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Vibrio parahaemolyticus is a common pathogen of marine crustaceans and is

responsible for large losses in aquaculture. Salinity is an important

environmental factor, and abrupt changes in salinity can affect the immunity

of crustaceans. In this study, we carried out a transcriptomic analysis under

pathogenic infection and low salt stress, and conducted a comparative analysis

of the differentially expressed genes (DEGs) after stimulation by the two factors.

Illumina sequencing technology was used for the transcriptome sequencing of

27 hepatopancreas samples, and 178.77 G sequencing data and an average of

44,142,119 clean reads per sample were obtained. A total of 3,047 and 3,710

DEGs were found after V. parahaemolyticus infection and low salt stress, which

included a number of innate immunity genes, such as Toll-like receptor (TLR),

anti-lipopolysaccharide factor (ALF), lectin, and hemocyanin. In addition, 2,016

common DEGs were found, accounting for 42.52% of the total DEGs. Among

these, 169 DEGs were up-regulated after pathogenic infection and down-

regulated after low salt stress, and were mainly enriched in starch and sucrose

metabolism, nitrogen metabolism, amino sugar and nucleotide sugar

processes, and other pathways. Collectively, these results provide data

support for the analysis of the immune mechanism of crabs against V.

parahaemolyticus and will also help to clarify the molecular mechanism by

which salinity affects immunity.
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Introduction

The swimming crab (Portunus trituberculatus, Crustacea:

Decapoda: Brachyura) is widely distributed in the coastal waters

of China, Korea, Japan, and Southeast Asia (Lv et al., 2017).

Because of its rapid growth and high nutritional value, it has

become an important crustacean species in mariculture in

China. In 2019, the domestic production of swimming crab

reached 113,810 tons (China Fishery Statistics Yearbook, 2020),

and it is therefore of great economic value.

High-throughput sequencing together with gene expression

analysis has become a powerful tool to identify the essential

genes controlling a particular biological process. Recently,

molecular mechanisms such as immune defense (Liu et al.,

2020; Kong et al., 2020), stress response (Lou et al., 2019; Lee

et al., 2022), growth and development (Fang et al., 2021), and sex

determination (Lin et al., 2019; Xu et al., 2021) have been

resolved by transcriptome sequencing in aquatic crustaceans.

The hepatopancreas in crabs is an important immune organ (Xu

et al., 2020a). Innate immunity is an important way for

crustaceans to resist pathogen infection, and immune-related

genes play an important role in this process (Junprung et al.,

2021). Some immune-related genes in crustaceans were

identified by comparative transcriptomics, such as Toll-like

receptor (TLR), anti-lipopolysaccharide factor (ALF), lysosome

and other important immune factors, which provide a solid

foundation for studying immune mechanisms in crustaceans.

Vibrio parahaemolyticus is an important pathogen of P.

trituberculatus (Yan et al., 2010). Infection will lead to

multiple tissue damage and slow growth, resulting in huge

economic losses (Yan et al., 2010). In previous studies, some

genes may have played a role in warding off the original

infection. However, due to the lack of relevant comparative

transcriptomic studies, it is difficult to fully understand the

molecular mechanism of P. trituberculatus resistance to the

invasion of V. parahaemolyticus. In addition, sudden changes

in salinity can affect the immunity of crustaceans (Chen et al.,

2020; Long et al., 2021), making them more sensitive to

pathogens. However, it is not clear through which genes or

pathways salinity stress affects immunity.

A comparative transcriptome study was performed on the

hepatopancreas before and after V. parahaemolyticus infection

and low salt stress. The differentially expressed genes (DEGs) of

the two types of stress were thoroughly investigated.

