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Chemoreception is one of the most important senses and it plays a key role in the

survival and adaptation of animals to their environments. Many gastropods, such as

Rapana venosa and Neptunea cumingii, have emerged as economically important

shellfish. Meanwhile, invasive gastropods have destroyed commercial shellfisheries in

many countries. Given the importance of chemoreception in the behavior of aquatic

gastropods, the mechanism of their chemical perception has recently garnered

attention. To provide a foundation for understanding the chemoreception of

aquatic gastropods, we reviewed recent studies and summarized the

chemoreception behaviors and mechanisms that gastropods use to perceive and

locate targets in aquatic environments, along with relevant molecular and genetic

insights. We highlight several of the implications of these studies for

chemoreception-related research and shellfish fishery development. This review

should aid in the rational development and utilization of gastropod resources as

well as in controlling the populations of invasive species.
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1 Introduction

Chemical molecules are known to influence intraspecific and

interspecific interactions, thereby shaping ecosystem structures.

Unsurprisingly, chemical communication is one of the most important

languages in nature (Kirsch, 2022). Animals recognize and distinguish

different chemical cues in the environment through olfaction or

gustation, thus obtaining information that affects their behavior and is

ultimately necessary for survival. Marine and freshwater environments

are particularly suitable for molecular transmission and chemical

molecules are important sources of information for aquatic organisms.

Many of the behaviors of these organisms can be regulated through the

perception of chemical molecules (Zimmer and Butman, 2000).

Gastropods typically receive limited visual information, due to

environmental and/or physiological conditions, but they have evolved

to detect chemical signals. Therefore, whether herbivorous or

carnivorous, gastropods must select useful chemical cues from

surrounding chemical cues to adapt to complex and changing

environments within their sensory range. Deciding whether to

approach or avoid the sources of different chemical cues may be one

of the most important strategies in gastropod survival. Chemical signals

mediate many of the key life processes of aquatic organisms, such as

predation, aggregation, settlement, and metamorphosis. For example,

gastropods can use chemical signals transmitted by the water to find

food (Weissburg, 2000; Webster and Weissburg, 2009) and chemical

molecules can mediate the recognition or localization of potential mates

among gastropods (Moomjian et al., 2003). Gastropod larvae also use

chemical cues to settle and metamorphose (Bornancin et al., 2017). All

of these chemically mediated chemoreception behaviors directly affect

individuals and indirectly affect populations, communities,

and ecosystems.

Researchers have made great progress in understanding gastropod

chemoreception at the behavioral and morphological levels. For

instance, studies have been conducted on the influence of water flow

on chemoreception predation (Ferner and Weissburg, 2005; Yu et al.,

2019b), and Kirsch (2022) described intra- and interspecific chemical

communication in freshwater gastropods. However, only a few studies

at the molecular and genetic levels exist (Cummins et al., 2009a;

Cummins et al., 2009b; Yu et al., 2022) and systematic work on

chemoreception behavior and the mechanisms by which targets

(including prey and conspecifics) are perceived and located in aquatic

environments remain lacking. Most research has primarily focused on

developing a basic understanding of gastropod chemical perception and

has lacked relevant suggestions on the development and management

of gastropod fisheries. In this review, we summarize the mechanisms of

gastropod chemoreception behavior, perception, and localization in

aquatic environments by assessing what is known from the molecular

and genetic levels. Our aim is to provide a reference for future research

on the development of gastropod fisheries, invasive species control, and

gastropod behavior, ecology, and physiology.
2 Gastropod chemoreception behavior

Chemical cues mediate many of the key life processes of aquatic

gastropods, such as predation, aggregation, settlement and

metamorphosis. Predation plays a key role in structuring ecological
Frontiers in Marine Science 02
communities. Many of the activities of both predator and prey

