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Particulate organic carbon (POC) in the surface ocean contributes to

understanding the global ocean carbon cycle system. The surface POC

concentration can be effectively detected using satellites. In open oceans,

the blue-to-green band ratio (BG) algorithm is often used to obtain global

surface ocean POC concentrations. However, POC concentrations are

underestimated in waters with complex optical environments. To generate a

more accurate global POCmapping in the surface ocean, we developed a new

ocean color algorithm using a mixed global-scale in situ POC dataset with the

concentration ranging from 11.10 to 4389.28 mg/m3. The new algorithm (a-

POC) was established to retrieve the POC concentration using the strong

relationship between the absorption coefficient at 490 nm (a(490)) and POC, in

which a(490) was from the Ocean Color Climate Change Initiative (OC-CCI)

v5.0 suite. Afterward, the a-POC algorithmwas applied to OC-CCI v5.0 data for

special regions and the global ocean. The performances of the a-POC

algorithm and the BG algorithm were compared by combining the match-

ups of satellite data and in situ dataset. The results showed that the statistical

parameters of the a-POC algorithmwere similar to those of the BG algorithm in

the Atlantic oligotrophic gyre regions, with a median absolute percentage

deviation (MAPD) value of 22.04%. In the eastern coastal waters of the United

States and the Chesapeake Bay, the POC concentration retrieved by the a-POC

algorithm was highly consistent with the match-ups, and MAPD values were

33.06% and 26.11%. The a-POC algorithm was also applied to the Ocean and

Land Color Instrument (OLCI) data pre-processed with different atmospheric

correction algorithms to evaluate the universality. The result showed that the a-

POC algorithm was robust and less sensitive to atmospheric correction than

the BG algorithm.

KEYWORDS

satellite ocean color, absorption coefficient, global bio-optical algorithm, Ocean
Color Climate Change Initiative, particulate organic carbon
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1 Introduction

The ocean is a vast carbon reservoir, and the ocean carbon

cycle is crucial in studying global climate change and

environmental evolution (Hedges, 1992; Siegenthaler and

Sarmiento, 1993). Particulate organic carbon (POC) and

dissolved organic carbon (DOC) are two kinds of oceanic

organic carbon (Amon and Benner, 1996; Jahnke, 1996; Chen

et al., 2022). Although the stock of POC is small, its importance

depends on its constituents (phytoplankton, bacteria,

zooplankton, and organic detritus), which are responsible for

relatively large carbon fluxes and short turnaround times

(Stramska, 2009; Evers-King et al., 2017). In addition, POC is

also an important indicator of ocean primary productivity

(Behrenfeld et al., 2005). The flux from dissolved inorganic

carbon (DIC) to POC through primary production is

estimated to be about 50 Gt C/year, accounting for about 50%

of global primary production (Liu et al., 2021). Due to POC

transformation (e.g., remineralization), sedimentation, physical

mixing, and horizontal ocean current transport, the

concentration of POC (mg/m3) in the surface ocean changes

significantly on temporal and spatial scales (Field Christopher

et al., 1998; Stramski et al., 1999; Gardner et al., 2006; Omand

et al., 2015; Stramska and Cieszyńska, 2015). Therefore, the POC

measured through traditional shipboard platforms or other in

situ observation platforms cannot fully characterize POC

changes on a global scale.

Ocean color remote sensing has the advantages of broad

spatial coverage and long time series in obtaining bio-optical

properties. It solves the drawback that the data obtained by

traditional monitoring methods are dispersed in time and space.

In the past few decades, ocean color remote sensing technology

has been rapidly developed. For example, the Sea-viewing Wide-

Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging

Spectroradiometer (MODIS), Medium-Resolution Imaging

Spectrometer (MERIS), Visible Infrared Imaging Radiometer

Suite (VIIRS), and Ocean and Land Colour Instrument (OLCI)

can send ocean color data to ground receiving stations almost

every day. By applying specific retrieval algorithms to remote

sensing data, ocean color remote sensing technology can obtain

the distribution of oceanic POC concentrations on temporal and

spatial scales (Loisel et al., 2002; Stramska and Stramski, 2005;

Allison et al., 2010; Duforêt-Gaurier et al., 2010; Stramska, 2014;

Stramska and Cieszyńska, 2015; Stramski et al., 2022).

