) and other (triangles).
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systems (pre-ongrowing and weaning) (Almeida et al., 2021),

reporting that the prokaryotic communities of the sole hatchery

aquaculture unit were richer in the tank biofilm and in the

biofilter carriers compared with the water. Also, that the weaning

had a higher prokaryotic diversity than the pre-ongrowing and

that parallel RAS systems develop unique communities. So, for

NGS studies, we should consider that each RAS environment

will have its specific prokaryotic community and speculate this

to be true for other aquaculture environments as well. In this

study, we found that predominancy alters between ASVs. The

potentially pathogenic Tenacibaculum is most abundant in the

weaning system and Vibrio is mostly associated with water

samples. The nitrifying genera (Nitrosomonas, Nitrospira and

Candidatus Nitrosopumilus) are more predominant in the

biofilms (biofilter carriers and tank wall biofilm). Additionally,

the AOA Candidatus Nitrosopumilus appears to dominate the

ammonia-oxidizing community in the weaning system, while

the Nitrosomonas AOB are more abundant in the pre-

ongrowing system.

Overall, with the lack of negative correlations, the dynamic

of these prokaryotic communities appear to be of a cooperative

nature. Negative correlations are associated with competition

between microbes, antibiotic interactions, and lack of

cooperative secretions (Fiegna and Velicer, 2005), but no

significant negative correlation was found in the present study.

As a RAS system, the stability of the environmental factors most

likely contributes to this dynamic and a cooperative network
Frontiers in Marine Science 07
may be a desirable trait because it promotes overall metabolic

efficiency. But it has been hypothesised that it may also have a

destabilizing impact due to the coupling effect where if one ASV

decreases, it will also destabilize the others (Coyte et al., 2015)

and so it may be beneficial to add competitors or

promote diversity.

Going forward, we also need to consider the potential biases

in community network studies. These are usually associated with

an unequal amount of abundance-yielding material (that can be

sequencing depth or a varying number of samples, or both) per

sample/condition that can lead to artificial correlations between

ASVs with low-abundance with the ASVs that dominate the

community (Faust and Raes, 2012). This bias results in

misleading positive correlations, and it comes from a technical

aspect of NGS studies, where more ASVs are detected in deeply

sequenced samples, which causes a co-variation with sequencing

depth (Faust et al., 2015). One way to detect this bias is by

identifying cosmopolitan ASVs with a wide-spread occurrence

across the samples (Faust et al., 2015), which is the case for some

of the ASVs in our target groups: Vibrio, Nitrosomonas

and Nitrospira.

The ASVs that had the highest number of correlations

with our selected target groups in both networks (pre-

ongrowing and weaning) were unclassified members of the

order Bradymonadales and families Rhodobacteraceae,

Saprospiraceae, Flavobacteriaceae, Ardenticatenaceae and. The

diverse family Rhodobacteraceae includes both phototrophs and
FIGURE 4

Correlations network in weaning samples, coloured by Genus and shapes by function: pathogenic (squares), nitrifying oxidizing bacteria (stars),
ammonia oxidizing bacteria (circles), ammonia oxidizing archaea (spheres) and other (triangles).
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chemotrophs, with aerobic or facultative anaerobic metabolism

(Garrity et al., 2015), mainly involved in sulphur and carbon

biogeochemical cycling (Pujalte et al., 2014). Members of this

family have been previously isolated from RAS biofilters (Foesel

et al., 2011), which might indicate a role in sulphur and carbon

nutrient recycling assigned to this family in our communities.