species, such as their distribution, and population dynamics, are

driven by predation (Hu et al., 2016). Aggregation is an important

group behavior that benefits individuals and populations by reducing

water and energy loss (Yoder et al., 2002; Gilbert et al., 2007; Kotze

et al., 2008), deterring predation (Hatle and Salazar, 2001), and

enhancing fecundity (Wells et al., 1990). Many organisms,

including mammals, insects, and aquatic organisms, exhibit

aggregation behaviors, which are effective for resisting adversity and

improving survivorship (Scheibling and Lauzon-Guay, 2007; Kobak

et al., 2009; Zhang et al., 2018b). Settlement and metamorphosis are

key processes in the ontogenetic development of many gastropods

from larvae to juvenile snails (Yang et al., 2023). Larval settlement and

metamorphosis often result in larval death, which is the key factor

leading to the failure of artificial breeding of gastropods. Therefore,

the correct understanding of gastropod chemoreception behavior

impacts the population dynamics, distribution and resource

utilization of gastropods fishery and is of ecological importance.
2.1 Predation

Understanding how predators perceive their prey is crucial to the

study of predator–prey interactions. Predatory behaviors that are

mediated by chemical information in the water play an important role

in the food selection of gastropods.Gastropods have a precise

chemoreception mechanism and can perceive and locate food

through chemical information. Chemoreception has been studied in

many gastropods, including scavenging, carnivorous, and

herbivorous taxa (Ferner and Weissburg, 2005; Bornancin et al.,

2017). For example, the marine gastropod Buccinum undam can be

attracted to dead fish (Lapointe and Sainte-Marie, 1992), while

Busycon carica has been shown to effectively prey on bivalves and

barnacles from a distance of 1–2 m by olfaction (Ferner and

Weissburg, 2005), Similarly, Littorina irroratus exhibits efficient

sensory responses to the odors of its plant prey (Duval et al., 1994).

The lack of understanding of how predators perceive and locate

prey often leads to important problems in gastropod artificial

breeding and resource management, such as food waste, water

pollution and reduction of gastropod resources. In a recent study,

Yu et al. (2019b) proposed that unreasonable feeding method is one of

the reasons for the high mortality rate (30% - 50%) of the juvenile

snails (shell height 10 – 40 mm) of Rapana venosa. Therefore, it is of

great significance to understand predation behavior mediated by

chemical cues for gastropod aquaculture and resource management.
2.2 Aggregation

Inter- and intraspecies communication in gastropods via

chemical cues often triggers aggregation behavior (Kirsch, 2022).

Different species exhibit one or more of the three main aggregation

behaviors due to their lifestyles and reproductive habits. The first of

these behaviors is reproductive aggregation (Figure 1A). During the

summer breeding season, R. venosa obviously aggregates when

mating and spawning (Song, 2015), which may improve their

reproductive capabilities. Meanwhile, the freshwater gastropod
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Physa fontinalis only aggregates when seeking a mate (Townsend and

McCarthy, 1980). Reproductive aggregation in gastropods is related

to their intraspecific chemical perception of pheromones and

gastropods commonly seek the pheromones of conspecifics (Wyeth,

2019). For example, the Ilyanassa obsoleta has sex-specific responses

to at least three different pheromones involved in mating and spawn

aggregation (Moomjian et al., 2003). The second primary type of

aggregation behavior observed in gastropods is adaptive aggregation

(Figure 1B), which is an effective strategy for adapt to environmental

conditions. For example, Yu et al. (2020) found that juvenile

Neptunea cumingii can adapt to unsuitable environments by

showing increased aggregation behavior at low (4°C) or high (22°C)

temperatures. Similarly, Nerita atramentosa exhibits aggregation

behavior in winter in intertidal habitat, with the body temperatures

of aggregated snails being 2°C higher than those of non-aggregated

individuals (Chapperon and Seuront, 2012). The final common form

of gastropod aggregation behavior is predator–prey aggregation

(Figure 1C). Predatory aggregation is a common behavior among

gastropods (Lapointe and Sainte-Marie, 1992; Yu et al., 2020). While

reproductive aggregation and adaptive aggregation are aimed at

resisting adversity and enhancing reproductive capacity, predator–

prey aggregation is driven by individual preferences. As its driving

mechanism is different, it often results in intraspecific competition.
2.3 Larval settlement and metamorphosis