Current POC concentration retrieval algorithms are mainly

based on the inherent optical properties (IOPs), the apparent

optical properties (AOPs), and water constituents (e.g.,

chlorophyll-a (Chla) and total suspended matter (TSM)). The

first type is two-step algorithms based on IOPs. The relationship

between AOPs and IOPs was first established, and then an

empirical relationship between IOPs and POC concentration

was formulated. These IOPs include the particulate
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backscattering coefficient (bbp) and the particle beam

attenuation coefficient (cp). Stramski et al., 1999 used bbp at

510 nm as a proxy to retrieve the POC concentration. Gardner

et al., 2006 established a linear regression between cp and the

POC concentration to retrieve the POC concentration. However,

the relationship between bbp, cp, and POC varied by sea area. At

similar POC levels, the bbp at 510 nm in the Antarctic Polar

Front Zone was higher than that in the Ross Sea region,

indicating a difference in the specific bbp of carbon (Stramski

et al., 1999; Stramski et al., 2001; Pabi and Arrigo, 2006; Stramski

et al., 2008). Le et al., 2018 showed a relatively weak relationship

between the POC concentration and the backscattering

coefficient at 547 nm, and the coefficient of determination was

0.33. In addition, there is a significant change in the slope

between cp and POC concentrations (about twice as large)

compared to the linear regression model for different sea areas

worldwide (Gardner et al., 2006). Therefore, these algorithms

may be limited in retrieving POC concentrations on a

global scale.

The second type of algorithm obtains the POC

concentration based on the empirical relationship between

AOPs and the POC concentration. The typical empirical

algorithm is the blue-to-green band ratio (BG) of remote

sensing reflectance (Rrs(l), where l is the light wavelength)

(Stramski et al., 2008). The BG algorithm outperformed the bbp-

based two-step algorithm in the open ocean (Stramski et al.,

2008; Allison et al., 2010). It was used by the National

Aeronautics and Space Administration (NASA) Ocean Biology

Processing Group to generate global POC products. Le et al.,

2018 proposed an empirical POC concentration retrieval

algorithm (CIPOC) based on a three-band Rrs(l) difference (i.e.,
Color Index) initially developed by Hu et al., 2012. However, the

accuracy of empirical algorithms relies heavily on the variation

of the in situ datasets used to establish the algorithms. The BG

algorithm was established using in situ POC concentrations

ranging from 12 to 270 mg/m3, and the CIPOC algorithm was

established using in situ POC concentrations less than 1000 mg/

m3. As a result, the BG and CIPOC algorithms had significant

errors in coastal waters with complex optical environments

(Duan et al., 2014; Evers-King et al., 2017; Le et al., 2017; Le

et al., 2018; Lin et al., 2018; Jiang et al., 2019; Tran et al., 2019).

The third type of algorithm is based on the water

constituents. Loisel et al., 2002 proposed a POC algorithm

based on the combination of bbp at 490 nm and Chla

concentrations. However, this algorithm significantly

underestimated the data in regions with high POC

concentrations (Evers-King et al., 2017). In turbid regions such

as coastal waters, the uncertain accuracy of Chla concentration

retrieval can bring errors to further POC retrieval. Liu et al., 2019

established the relationship between TSM concentrations and

POC concentrations using an in situ dataset collected in the

Changjiang River Estuary. This relationship was verified through
frontiersin.org
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the Geostationary Ocean Color Imager (GOCI) data. As the

relationship between TSM and POC is not static, the ratio of POC

to TSM in different water environments is greatly affected by the

relative contribution of organic and inorganic particulate matter

(Bishop, 1999). The lack of a recognized ocean color TSM

retrieval model also increases the difficulty of algorithm

generalization (Yu et al., 2019; Liu et al., 2021).

Since Stramski et al., 1999 proposed the backscattering of

particulate matter as a proxy for POC, ocean color retrieval

algorithms for POC concentration based on IOPs have been

continuously investigated. Previous studies have suggested that

the absorption coefficient (a(l)) can serve as a proxy for organic

particulate matter, particularly the wavelength l at longer blue

bands (Woźniak et al., 2010; Le et al., 2018). However, few POC

algorithms based on a(l) have been studied, especially on the

direct establishment of the relationship between POC and a(l)
(Jiang et al., 2019). Often, a(l) is subdivided into the following

four components:

a lð Þ = aw lð Þ + aF lð Þ + aNAP lð Þ + aCDOM lð Þ
Subscripts w, F, NAP, and CDOM represent pure seawater,

phytoplankton, nonalgal particles, and colored dissolved organic

matter. Selecting a(l) as a proxy for POC can describe the

variability in phytoplankton and nonalgal particles, although

doing so also mingled with the signal of CDOM, especially in

coastal waters. Since the absorption coefficient of CDOM

(aCDOM) decays exponentially with increasing wavelength

(Babin et al., 2003), this study focused on the relationship

between a(490) and POC concentration. The OC-CCI data

was combined with a global in situ POC dataset to establish

an absorption-coefficient-based POC concentration retrieval

algorithm (a-POC). Afterward, the performance of the a-POC

algorithm was compared with that of the BG algorithm on a

global and regional scale, and an uncertainty map was plotted.