Furthermore, the common DEGs were further screened and

verified by a Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis and quantitative polymerase

chain reaction (qPCR). The results were used to clarify the

immune mechanism of P. trituberculatus as well as the

molecular mechanism of salinity affecting immunity.
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Materials and methods

Animals, immune infection and
samples preparation

Juvenile swimming crabs (80 days old; body weight = 35.5 ±

2.8 g) were obtained from the Haifeng Company (Weifang,

China). After being transferred to the laboratory, 180 crabs were

randomly placed into three 7 m3 cisterns at 26°C and acclimated

for one week. After acclimation,180 individuals were divided into

three groups. The control group was injected with 100 ml of sterile

normal saline for marine crustaceans. The infection group was

injected with V. parahaemolyticus (105 CFU/ml, 1 µl/g). The low-

salinity group was transferred from normal seawater (26 ppt) to a

low-salinity seawater environment (11 ppt). At 12, 24, 48, and

72 h infection and under low salt stress, the hepatopancreas was

dissected, immediately frozen in liquid nitrogen, and stored at

-80˚C. For each group, three samples at each time point were used

for a transcriptome analysis, and each sample was a mixture of the

hepatopancreas from 3–5 individuals. All experimental

procedures were approved by the Yellow Sea Fisheries Research

Institute’s animal care and use committee.
RNA extraction, cDNA library
construction and sequencing

Total RNA was extracted from the samples using TRIzol

Reagent (Invitrogen, Carlsbad, CA, USA) following the

manufacture’s instruction. RNA integrity was detected using

Agilent 2100 BioAnalyzer (Agilent Technologies, CA, USA) and

the concentration was measured using Qubit® RNA Assay Kit in

Qubit® 2.0 Flurometer (Life Technologies, CA, USA). 1.5 mg
total RNA was used as the input material for libraries

construction and the NEBNext®Ultra™ RNA Library Prep Kit

for Illumina ® (NEB, USA) was used to construct RNA-Seq

libraries according to the manufacturer’s instructions.

Subsequently, the twenty-seven libraries were sequenced on

the Illumina Nova seq 6000 platform and paired-end reads

were generated.
Differentially expressed genes
(DEGs) analysis

Differential expression analysis between two groups, Adjusted

padj ≤ 0.05 and |log2 (FoldChange)| ≥ 1 were set as the threshold

for significantly differential expression. The DEGs of the two

groups were analyzed by cluster analysis. DEGs were classified to

signaling pathways by KEGG pathway analysis. Based on the
frontiersin.org
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KEGG annotation results and the official classification, The

functions of DEGs in which signal pathways with false

discovery rate (FDR) less than 0.05 were considered as the

enriched significantly ones. The above analysis is based on the

website of https://magic.novogene.com/customer/main/login.
cDNA synthesis and qPCR validation of
transcriptomic data

Total RNA was extracted from the hepatopancreas with

TRIzol reagents (Invitrogen, USA) based on the manufacturer’s

protocols. Subsequently, the RNA was reverse-transcribed to

first-strand cDNA using the PrimeScript™ RT reagent kit

(TaKaRa, Japan). Eight genes candidates selected after

transcriptomic screening were subjected to qPCR validation.

qPCR was performed with a 7500Fast machine (Applied

Biosystems, USA) using a SYBR green kit (Takara) based on a

previously established method (Min et al., 2019). b-actin was

employed as a reference gene, and the relative transcription level

was calculated by the 2−DDCt method. All data are presented as

the mean ± SD of three samples with triplet repetitions.

Differences between means were tested by ANOVA followed

by Duncan’s post hoc test using SPSS software. Significant

differences were accepted when the Padj ≤ 0.05.
Results

Information obtained from the
sequencing data

The transcriptome sequencing and quality control of 27

hepatopancreas samples from pathogen and low salt stress at

0–72 h were performed using Illumina Hiseq sequencing
Frontiers in Marine Science 03
technology. A total of 178.77 G of raw data was obtained

(available on BIG sub https://ngdc.cncb.ac.cn/gsub/, GSA:

CRA006377), and the average clean reads per sample was

44,142,119. The quality control results revealed that the

average Q20 and Q30 values were above 97% and 93%,

respectively, and the sequencing quality was excellent. The

reference genome was compared using Clean Read, and the

average mapping rate was 90.76% (Table S1).
Identification of DEGs

Based on the analysis of DEGs (| log2 (FoldChange) | ≥ 1 &

padj ≤ 0.05), after V. parahaemolyticus infection 12–72 h, a total

of 3,047 DEGs were screened, with most screened at 72 h,

accounting for 65.15% of the total DEGs (Figure 1). A total of

3,710 DEGs were screened from 12 to 72 h after low salt stress,

with most DEGs screened at 12 h after low salt stress, accounting

for 70.40% of the total DEGs (Figure 2). Following infection and

low salt stress, there were 2,016 common DEGs, accounting for

42.52% of the total DEGs (Figure 3). According to the KEGG

enrichment analysis, these common genes were primarily

enriched in starch and sucrose metabolism, galactose

metabolism, fructose and mannose metabolism (Figure 4).
The DEG cluster analysis

A cluster analysis was performed on the DEGs in the infection

and low salt groups, and the results revealed that the two groups of

DEGs were clustered into six categories each. Subcluster 1 had the

most DEGs in the infection group, with an initial down-regulated

expression trend and then the DEGs were up-regulated and then

down-regulated. Subcluster 2 was the largest cluster of DEGs in
FIGURE 1

DEGs in V. parahaemolyticus infection group.
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the low salt group, with an overall expression trend of down-

regulation. The cluster analysis revealed that four groups

(subclusters 2, 3, 4, and 5) generally showed an up-regulated

expression trend, while two groups (subclusters 1 and 6) generally

showed an down-regulated expression trend, (Figure 5). Under

salinity stress, three groups (subclusters 3, 4, and 6) generally

showed an up-regulated expression trend, while three groups

(subclusters 1, 2, and 5) generally showed an down-regulated

expression trend (Figure 6).
Screening of reverse DEGs after
exposure to the two kinds of stress

We screened DEGs whose expression patterns displayed the

opposite trend after pathogen infection and low salt stress based on
Frontiers in Marine Science 04
the results of the cluster analysis. Among them, 169 DEGs were up-

regulated following pathogen infection and down-regulated

following low salt stress (Fup&Sdown), accounting for 8.39% of

all genes with common DEGs. According to the KEGG enrichment

analysis, the roots of the Fup&Sdown group primarily participate in

starch and sucrose metabolism, nitrogen metabolism, and amino

sugar and nucleotide sugar metabolism processes. The Fdown&Sup

group consisted primarily of arginine biosynthesis, 2-oxocarboxylic

acid metabolism, and the ABC transporters pathway (Table S2).
Validation of the DEGs

A qPCR assay was used to test six DEGs in the three major

pathways that were found to be enriched in the Fup&Sdown
FIGURE 3

The two groups shared a Venn of DEGs.
FIGURE 2

DEGs in low salt stress group.
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group (padj0.05). The majority of these genes were up-regulated

12 h after pathogen infection and peaked between 24 and 72 h.

In contrast, the overall expression trend was down-regulated

after salinity stress, with the lowest expression level at 72 h

(Figure 7). The qPCR validation results were largely consistent

with the trend of the transcriptome results (Figure 8), indicating

that the DEG analysis in this study was highly accurate.
Discussion

The main pathogen of P.trituberculatus is V. parahaemolyticus,

which can cause acute hepatopancreas necrosis (AHPND) (Lee

et al., 2015; Theethakaew et al., 2017), resulting in significant

cultural loss. Salinity is an important environmental factor, and

sudden changes in salinity can affect crustacean immunity (Wang

and Chen, 2006; Chen et al., 2020). In crustaceans, the

hepatopancreas is the primary tissue for energy storage,

detoxification metabolism, and immune regulation, and it plays

an important role in immunity and stress resistance (Rőszer, 2014;

Xu et al., 2020b). In this study, a hepatopancreas transcriptome

analysis was performed following V. parahaemolyticus infection
Frontiers in Marine Science 05
and low salt stress, with the results being useful for determining the

immune mechanisms of this species.

A total of 4,741 DEGs were discovered in this study after

pathogen and salinity stress, including 3,047 pathogenic DEGs

and 3,710 salinity stress DEGs. There were so many DEGs

indicated that it was clear that the crab made a substantial

response to the two stress factors. In addition, the pattern of the

hepatopancreas response to the two kinds of DEGs was different,

with the highest differential gene expression after pathogen

stimulation at 72 h and the highest differential gene expression

after low salt stress at 12 h. Among them, 2,016 DEGs were

common to both types of stress, accounting for 42.52% of the

total DEGs that were enriched in the starch and sucrose

metabolism, galactose metabolism, fructose and mannose

metabolism, and other pathways, indicating that these

pathways may play an important role in disease resistance and

salinity adaptation, or the process would be susceptible to

pathogens and low salt stress.