As highly effective chemoreception organisms, gastropods can

effectively sense polysaccharides, amino acids, nucleotides, fatty acids,

and volatile organic compounds in their prey (Emery, 1992; Kamio and

Derby, 2017). Chemoreception plays a key role in the settlement and

metamorphosis of gastropod larvae. Zhang et al. (2020) found that the

presence of bivalves can induce the settlement and metamorphosis of the

larvae of R. venosa. Yu et al. (2022) found that the larvae of R. venosa can

sense bivalves and that only the competent larvae (shell length: 1000–

1500 mm) show active settlement and metamorphosis in the presence of

bivalve odors. Additionally, Ilyanassa obsoleta is dependent on its

olfactory ability to locate prey, and its larvae can also detect the odors

generated by prey species and trigger metamorphosis (Leise et al., 2009).

The clues that induce larvae to settle and metamorphose usually

include three main biological sources of chemical cues: conspecifics,

biofilms, and prey. Conspecifics may include larvae and/or adults; for

example, the settlement of Crepidula fornicata, an invasive snail, is
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triggered by the chemical signals released by conspecifics (Taris et al.,

2010). Biofilms may impact settlement and metamorphosis; for

example, natural biofilms can induce the metamorphosis of

Crepidula onyx larvae (Zhao and Qian, 2002). Finally, the presence

of prey can induce metamorphosis. For example, the nudibranch

Adalaria proxima will metamorphose in the presence of the chemical

signals released by their bryozoan prey Electra pilosa; the inducer may

be a peptide with a low molecular weight (<500 kda) (Bornancin

et al., 2017).
3 Mechanisms of chemoreception

The chemical molecules released by targets are transported

through aquatic environments and combine with the chemical

receptors on the chemoreception organs of gastropods to stimulate

intracellular electrical signals. These signals are then transmitted to

the central nervous system to form olfaction or gustation (Krieger and

Breer, 1999; Ache and Young, 2005).
3.1 Olfaction and gustation in
aquatic environment

Usually, smell is regarded as a sense of distance, while taste is

regarded as a sense of contact. Biomolecules less than 300 Da, which

can be transported through air and bind to odor receptors, are generally

considered odor molecules. Instead, taste sensing molecules must be in

solution and in contact with receptors. However, when considering the

aquatic environment, we should reconsider our so-called “smell” and

“taste”, because species live in water, and remote chemical perception of

hydrophilic substances is a simple thing (Mollo et al., 2017), and

gustation can also act as a distance sense in aquatic environment. In the

aquatic environment, the chemical cues transmitted by water is

considered as the counterpart of the air transmitted signal and is

perceived by the sense of smell. However, some typical taste molecules

are thought to be perceived by the olfactory system in the aquatic

environment. For example, sugar and glutamic acid cannot be regarded

as olfactory molecules just because they can be perceived in dissolved

form in water, because the existence of sweet and umami taste receptors

has been supported by evidence (Mollo et al., 2014). Therefore, we

should prefer to use the more general term “chemical perception”

rather than “olfaction/gustation ”.
FIGURE 1

Gastropod aggregation behavior: (A) reproductive aggregation of Rapana venosa (Shell height 6 ± 1 cm) and (B) adaptive and (C) predator–prey
aggregation of Neptunea cumingii (Shell height 1 ± 0.3 cm).
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3.2 Chemical molecules

For gastropods, the available chemical molecules are mainly

divided into two categories: inter- and intraspecific. The chemical

molecules from other species (Whittaker and Feeny, 1971) drive

gastropods to locate prey, avoid predators, metamorphose, and grow.

In contrast, the chemical molecules — specifically pheromones — of

conspecifics (Shorey, 1976) have an important impact on the

reproductive and aggregation behavior of gastropods.