Finally, the a-POC algorithm was applied to other sensors, and

its universality was evaluated.
2 Data and methods

2.1 In situ dataset

The in situ POC dataset used in this study was obtained from

globally shared databases and an independently collected Bohai

Sea dataset. The shared databases mainly consisted of datasets

collected by Martiny et al., 2014 in the Dryad Digital Repository

(https://datadryad.org/) and a large number of datasets provided

by contributors in SeaBASS (https://seabass.gsfc.nasa.gov)

(Werdell and Bailey, 2005). The Bohai Sea dataset was

collected in the Bohai Sea of China. It included optical and

biochemical parameters of the ocean surface (e.g., Rrs(l), the
concentrations of Chla and POC). The water samples used to
Frontiers in Marine Science 03
obtain biochemical parameters were collected at a depth of

0.5 m. Rrs(l) and Chla were measured in the same way as in

the study of Jiang et al., 2020, where the optical measurement

followed the NASA optics protocols (Mueller et al., 2003), and

Chla was measured by the fluorometric method (Cui et al.,

2010). The measurement method for POC concentration was

according to the method provided by Sharp, 1974. Before

analysis, samples were collected using GF/F filters with a pore

size of 0.7 µm and pre-combusted (450 °C) and dried overnight

at 65 °C. Filters were acidified by adding low-carbon HCl directly

or by overnight exposure to concentrated HCl solution fumes in

a desiccator to remove interference from particulate inorganic

carbon (Hedges and Stern, 1984). The filter was then dried at

55°C, loaded into pre-combusted tin capsules, and converted to

organic carbon in an elemental analyzer at 960 °C. Finally, the

POC concentrations were calculated by subtracting the average

organic carbon mass (measured on blank filters) from the

organic carbon mass (measured on filters) and dividing it by

the volume of the filtered sample. POC concentrations could be

easily overestimated due to the inevitable errors in POC

measurements, especially from dissolved organic carbon

adsorbed on the filter (Gardner et al., 2003). Therefore, POC

concentrations below 10 mg/m3 were considered invalid in this

study (Cetinić et al., 2012; Le et al., 2018). For shared databases

that provide a sampling depth, the measurements from 10 m

below the water surface were averaged to provide the “surface”

value (Evers-King et al., 2017). The dataset was sampled from

1997 to 2020, with areas ranging from the open oceans to coastal

waters, providing good representation on both temporal and

spatial scales.
2.2 Satellite data

The European Space Agency (ESA) Ocean Color Climate

Change Initiative (OC-CCI) project has produced a series of

validated Essential Climate Variables (ECVs) with error

characteristics by merging observational products from

multiple satellite sensors. Since the first phase of OC-CCI was

launched in 2010, several updates and improvements have been

implemented, and the current OC-CCI project has progressed to

version 5.0 (Sathyendranath et al., 2019; Sathyendranath et al.,

2021). The OC-CCI v5.0 data is created by band-shifting (Mélin

and Sclep, 2015) and bias-correcting SeaWiFS, MODIS-Aqua,

VIIRS, and Sentinel3A-OLCI data to match MERIS data. The

datasets are merged, and per-pixel uncertainty estimates are

computed. In addition to Rrs(l) at MERIS wavelengths, Chla

concentration, kd(490), and IOPs, the dataset also includes an

optical water classification system, which divides water into 14

spectral classes based on fuzzy logic (Moore et al., 2001; Jackson

et al., 2017). In this way, the dataset can focus on the spectral

shape when differentiating classes.
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In this study, the daily and monthly average composite OC-

CCI v5.0 products with 4 km resolution (Sathyendranath et al.,

2021), the OLCI Level-1B (L1B) Full-Resolution (FR, spatial

resolution of 300 m) TOA remotely-sensed radiance products,

and OLCI baseline products Level-2 (L2) FR were used. The OC-

CCI v5.0 products were obtained from the ESA Climate Office

Ocean Colour (https://climate.esa.int/en/projects/ocean-colour/

), and the OLCI products were obtained from Copernicus Open

Access Hub (https://scihub.copernicus.eu/). In OC-CCI v5.0

products, Rrs(l) were obtained using a mixed atmosphere

correction algorithm (i.e., SeaDAS v7.5 for SeaWiFS;

POLYMER v4.12 for MERIS, MODIS, VIIRS, and OLCI). On

this basis, IOPs were obtained using a multiband quasi-

analytical algorithm (QAA), in which the backscattering

coefficients of pure seawater developed by Zhang et al., 2009

were used (Gordon and Wang, 1994a; Lee et al., 2002; Lee et al.,

2009; Steinmetz et al., 2011).