In crustaceans, genes associated with innate immunity against

pathogen invasion have been reported. For example, under the

attack of V. algininaniae and white spot syndrome virus (WSSV,

Candida lusitaniae), the Toll gene showed different up-regulation
FIGURE 4

KEGG enrichment analysis for the common DEGs.
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reactions, indicating that it was involved in the immune response of

the body (Zhou et al., 2015). The expression of ALF was

significantly down-regulated after WSSV stimulation in

Macrobrachium nipponense, indicating that it had a strong

immune response to the pathogen (Jiang et al., 2022). The plasma
Frontiers in Marine Science 06
hemocyanin cyanogen concentration, hepatopancreas hemocyanin

mRNA, and subunit expression of Litopenaeus vannamei were

significantly affected by Vibrio harveyi and Staphylococcus aureus

stress (Pan et al., 2019). In this study, Lectin, hemocyanin, TLR,

ALF, and other innate immune genes were all expressed differently
FIGURE 5

Clustering analysis of V. parahaemolyticus infection group.
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after pathogen stress, indicating that these genes also play a role in

resistance to V. parahaemolyticus invasion in the hepatopancreas.

Heavy rain during production often causes a large number of

shrimp and crab deaths (Le Moullac and Haffner, 2000; Ye et al.,
Frontiers in Marine Science 07
2008; Yan et al., 2010). We also found that the P. trituberculatus

in the low-salt environment was more sensitive to V.

parahaemolyticus, indicating that the low-salt environment led

to a decline in the body’s immunity to some extent in Crustacea
FIGURE 6

DEGs clustering analysis of low salt group.
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FIGURE 8

qPCR validations of transcriptomic data. Black was for V.parahaemolyticus infection group, gray was for low salt stress group. Different letter (a,b) in
the picture indicate significant difference (P<0.05).
FIGURE 7

Clustering heatmap of DEGs in three pathways. Each column represented a sample, each row represents a gene. Colors represented the gene
expression in a single sample, red represented higher expression, while blue represented lower expression. CL was the hepatopancreas tissue of
the control group, FL was the hepatopancreas tissue of the V.parahaemolyticus infection group, LL was the hepatopancreas tissue under low
salt stress group.
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(Chen et al., 2020; Long et al., 2021). Based on the cluster

analysis results, we screened the reverse expression genes

(Fup&Sdown) of the two factors after stress to investigate the

mechanism of low salt stress on immunity. A total of 169 DEGs

were found to be up-regulated after pathogen infection and

down-regulated after low salt stress, as well as being enriched in

starch and sucrose metabolism, nitrogen metabolism, amino

sugar, and nucleotide sugar metabolism. Several genes were

screened for qPCR verification in these processes, and the

verification results were consistent with the transcriptome

data. The metabolism of starch and sucrose is related to

energy absorption and release (Tang et al., 2015). Nitrogen

metabolism is linked to the detoxification metabolism in the

body (Meng et al., 2021). The metabolism of amino and

nucleotide sugars has been reported to be associated with

fungal sporogenesis (Ding et al., 2019). These processes are

activated after pathogen stress, but are inhibited under low salt

stress, which indicates that it may be an important way for

salinity to affect immunity.
Conclusion

We performed a comparative transcriptome analysis of P.

trituberclatus hepatopancreas under V. parahaemolyticus

infection and low salt stress. We found a total of 4,741 DEGs,

including 2,016 DEGs shared by the two stresses, indicating that

a large number of genes may play roles in both disease resistance

and adaptation. Following stimulation by the two factors, 169

DEGs were discovered, which were primarily enriched in starch

and sucrose metabolism, nitrogen metabolism, amino sugar, and

nucleotide sugar metabolism processes. These findings will

improve our understanding of the P. trituberculatus immune

mechanism against V. parahaemolyticus, as well as the molecular

mechanism of salinity affecting immunity.
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