In addition to their function in transmitting diverse information,

chemical molecules are very complex and they differ markedly in their

compositions and structures. Previous studies have shown that

chemical molecules, such as animal extracts, amino acids,

nucleotides, fatty acids, and sulfur- and nitrogen-containing

compounds can induce predatory behavior in aquatic organisms

(Brönmark and Hansson, 2012; Kamio and Derby, 2017). Table 1

shows some of the chemical molecules that induce chemoreception

behaviors of gastropods. The chemical molecules released by

organisms are often mixtures of many different molecules. Though

a single chemical molecule can cause physiological and behavioral

responses in aquatic organisms, complete behaviors often require the

stimulation of complex mixtures of odor molecules.

The chemical molecules that can be perceived by gastropods listed

in Table 1 are water-soluble. However, Mollo et al. (2017) indicated

that marine benthos can perceive insoluble chemical molecules

through “touch” smell. This allows slow moving benthos to track or

avoid chemical traces attached to the substrate by recognizing the

concentration gradient, while professional nudibranchs can use

insoluble but volatile chemical molecules to find food and mates.
3.3 Chemical receptors

The sense of smell and taste of gastropods is realized through the

contact between chemical molecules and chemical receptors (Mollo

et al., 2017). Aquatic invertebrates have many types of chemical

receptor proteins (Derby, 2020). Olfactory receptors (ORs) are the
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physiological key to olfactory perception and are closely related to the

ability of animals to distinguish different odors (Krieger and Breer,

1999). ORs belong to the G protein-coupled receptor (GPCR) family,

and their structural characteristics are as follows: one C-terminal in

the membrane, a 7-a helical transmembrane structural region, three

intracellular loops, three extracellular loops, and one N-terminal

outside the membrane (Tacher et al., 2005). The acceptance of

water borne but non-volatile compounds that lead to the

perception of salty, sweet, bitter, sour and delicious is mediated by

typical taste receptors (TRs). Gustatory Receptor-Like proteins are

seven-transmembrane ionic receptors. The representativeness of

these receptor proteins has been identified in most animal

branches, including molluscs, but disappeared in vertebrates

(Derby, 2020).

The ORs of aquatic gastropods have been studied to some extent,

but there is a lack of relevant research on the function of TRs.

Cummins et al. (2009a) found that rhodopsin G-protein-coupled

receptor-like gene subfamilies were expressed in the sensory epithelial

cells of sea rabbits, which encode functional chemoreceptors. Yu et al.

(2022) has identified the OR genes of R. venosa and studied the role of

chemical perception in its settlement and metamorphosis. ORs have

evolved in marine invertebrates at least 550 million years ago, and in

cnidarian Nematostella vectensis, we can see the antiquity of ORs

from their orthologs (Churcher and Taylor, 2011). From sea to land,

the OR gene family changes gradually with the evolution of species.

Therefore, there are significant interspecific differences between

vertebrates and invertebrates in the structure of olfactory receptor

proteins and the genes encoding them.

In addition, ionic receptors (IRs) evolved from ionic glutamate

receptors and diversified. IRs has an ancient evolutionary function in

odor detection, which may play a general role in initiating chemical

sensing signals. Studies have shown that the gastropod Aplysia

expresses IRs in chemoreceptors (Croset et al., 2010). Liang et al.

(2016) revealed two types of receptors, including IR, in Biomphalaria

glabrata and found that there were seven putative IR, some of which

were expressed in its chemoreceptor organs. Since GPCR has been

identified as a key receptor in olfaction, Liang et al. (2016) proposed
TABLE 1 Chemical molecules that induce chemoreception behavior in aquatic gastropods.

Odor molecules Volatility and solubility Species Reference

Glutamate and proline
Non-volatile but soluble
compounds

Biomphalaria
glabrata

(Uhazy et al., 1978)

Volatile organic compounds (2,4-heptadienal, 1-penten-3-one, 2-pentenal,
etc.)