The OLCI data were pre-processed with the Baseline

Atmospheric Correction (BAC) and POLYMER atmospheric

correction algorithms to obtain Rrs(l). BAC is based on the NIR

black pixel assumption (Gordon and Wang, 1994b) and the

bright pixel atmospheric correction algorithm (Moore et al.,

1999). The switch between two modes for clear and turbid

waters was determined with a turbid water flag. POLYMER is

a spectral matching approach based on all available spectral

bands from blue to NIR, and it is designed explicitly for

atmospheric correction in the presence of sun glint (Steinmetz

et al., 2011). The OLCI L1B products were pre-processed using

POLYMER v4.13 processor to obtain Rrs(l), and Rrs(l)
corrected by the BAC atmospheric correction algorithm were

extracted from OLCI L2 products. Finally, the QAA_v5

algorithm was used to obtain IOPs products from Rrs(l) (Lee
et al., 2002; Lee et al., 2009).
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2.3 Match-up procedures

The match-ups between the satellite data and the in situ

dataset were determined based on the satellite overpass time and

sampling location. We selected a 1-day time window and

extracted a surrounding 3-by-3 pixel box centered on the

location of the in situ points. If the number of valid pixels in a

pixel box was less than 6 or the center pixel was invalid, the pixel

box was discarded. The water class memberships of the central

pixels were extracted from the OC-CCI products, and the

dominant OC-CCI water classes (i.e., the water classes

corresponding to the highest membership value) were

calculated. Furthermore, the mean and standard deviation

were calculated for all satellite products with valid pixels in the

pixel boxes. The in situ data were averaged if multiple in situ

measurements were available in the same pixel.

Through the match-up procedure, 3580 valid match-ups

were obtained. Their location distribution is shown in Figure 1,

with POC concentrations ranging from 11.10 to 4389.28 mg/m3.

It can be seen that POC concentrations were lower in open

oceans than in coastal waters. In some estuarine regions, such as

the Chesapeake Bay and Norton Sound, the POC concentrations

were high. Among 3580 match-ups, 2387 were selected for a-

POC algorithm formulation, and the remaining 1193 match-ups

were used to evaluate the performance of the a-POC algorithm.

The frequency distribution of POC concentrations of match-ups

is shown in Figure 2. The distribution of OC-CCI dominant

water classes corresponding to the match-ups is illustrated in

Figure 3. As the water class increases, the POC concentration

shows an upward trend. Supplementary Table 1 shows the

number of all match-ups, algorithm formulation match-ups,

and algorithm validation match-ups in different OC-CCI

dominant water classes. The distribution shows a bimodal
FIGURE 1

Geographical distribution of match-ups between the in situ dataset and satellite data. The color bar represents the average POC concentration
(mg/m3) 10 m below the water surface.
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trend, with more match-up distributions associated with water

classes 2-4 and 11-13.
2.4 Statistical metrics

In addition to the visual measurement of the product images

generated by the a-POC algorithm, the performance of the

algorithm was also evaluated by six statistical metrics:
Fron
• Pearson correlation coefficient between the measured

value (xi ) and the satellite-derived value (yi ), R;

• Slope (S) and intercept (I) between xi and yi fromModel-

II linear regression (Reduced Major Axis);

• The median absolute percentage deviation (MAPD, %)

between xi and yi , calculated as the median of the

respective absolute percentage deviation,

APD = jyi−xij
xi

� 100;
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• Root-mean-square difference (RMSD, mg/m3) between

xi and yi , RMSD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No(yi − xi)

2
q

, where N is the

number of match-ups used in the calculation;

• Bias between xi and yi , Bias = 1
No(yi − xi).
2.5 Formulation of a-POC algorithm

The relationship between the absorption coefficient and the

POC concentration was established based on a(490). Figure 4

shows the cubic polynomial fit between the in situ POC

concentration for algorithm formulation match-ups and the a

(490) from the OC-CCI v5.0 product suite. The relationship

between POC and a(490) in the a-POC algorithm is described as

follows:

POC = 100:488x
3+0:947x2+1:42x+3:41 ;

where x=log10a(490) . The value for the squared correlation

coefficient, R2, between the POC concentration and a(490)

obtained by cubic polynomial fitting was 0.77.
3 Results

3.1 Algorithm performance evaluation
using algorithm validation match-ups

Figure 5 shows the frequency distribution of POC

concentrations for algorithm validation match-ups and

algorithm retrievals. The distribution of the algorithm

validation match-ups showed a bimodal pattern, presenting at

about 26 mg/m3 and 200 mg/m3. The a-POC algorithm

underestimated the POC concentrations in the low-value

interval, where the distribution clustered near 30 mg/m3.

When the POC concentration was higher than 100 mg/m3, the

a-POC algorithm roughly reproduced the histogram shape of the

match-ups. For comparison, a similar evaluation was performed

for the BG algorithm. The BG algorithm and a-POC algorithm

had a similar histogram shape at the first peak, while the second

peak significantly shifted to the left and was narrower than that

of match-ups. In addition, the BG algorithm showed no

frequency distribution when the POC concentration was

higher than 800 mg/m3, indicating that the POC concentration

estimated by the BG algorithm reached saturation.