The strictly heterotrophic and aerobic family Saprospiraceae,

although without an obvious role in the community, has also

been isolated from activated sludge from nutrient removal plants

(Xia et al., 2008). The family Flavobacteriaceae is a diverse

bacterial family (Bernardet et al., 2002) that includes the

common Solea senegalensis pathogen Tenacibaculum

maritimum (Avendaño-Herrera et al., 2006). The presence of

unclassified members of this family could be explained

by the variety of its members, including several non-

pathogenic members of the genus Tenacibaculum. The

family Ardenticatenaceae has only one thermophilic,

chemoheterotrophic genus, Ardenticatena (Kawaichi et al.,

2013) and, as with the family Rhodobacteraceae, likely also

plays a role in sulphur and carbon nutrient recycling within

the community of our RAS. Finally, Bradymonadales is a group

of bacterial opportunistic predators in saline environments (Mu

et al., 2020), which could be important in regulating global

nutrient cycling in these networks as well as in creating

ecological niches for interacting bacteria.

Aside from the families mentioned above, of the classified

genera that dominated the correlations in our networks,

Sphingorhabdus has previously been identified in saline

bioreactors (Gao et al., 2020), but its functional role is not

clear. Litoreibacter was isolated from seawater around an

aquaculture site (Kanamuro et al., 2021) and has been

positively correlated with Tenacibaculum (Liu et al., 2020),

although in the present study it is only positively correlated

with Nitrosomonas and Nitrospira (within the target groups

selected). These genera are part of the Rhodobacteraceae

family which, as mentioned before, have roles as phototrophs

and chemotrophs. Blastopirellula has been detected in marine

RAS biofilters (Hüpeden et al., 2020) as a carbon degrading

heterotroph. Polaribacter is a dominating bacterium in marine

RAS compartments and biofilters (Rud et al., 2017), and has in

marine RAS, been identified as a fish pathogen in the Norwegian

Fish Health Report of 2014 (Bornø and Lie, 2015). However, we

did not find references associating it with sole diseases, so its

presence is potentially innocuous in our communities. The

genus Pseudoalteromonas has been identified as a probiotic in

aquaculture with anti-Vibrio activity (Handayani et al., 2021),

although our study found no negative correlations between

them. Finally, Thalassobius has also been described in marine

RAS communities (Michaud et al., 2009), with species

characterized as aerobic chemoorganotrophic marine bacteria

(Pujalte et al., 2018), justifying their role in this environment.
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Regarding the nitrifying ASVs, overall, these were more

abundant in biofilm samples (biofilter carriers and tank wall

biofilm), where, in the pre-ongrowing system, there is one

subcommunity of four Nitrospira ASVs interacting with one

Nitrosomonas. Since Nitrospira are commonly associated with

nitrite oxidation (Daims et al., 2015) and Nitrosomonas with

ammonia oxidation (Head et al., 1993), the result is to be

expected. Ecological and metabolic cooperation between AOB

and NOB is widely recognized. However, three cases of

Nitrospira ASVs with no correlations with other target groups

were found, two in the pre-ongrowing and one in the weaning

system. This genus has also been reported as able to perform the

complete nitrification of ammonia to nitrate (Daims et al., 2015)

and this could be an indication of some ASVs that perform the

complete nitrification process (comammox) in both systems

studied in the present work. In the pre-ongrowing system, no

interactions were found with pathogenic species, but it might be

due to their relative low abundance. Further nitrifying ASVs

with no correlations with other target groups are present in the

weaning system, one Candidatus Nitrosopumilus (AOA) and

one Nitrosomonas (AOB), and considering an eventual

competition for ammonia, it is interesting to find no negative

correlations between them (although the bias mentioned earlier

should be considered). Previous studies demonstrated that AOA

and AOB differentiate by niche based on ammonia

concentration, where AOA outcompete AOB at relatively low

concentrations (Hatzenpichler, 2012). Although the current

sys tem is overa l l charac ter i zed by low ammonia

concentrations, the pre-ongrowing system has a higher fish

density and may experience more frequent peaks of ammonia

(Almeida et al., 2021). Therefore, we hypothesise that this might

be the reason why we only found positive correlations between

AOA and NOB in the weaning system, and only found

correlations between AOB and NOB in the pre-ongrowing

system where no AOA were detected.