Volatile and soluble compounds Radix ovata (Fink et al., 2006)

Monosaccharides or disaccharides
Non-volatile but soluble
compounds

Lymnaea stagnalis (Jager, 1971)

Amino acid combinations (glycine, phenylalanine, leucine, taurine, tyrosine)
Non-volatile but soluble
compounds

Babylonia areolata (Gan, 2017)

DFAAs1
Non-volatile but soluble
compounds

Ilyanassa obsoleta
(Brönmark and Hansson,
2012)

The base uracil and the nucleosides uridine and cytidine
Non-volatile but soluble
compounds

Aplysia californica (Kicklighter et al., 2007)

Oyster polysaccharide
Non-volatile but soluble
compounds

Rapana venosa (Yu et al., 2019a)

1. DFAAs, dissolved free amino acids.
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an interesting possibility, that is, IR may also cooperate with GPCR in

B. glabrata, and both of these two pathways may contribute to the

output of gastropod olfactory sensory neurons.
3.4 Chemosensory organs

Behavioral studies have shown that many marine invertebrates

have chemosensory organs that impact their chemoreception

behavior (Kamio and Derby, 2017). Gastropods also have sensitive

chemosensory organs (Table 2). Previous studies have shown that

chemosensory cells are widely distributed across the body surfaces of

gastropods, including the foot, siphon, osphradium, and antennae

(Lindberg and Sigwart, 2015; Derby, 2020). One or two pairs of

symmetrical antennae on both sides of the head, the osphradium near

the mantle, and the siphon near the foot are considered to be the main

chemosensory organs of gastropods, but they vary among species

(Kamio and Derby, 2017; Wyeth, 2019; Derby, 2020).

Gastropod tentacles obviously lengthen and swing left and right

when they are looking for food, indicating their olfactory function

(Gan, 2017).The rhinophores and tentacles are the main

chemoreceptive organs of gastropods (e.g., Aplysia californica)

(Audesirk and Audesirk, 1977), in which the epidermal cells in the

tentacles sensory area are often columnar, with abundant ciliated

cells. Li et al. (2006) found that there are cilia at the tip of the tentacles

of Haliotis diversicolor and the epithelial cells are composed of sertoli

cells — sensory and glandular cells that have tactile and olfactory

functions. The osphradium is another important chemoreceptor that

sits in or near the mantle cavity of many gastropods (Lindberg and

Sigwart, 2015). Chitramvong et al. (2002) determined that the

osphradium has two functions: chemoreception (participating in

the locating of food or detecting of odor molecules) and tactile

sensation (responsible for assessing the amount of sediment

entering the mantle cavity or for regulating respiration by detecting

changes in seawater pH). The osphradium of neogastropods is larger

and its main role is olfactory perception (Lindberg and Ponder, 2001).

However, Wyeth (2019) suggested that scent detector is mainly used

to regulate the behavior and physiology of organisms according to the

presence (or concentration) of environmental odors but cannot

control the movement of gastropods toward the source of an odor.

The siphon is an important sensory organ in gastropods. Ferner and

Weissburg (2005) found that when successful predators of the species
Frontiers in Marine Science 05
B. carica moved toward the source of an odor, their siphons moved

from side to side, likely to search for the odor released by their prey.
3.5 Transduction and nervous systems

The combination of stimulated chemical molecules with receptor

proteins will induce the electrical reaction of chemical receptor cells.