Statistical analysis was carried out, and the scatter plot and

statistics metrics are shown in Figure 6 and Table 1, respectively.
frontiersin.org
FIGURE 2

Histogram of POC concentration distribution for algorithm
formulation match-ups and algorithm validation match-ups.
FIGURE 3

The distribution of OC-CCI dominant water classes corresponds
to the match-ups. The height of the bulges on both sides
indicates the density of the match-ups, and the black dashed
lines represent the quartile lines.
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It can be seen that both a-POC and BG algorithms show

significant correlations, with R2 of 0.77 and 0.75 for a-POC

and BG algorithms on the log10 scale, respectively. The a-POC

algorithm had a smaller error than the BG algorithm, with a Bias

value of -3.29 mg/m3. The linear fitting line on the log10 scale

was closer to the 1:1 line, with a slope value of 0.91. However, the

BG algorithm significantly underestimated the POC

concentrations in the high-value range, with a Bias value of

-49.06 mg/m3. The MAPD values of the two algorithms were

similar, and the RMSD were 128.49 and 184.48 mg/m3 for a-
Frontiers in Marine Science 06
POC and BG algorithms, respectively. These results indicated

that the a-POC algorithm was more suitable than the BG

algorithm for retrieving POC concentrations, especially in

regions with high POC concentrations (i.e. , highly

productive regions).
3.2 Algorithm applied to OC-CCI data

3.2.1 Algorithm performance per OC-CCI
water class

The performance of the a-POC algorithm is further

evaluated to respond to the regional optimization of user

groups and the calculation of per-pixel uncertainty. Figure 7

summarizes the statistical metrics of a-POC and BG algorithms

per OC-CCI water class. Water classes 1-6 represent cleaner

open oceans, and 12-14 represent coastal waters with high

scattering characteristics. The algorithms performed differently

in different water classes. When water classes were less than 13,

both algorithms showed lower error levels, indicating that the

algorithms perform similarly in open oceans and slightly turbid

waters. The a-POC algorithm performed better in classes 13 and

14 (i.e., high turbid waters), especially in class 14, which

represents the most optically complex waters. In contrast, the

BG algorithm heavily underestimated POC concentrations in

these classes.

3.2.2 Algorithm applied in specific regions
In order to evaluate the applicability of the a-POC algorithm

in waters with different turbidity degrees, in situ match-up
FIGURE 4

The relationship between the POC concentration and a(490) for
algorithm formulation match-ups (N=2387) from the OC-CCI
v5.0 product suite.
BA

FIGURE 5

The frequency distribution of POC concentrations for algorithm validation match-ups and algorithm retrievals: (A) a-POC algorithm and (B) BG
algorithm.
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datasets of the Atlantic Meridional Transect 26 (AMT26),

CLIVEC-CV6, and the Chesapeake Bay were selected for

algorithm validation. The AMT26 dataset was collected in

September-October 2016 from the Atlantic oligotrophic gyre

regions, with several match-ups (N=38) and POC

concentrations ranging from 15.79 to 43.88 mg/m3

(Figures 8A, B). The CLIVEC-CV6 dataset was collected in
Frontiers in Marine Science 07
June 2012 from the eastern coastal waters of the United States

with typical coastal water characteristics (N=77), and the POC

concentrations ranged from 109.83-635.25 mg/m3 (Figures 8D,

E). The Chesapeake Bay belongs to highly turbid waters, and the

Chesapeake Bay dataset was from the discover_aq_2011 cruise

in July 2011, N=19, and the POC concentrations range was

1442.13-4389.28 mg/m3 (Figures 8G, H).
BA

FIGURE 6

Correlation between in situ POC concentrations and the concentrations retrieved by (A) a-POC algorithm and (B) BG algorithm on the log10
scale. The solid black line represents the 1: 1 line, and the red dashed line represents the corresponding linear regression line for each algorithm.
The optimal linear regression equation (y) and the square of the determining coefficient (R2) on the log10 scale are also presented.
B CA

FIGURE 7

The statistical parameters of the algorithms per OC-CCI water class based on algorithm validation match-ups. (A) MAPD, (B) RMSD, and (C) Bias.
TABLE 1 Summary of statistical metrics characterizing the differences in POC concentration between the algorithm retrievals and values of
algorithm validation match-ups.

Algorithm R S I MAPD (%) RMSD (mg/m3) Bias (mg/m3)

a-POC algorithm 0.85 0.85 20.74 25.11 128.49 -3.29

BG algorithm 0.73 0.31 62.64 24.99 184.48 -49.06
frontiersin.org

https://doi.org/10.3389/fmars.2022.1048893
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2022.1048893
The geographic and POC concentration distributions for

match-ups of the AMT26, CLIVEC-CV6, and Chesapeake Bay

datasets are shown in Figure 8. The background maps in panels

(Figures 8A, D, G) and (Figures 8B, E, H) show POC

concentrations derived from monthly average composite OC-

CCI data associated with corresponding samples using a-POC

and BG algorithms, respectively, and the percentage differences

between the two algorithms are shown in panels (Figures 8C, F,

I). Table 2 summarizes the statistical parameters between the

POC concentrations retrieved by algorithms during the 1-day

time window and the values of match-ups.
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For the AMT26 dataset, both algorithms reproduced the

POC concentrations of match-ups and achieved similar results.