A non-conventional interaction was found between

Nitrospira and Tenacibaculum in the weaning system.

Nevertheless, Tenacibaculum is the most abundant type of

node in the network (56 total) with the most correlations

(812) and Nitrospira, although not high in abundance, is rich

in interactions (208, third highest) and so an interaction between

these two groups is most likely inevitable and may not translate

in a direct biological meaning. Although an argument could be

made if, as a biofilm promoting genus (Romero et al., 2010),

Tenacibaculummay promote the establishment of the autotroph

and slow growing Nitrospira. Confirming this speculation,

however, would require more empirical data and further

analysis to test a causal relationship. However, interactions

between heterotrophic and autotrophic bacteria may become
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relevant in the future, as the use of microbiome products that

promote heterotrophic assimilation of nitrogen, commonly used

in pond‐based aquaculture systems, have been suggested for

RAS as well (Dittmann et al., 2017).

Only one nitrifying ASV (classified as Nitrosomonas) had

significant strong interactions in both networks of the two

systems, with opposite natures in each. That is, Nitrosomonas

had no correlations with other target groups in the weaning

system and but did so in the pre-ongrowing system with

Nitrospira. This could be justified by the increased abundance

of Nitrospira in the pre-ongrowing system. A manifestation of

the bias mentioned earlier.
Pathogenic potential

Two ASVs, commonly associated with pathogenic outbreaks,

had a significant positive interaction in the weaning system:

Tenacibaculum and Vibrio. Previously (Wynne et al., 2020), a

similar association was observed between them in fish displaying

clinical signs of yellowmouth syndrome. Keeping in mind the bias

already mentioned, and the particularly high abundance of

Tenacibaculum in this dataset, we speculate an association

between these two genera in the surrounding environment of

healthy fish as well. The specific interactions between these two

genera may prove relevant in disease preventions and are

deserving of further studies, particularly with experimental data.

These genera are also present in individual clusters. There are

five Vibrio clusters (three in the pre-ongrowing and two in weaning

system), with no correlation with other target groups, and 12

Tenacibaculum clusters (two in the pre-ongrowing and ten in the

weaning). Their distribution is mainly in the weaning system

samples where Tenacibaculum shows a higher prevalence than in

pre-ongrowing system, which might be another illustration of the

positive bias of network NGS studies. Only two Vibrio ASVs had

significant strong interactions simultaneously in the networks of the

two systems, and with opposite natures. Vibrio had no correlations

with other target groups in the pre-ongrowing system but did so in

the weaning system with Tenacibaculum; as previously described

(Almeida et al., 2021), this is most likely justified by the increased

abundance and diversity of Tenacibaculum in the weaning system.

Overall, this work provides an initial descriptive analysis of the

interactions and adds to previous evidence of a correlation between

two potentially pathogenic genera, Tenacibaculum and Vibrio.

However, the nature of NGS studies, with the significant bias for

positive interactions makes it necessary for future studies to focus

on empirical data to confirm this interaction.
Conclusion

Some ASVs in our target groups showed a cosmopolitan

nature, with wide distribution in the dataset (Vibrio,
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Nitrosomonas and Nitrospira), while others showed a

behaviour shaped by the system variable (Tenacibaculum and

Candidatus Nitrosopumilus). All the significant interactions

found were positive. Although studies like ours are

characterized by positive interaction biases, it is expected that

RAS have a cooperative prokaryotic network, considering the

environment stability associated. Even if this environment

promotes functional optimization, the coupling effect should

also be considered as an event of one ASV destabilization may

also destabilize others. Ammonia oxidizing bacteria and archaea

were found to be positively interacting with nitrite oxidizing

bacteria, as anticipated. Two ASVs commonly associated with

pathogenic outbreaks had a significant positive interaction in

one of the systems, even with no outbreaks reported. Future

studies should focus on this interaction as it may prove relevant

in disease preventions.
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