The G protein mediated transduction cascade (including G protein,

second messenger such as cAMP or IP3, protein kinase) has been

confirmed in many aquatic invertebrates, including gastropods (Krieger

and Breer, 1999; Cummins et al., 2009a; Cummins et al., 2009b). The

chemical perception of gastropods requires the involvement of the

central nervous system and the peripheral nervous system. Research

shows that dopamine, histamine, glutamate and oligopeptide FMRFa

exist in sensory neurons of different peripheral regions of gastropods,

including tentacles, lip, foot andmantle (Wyeth and Croll, 2011; Vallejo

et al., 2014). Horváth et al. (2020) characterized the sensory system of

the main sensory areas (tentacles and lips) and the anterior foot of

aquatic gastropod Lymnaea stagnalis, paying special attention to the

neurotransmitter content of sensory neurons and their relationship

with the external elements of the central nervous system, and the results

showed that a wider range of signal molecules participated in the

peripheral sensory process of L. stagnalis, thus affecting its response to

environmental cues. During development, gastropods will change their

perception of environmental chemical molecules by regulating the

neuroendocrine system. Yang et al. (2022) observed significant

changes in the key genes in the neuroendocrine system induced by

oysters in the competent larvae of R. venosa, and proposed a

hypothetical model for oyster induced metamorphosis of the snails,

that is, the chemical molecules released by oysters may interact with the

larvae through taste or smell receptors, thus triggering changes in the

neuroendocrine system, including 5-HT and 5-HT receptors, as well as

NO and NOS.
4 Chemoreception targets location

Aquatic animals that rely on chemical molecules for long-distance

perception are greatly affected by the fluid dynamics of their habitats.

The fluid environment not only directly affects the spatial and

temporal distributions of chemical molecules, but also determines
TABLE 2 Potential chemosensory organs in gastropods.

Species Potential chemosensory organs Reference

Lymnaea stagnalis Tentacles, lips and the anterior foot (Wyeth and Croll, 2011; Horváth et al., 2020)

Haliotis asinina Osphradium (Chitramvong et al., 2002)

Haliotis diversicolor Cephalic tentacles (Li et al., 2006)

Babylonia aerolata Tentacles, osphradium, rhinophore (Gan, 2017)

Aplysia californica Rhinophores and tentacles (Audesirk and Audesirk, 1977; Cummins et al., 2009a)

Biomphalaria glabrata Tentacles (Yoshihito, 2009; Liang et al., 2016)

Lobatus gigas Osphradium (Katie et al., 2019; Lv et al., 2019)

Onchidoris muricata Rhinophores (Yoshihito, 2009; Lisova and Vortsepneva, 2022)
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the ability of organisms to orient toward the perceived chemical

molecules (Vickers, 2000; Weissburg, 2000).
4.1 Potential navigation strategies for
locating targets

Chemoreception navigation in aquatic environments can be

achieved via three main strategies: kinesis, chemotaxis, and odor-

gated rheotaxis (Wyeth, 2019). Kinesis, which is commonly found in

microorganisms, is a stimulus-induced motility processes in which

the direction of movement is independent of existing concentration

gradients. In this case, organisms continue moving in a straight line,

even when increasing concentrations are detected, and turn more

frequently to move in random directions when decreasing

concentrations are detected (Webster and Weissburg, 2009). Only

the presence of chemical molecules is detected through kinesis, so

only one sensor is required. Chemotaxis involves the movement of an

organism in the direction of an increasing concentration gradient of

chemical molecules. In this case, movement is mostly directly toward

the source of the chemical molecules. Chemotaxis usually requires

two sensors or one sensor that can move to establish the direction of a

chemical gradient. Odor-gated rheotaxis involves the upstream

movement of aquatic organisms in the direction of the source of an

odor. Odor-gated rheotaxis requires at least one chemical sensor, with

which organisms can sense the presence of water flow. In this case,

organisms can usually search for and locate their prey faster than via

kinesis or chemotaxis. According to the fluid velocity and flow state,

chemical molecules are transmitted in the water through diffusion,

laminar advection, or turbulence, and then are received by gastropods

(corresponding navigation strategies), triggering the behavioral and

physiological reactions of gastropods (Webster andWeissburg, 2009).
4.2 Still water

In still-water environments, the primary mode of scent

transmission is molecular diffusion. The structures of scents are

characterized by slow diffusion speeds and smooth concentration

gradients (i.e., the concentration of an odor at the source is high and

gradually declines into its surroundings). In such environments, the

only signal available to aquatic organisms is the chemical molecules

itself and its spatiotemporal gradient; thus, the ability to detect

chemical gradients can be used to move toward or away from

chemical molecules sources. Wyeth (2019) suggested that there is

not enough evidence that gastropods use kinesis to locate food in still

water because there are only a few studies in environments with little

or no water flow, but rather gastropods may use chemotaxis to

determine the direction of their prey.
4.3 Laminar flow

Laminar flow occurs at low Reynolds numbers. In still water, the

speed of molecular diffusion affects the speed at which odor molecules

move, so transmission is very slow. However, under laminar flow, the
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flow of water will cause chemical molecules to spread quickly; even if

the movement is slow, it will be much faster than under diffusion

alone. Under laminar flow, the structures of scents are characterized

by small concentration gradients over space and time, though these

are affected by variations in flow (Webster and Weissburg, 2009).