The a-POC algorithm had lower MAPD and Bias values, but

RMSD values were slightly higher than those of the BG

algor i thm due to the overes t imat ion of the POC

concentrations of individual match-ups. It can be seen from

the background maps of Figure 8 that the POC concentrations

retrieved by the algorithms had high consistency in the

oligotrophic gyre regions. For the CLIVEC-CV6 dataset, the

statistical metrics of the a-POC algorithm outperformed those of

the BG algorithm. In addition, both algorithms underestimated
A B

D E F

G IH

C

FIGURE 8

POC concentration distributions, including match-ups associated with (A–C) the Atlantic Meridional Transect 26 (AMT26), (D–F) the CLIVEC-CV6, and
(G–I) the Chesapeake Bay datasets. The colors of scattered points correspond to the bottom color bar showing the POC concentrations of the match-
ups. The background maps in (A, B) show the POC concentrations derived from a monthly average composite OC-CCI data in October 2016 using a-
POC and BG algorithms, respectively. The patterns of panels (D, E) are similar to those of panels (A, B); background maps were derived in June 2012.
The patterns of panels (G, H) are similar to those of panels (A, B); background maps were derived in July 2011. The percentage difference between the
two algorithms is highlighted in (C, F, I), and the color pattern corresponds to the bottom color bar displaying the difference values. The percentage
difference is calculated as 100×(POCa−POC−POCBG)/POCBG.
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POC concentrations, with Bias values of -67.76 and -128.49 mg/

m3, respectively. This result is also evidenced by the monthly

average products in Figure 8, where the two algorithms had a

significant percentage difference in the regions close to the shore.

Compared to AMT26 and CLIVEC-CV6, these two

algorithms produced considerable differences between

retrieved POC concentrations and the values of match-ups in

the Chesapeake Bay. The a-POC algorithm showed significant

advantages, with RMSD and Bias values of 1016.92 and -49.58

mg/m3, respectively. However, the RMSD and Bias values for the

BG algorithm were 2135.84 and -2029.41mg/m3, respectively,

and POC concentrations did not exceed 800mg/m3, severely

underestimated POC concentrations. Figure 8H shows that the

BG algorithm saturated POC concentrations in the Chesapeake

Bay, making the two algorithms produce a significant percentage

difference of more than 100%.

Overall, the a-POC algorithm produced satisfactory results

in open oceans, coastal waters, and highly turbid waters, with

MAPD values of 22.04, 33.06, and 26.11%, respectively. It

outperformed the BG algorithm, especially in coastal waters

and highly turbid waters.

3.2.3 Algorithm applied in global surface ocean
We further assessed the performance of the a-POC

algorithm at the macroscopic scale and compared it with the

BG algorithm. Panels (A) and (B) in Figure 9 show the global

POC concentration distribution generated by applying a-POC

and BG algorithms to the OC-CCI monthly average composite

data in March 2020, respectively. Both algorithms produced

similar patterns of concentration change in most open oceans. In

the equatorial Atlantic and Pacific Oceans, seawater is blown

away on both sides of the equator due to the influence of easterly

trade winds (Gill and Adrian, 1982). The divergence of surface

ocean currents causes an upwelling of cold and nutrient-rich

waters, producing productive phytoplankton bloom zones and

leading to higher POC concentrations than in subtropical gyre

regions (Liu and Wang, 2022). At high latitudes, ocean surface

waters are cold with a slight vertical density gradient. The

vertical mixing depth of the water is much greater than the

depth of the euphotic layer (Siegel et al., 2002). Due to vertical
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mixing, there is an abundant supply of nutrients in the South

Ocean, North Atlantic, and North Pacific, resulting in higher

POC concentrations. The a-POC algorithm more precisely

captured the spat ia l character i s t i cs o f high POC

concentrations. In coastal waters, the a-POC algorithm

produced higher POC concentrations than the BG algorithm.

As shown in Figure 9C, the POC concentrations retrieved by

the two algorithms were extracted along a transect through the

Atlantic Ocean at 20°W, and the POC concentration change was

generated with latitude as the independent variable. The trend

was consistent for both algorithms, with retrieved POC

concentrations ranging from 10 to 1000 mg/m3. The a-POC

algorithm retrieved lower POC concentrations than the BG

algorithm in the South Atlantic, consistent with the validation

results of the AMT26 dataset. In the northwestern coastal region

of Africa at 15-30°N, the a-POC algorithm showed reasonably

higher POC concentrations, which can be demonstrated by the

validation results in the coastal waters of the United States.

Precise POC concentration mapping in the global surface

ocean can be used to estimate total pools of POC in the mixed

layer, providing an insight into the global ocean carbon cycle.

After considering seasonal and regional variations and assuming

homogeneity of the mixed layer, the two algorithms were applied

to all monthly average composite OC-CCI data in 2020.

Afterward, the obtained POC concentrations were integrated

over the mixed-layer depth. The mixed-layer depth data were

derived from MIMOC (https://www.pmel.noaa.gov/mimoc/)

(Schmidtko et al., 2013). The average total pools of POC

estimated by a-POC and BG algorithms were 1.00 Pg C and

0.87 Pg C, respectively. The above evaluations indicated that the

a-POC algorithm was robust in both open oceans and coastal

waters compared with the BG algorithm. Thus, the total pool

estimated by the a-POC algorithm was more credible.
3.3 Mapped uncertainties

Based on the performance of algorithms per OC-CCI water

class in Section 3.2.1, the uncertainties of algorithms in the

global surface ocean were mapped without in situ dataset
TABLE 2 The summary of statistical metrics characterizing the differences in POC concentration between algorithm retrievals and match-ups in
specific regions.

Dataset Algorithm MAPD (%) RMSD (mg/m3) Bias (mg/m3)

AMT26
(N=38)

a-POC algorithm 22.04 7.42 4.23

BG algorithm 24.33 6.92 4.86

CLIVEC-CV6
(N=77)

a-POC algorithm 33.06 119.63 -67.76

BG algorithm 51.01 155.49 -128.49

Chesapeake Bay
(N=19)

a-POC algorithm 26.11 1016.92 -49.58

BG algorithm 74.58 2135.84 -2029.41
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distribution. The uncertainty of each pixel is obtained by

calculating a weighted average based on each water class

percent membership and then multiplying it with the

statistical parameters of the corresponding water class.

Supplementary Figure 1 shows the distribution of the OC-CCI

dominant water class in the global ocean in March 2020. From

the open ocean to the mainland, there was an increasing trend of

water classes, with classes 13 and 14 concentrated along the

coasts of the northern hemisphere.
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The calculation procedure for uncertainties was applied to

the data in Figure 9 to obtain the statistical metric distribution of

algorithms (Figure 10). In general, the trend of statistical metric

distribution was consistent with the match-up validation results.

Both algorithms performed similarly in open oceans (i.e., lower

water classes), with lower MAPD, RMSD, and Bias values for the

a-POC algorithm. As expected, the two algorithms showed

significant differences in the southern Atlantic, the Baltic Sea,

and the Yellow and Bohai Seas in China, where corresponding
B

C

A

FIGURE 9

POC concentration distribution retrieved by (A) the a-POC algorithm and (B) the BG algorithm applied to monthly average composite OC-CCI
data in March 2020, and (C) the POC concentration distribution along the 20°W transect through the Atlantic Ocean.
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OC-CCI water classes were high. In these regions, the a-POC

algorithm slightly overestimated POC concentrations, while the

BG algorithm underestimated POC concentrations with poor

statistical metrics.
4 Discussion

4.1 Algorithm applied to OLCI data in
Bohai Sea of China

The a-POC algorithm showed significant advantages over

BG algorithms when applied to OC-CCI v5.0 data, and user

groups may want to apply a-POC algorithms to specific ocean

color sensors. To evaluate the universality of the a-POC

algorithm to specific ocean color sensors and the sensitivity to

different atmospheric correction algorithms, the a-POC and BG

algorithms were applied OLCI data associated with the Bohai Sea

dataset (Figure 11). The POC concentrations in the Bohai Sea

dataset ranged from 338.0 to 1380.0 mg/m3. The OLCI data were

pre-processed by the BAC algorithm (Moore et al., 1999) and the

POLYMER algorithm (Steinmetz et al., 2011). After the OLCI

data pre-processing and match-up procedure, 23 match-ups

were obtained for the BAC algorithm and 28 for the
Frontiers in Marine Science 11
POLYMER algorithm, and the in situ sampling dates were

June 14, September 19, and 23, 2017. As expected, the BAC

algorithm has stricter quality flags than the POLYMER

algorithm (Mograne et al., 2019; Renosh et al., 2020). The

BAC algorithm reduced the match-ups by 5 due to the

influence of the atmospheric correction failure flag. Figure 12

shows the scatter plots of in situ Rrs(l) versus OLCI-derived Rrs

(l) at 443 nm, 490 nm, 560 nm, and 665 nm using the

atmospheric correction algorithms. These bands were used by

the QAA_V5 and BG algorithms to obtain the absorption

coefficients and POC concentrations, respectively. The two

atmospheric correction algorithms differed significantly at 443

nm. The Rrs(443) obtained by the BAC algorithm were

significantly underestimated and discrete, while those obtained

by the POLYMER algorithm were more consistent with the in

situ Rrs(443). In other bands, both algorithms had similar

performances at other bands.