Many aquatic organisms communicate with chemical molecules

transported by laminar advection, including gastropods.
4.4 Turbulence

At large Reynolds numbers, turbulence is caused by large

fluctuations in water flow. Under these conditions, chemical

molecules are distributed chaotically in space and time, with

intermittent and unpredictable characteristics. Over fast time-scales,

measurements have shown that odor plumes are highly intermittent

and high concentrations are interspersed with zones of low or zero

concentration. As the distance from the odor source increases, the

odor plume tends to spread horizontally and vertically. In turbulent

environments, aquatic organisms may use the cues of intermittent or

time-averaged odor plumes to locate the direction of odor sources

(Vickers, 2000; Weissburg, 2000).

Many aquatic organisms, such as crayfish (Moore and Grills,

1999; Moore et al., 2015), blue crabs (Weissburg and Zimmer-Faust,

1994; Powers and Kittinger, 2002), and gastropods (Ferner and

Weissburg, 2005; Yu et al., 2019b), can sense and locate their prey

through odor plumes under turbulent conditions. However, different

organisms use different olfactory strategies, which are affected by their

sizes and speeds. Generally, large and fast-moving organisms (e.g.,

blue crabs) adopt spatially dependent perception strategies, while

small and slow-moving creatures (e.g., gastropods) adopt time-

dependent perception strategies (Kamio and Derby, 2017). For

example, blue crabs can use chemical sensors to compare odor

signals in space and move toward odor plumes by comparing the

instantaneous concentrations obtained by different sensors. Under

turbulent conditions, with increasing flow velocities, changes in the

intermittent and instantaneous concentrations of odor plumes are

accelerated. Due to the rapid speed of blue crabs, the perception time

required to evaluate such changes is too long, making them unable to

perceive trends in odor plumes, thereby reducing their ability to sense

and locate prey. As slow-moving organisms, gastropods experience

the rapid coincidence of odor molecules at a single location.

Gastropods can average odor concentrations to accurately estimate

the position of an odor plume and then move toward the odor source.

This time-dependent perception strategy allows gastropods to forage

in turbulent environments — a feat that remains challenging to fast-

moving predators, such as blue crabs (Powers and Kittinger, 2002;

Ferner and Weissburg, 2005; Moore et al., 2015; Kamio and

Derby, 2017).

Gastropods may use two strategies to sense and locate prey —

chemotaxis or odor-gated rheotaxis. In still water, there is a stable

concentration gradient of odors and gastropods can use chemotaxis to

sense the direction of a concentration gradient. Meanwhile, under

laminar or turbulent flow conditions, gastropods use time-dependent

perception strategies to sense and locate prey through chemotaxis or

odor-gated rheotaxis.
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5 Future prospects and conclusions

5.1 Future research considerations

5.1.1 Efficient trapping in gastropod fisheries
Gastropods are one of the most important economic shellfish in

the world. In terms of large-scale fisheries, aquaculture techniques are

well developed for the three most important gastropods — abalone

(Haliotis species), trochus (Trochus niloticus), and queen conch

(Strombus gigas) (Castell, 2003; Stoner and Appeldoorn, 2022).

Additionally, the potential of some other gastropod fishery species

has received increasing attention, including that of R. venosa (Zhang

et al., 2020), N. cumingii (Zhang et al., 2018a), and B. undatum

(Morrissey et al., 2022). However, due to the bottleneck of artificial

seedling technology for some species (e.g., R. venosa), current

resources are mainly derived from manual harvesting by divers or

as by-products when recycling ground cage nets. This results in low

harvesting efficiency and high costs without meeting market

demands. Invasive gastropod species also present a problem in

some countries, including R. venosa in the southern Black Sea

(Mutlu et al., 2022) and Pomacea canaliculate in many Asian

countries (Yusa et al., 2006). Thus, efficiently trapping gastropods

has attracted increasing attention. The use of pheromones or species-

specific baits based on chemoreception has been remarkably effective

in controlling insects (Guo et al., 2020). Similarly, the use of

pheromones, species-specific baits, and other substances to induce

gastropod aggregation behaviors may provide new means of

efficiently capturing gastropods. Although some chemical molecules

have been confirmed to induce certain behaviors among gastropods

(Table 1), the complex chemical molecules that induce the complete

chemoreception behaviors still warrant systematic evaluation.

5.1.2 Prevention and control of gastropod
predators of economic shellfish

Carnivorous gastropods prey on economic bivalves, such as clams

and oysters, causing heavy economic losses (Hu et al., 2016). For

example, the invasive species R. venosa is an important cause of the

dramatic decline in the abundance of bivalve species in the Black Sea

(Snigirov et al., 2013). Purpura gradata damages oyster farms and its

predation on oyster seedlings accounts for at least 50% of all harvested

seedlings (Lou, 1963). Based on the summary provided here, we know
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that gastropods can successfully sense and locate prey by

chemoreception. In fact, measures that might affect the emission of

chemical cues by prey, as well as the transportation, perception, or

response of gastropods to chemical cues, can successfully prevent the

destruction of shellfisheries. Controlling the direction of water flow

may also assist in protection shellfisheries, as gastropods cannot catch

bivalves downstream (Yu et al., 2019b). Nevertheless, research on

blocking gastropod chemoreception is still needed in natural

sea areas.

5.1.3 Induction of larval settlement and
metamorphosis in gastropod aquaculture

Although artificial breeding technologies have been established

for some gastropods, there remain many economic gastropods for

which such technologies are limited. For example, extremely low rates

of metamorphosis limit the development of R. venosa aquaculture.

This species is a typical carnivorous snail with planktonic larvae that

change their feeding habits during metamorphosis (i.e., from

herbivorous to carnivorous) (Zhang et al., 2020). Although oysters

can induce larvae to attach and metamorphose, the cost of oysters is

high, resulting in low benefits when using this method. Yu et al.

(2019a) found that oyster polysaccharides may induce

metamorphosis, but the rate of metamorphosis is significantly lower

than that of oyster. Therefore, identifying effective odor molecules

that can improve the efficiency of larval settlement and

metamorphosis is urgently needed to effectively improve the

economic benefits of the artificial breeding of R. venosa.

5.1.4 Molecular mechanisms of olfactory
perception in gastropods

At present, OR genes have been extensively studied in fish (Lv

et al., 2019); however, few studies have been conducted on OR or TR

and their related genes in gastropods. Yu et al. (2022) was only able to

reveal the OR genes of R. venosa from the transcriptome level and the

identification of functional genes and related functions requires

further study. Additionally, the identification of gastropod ORs or

TRs and the molecular mechanisms through which they recognize

different odors also warrant further examination. Understanding the

molecular mechanisms of gastropod chemoreception can provide a

theoretical basis for efficient gastropod trapping, bivalve pest control,

and larval settlement and metamorphosis.
FIGURE 2

Chemoreception behaviors of gastropods and their perception and localization mechanisms.
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6 Conclusions

This review introduces the chemoreception behavior of gastropods

and the mechanisms underlying the perception and location of targets in

the aquatic environment. Prey or conspecifics release chemical molecules

into their aquatic environments and chemical molecules are transported

by diffusion or water flow. Chemical molecules combine with Chemical

receptors on the chemosensory organs of gastropods to form

chemoreception. Gastropods use different strategies to locate food or

conspecifics in different aquatic environments (i.e., chemotaxis in still

water, chemotaxis or odor-gated rheotaxis in laminar and turbulent flow

environments). These chemoreception processes mediate gastropod

predation, aggregation, settlement, and metamorphosis behaviors

(Figure 2). Based on this, we put forward the prospect of gastropod

culture and fishery management in the future, hoping to provide

suggestions for the rational utilization of gastropod resources and

biological invasion.
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