Figure 11 found that the scatters were closer to the color of

the background maps generated by the a-POC algorithm, i.e., the

POC concentrations retrieved by the a-POC algorithm were

closer to that of the match-ups. Furthermore, different

atmospheric correction algorithms significantly impact the

estimation of POC concentrations, which was especially true

for the BG algorithm (Figures 11E–G). When the BG algorithm
A D

E

C F

B

FIGURE 10

Distribution of statistical metrics MAPD, RMSD, and Bias associated with OC-CCI water class when (A–C) a-POC algorithm and (D–F) BG
algorithm are applied to the monthly average OC-CCI data in March 2020.
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was applied to OLCI data pre-processed by the BAC algorithm, a

large amount of noise was generated, and the estimated POC

concentrations were seriously inconsistent with the match-ups.

Because the BG algorithm relies too much on the accuracy of Rrs

(443), the strong absorption of CDOM and debris at 443 nm
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prevents the accurate identification of aerosol models from

LUTs by the BAC algorithm, leading to a significant

underestimation of Rrs(443) (Li et al., 2022). Therefore, an

accurate atmospheric correction is essential for the BG

algorithm. In contrast, the atmospheric correction has less
A

B D

E F G

IH J

K L M

C

FIGURE 11

Distribution of POC associated with the Bohai Sea match-ups dataset. (A) The geographical location of the Bohai Sea. The red box corresponds
to the range of the panels below. The color of scatters and background map in (B–M) corresponds to the bottom color bar representing the
POC concentration. The background maps in (B–G) are POC concentrations retrieved by the (B–D) a-POC algorithm and (E–G) BG algorithm.
These data are from OLCI data pre-processed by the BAC atmospheric correction algorithm on June 14, September 19, and 23, 2017. Panels
(H–M) used the same date and color patterns as panels (B–G), OLCI data were pre-processed by the POLYMER atmospheric correction
algorithm, and POC concentrations were retrieved by the (H–J) a-POC algorithm and (K–M) BG algorithm.
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impact on the a-POC algorithm because the QAA algorithm

weakens the dominance of Rrs(443) in the calculation of

absorption coefficients (Lee et al., 2002; Lee et al., 2009). For

the OLCI data pre-processed by the POLYMER algorithm, the

quality of the POC concentration distribution maps generated

by both algorithms was significantly improved. Compared with

the match-ups, the BG algorithm significantly underestimated

POC concentrations (Figures 11H–M).

The statistical parameters between POC algorithms and

match-ups are summarized in Table 3. Consistent with the

image analysis, the POC concentrations were all overestimated

to varying degrees when the POC algorithms were applied to the

OLCI data pre-processed by the BAC algorithm. The Bias values

for the a-POC and BG algorithms were 16.80 mg/m3 and

741.83mg/m3, respectively. In contrast, when the POC

algorithms were applied to the OLCI data pre-processed by

the POLYMER algorithm, both algorithms underestimated the

POC concentrations, and Bias values were -89.04 mg/m3 and

-297.83mg/m3, respectively. After applying the POC algorithms

to the OLCI data pre-processed by the BAC and POLYMER
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algorithms, the RMSD value for the BG algorithm plummeted

from 396.94 mg/m3 to 66.26 mg/m3. This result was contrary to

the trend of MAPD because the noise generated by the BAC

algorithm partially offsets the underestimation of POC

concentrations retrieved by the BG algorithm. In comparison,

the RMSD value of the a-POC algorithm decreased from 40.08

mg/m3 to 35.97 mg/m3, indicating that the a-POC algorithm was

less sensitive to atmospheric correction than the BG algorithm.

As expected, the BG algorithm was established solely based on in

situmeasurement data, making it a typical “in-water” algorithm.

The accuracy of the BG algorithm is limited by the accuracy of

the atmospheric correction algorithm (Hu et al., 2012; Le

et al., 2018).

Because the Bohai Sea is surrounded by land on three sides,

the water optical environment is more complex, and the water

class is dominated by classes 13 and 14 (Supplementary

Figure 1). It strongly demonstrates the results of Section 3.2

that the a-POC algorithm was more suitable for retrieving the

POC concentrations in high turbid waters than the

BG algorithm.
B

C D

A

FIGURE 12

Scatter plots of OLCI remote sensing reflectance (Rrs(l)) derived by the BAC algorithm and POLYMER algorithm with match-up Rrs(l) at (A) 443
nm, (B) 490 nm, (C) 560 nm, and (D) 665 nm. The solid black line represents the 1:1 line.
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4.2 Influence of the IOPs on the POC
concentration retrieval

The complexity of POC composition indicates that accurate

retrieval of POC remains a great challenge. For example, changes

in the species composition of the phytoplankton community or

the contribution of phytoplankton and non-phytoplankton

particles to the total POC can change the optical properties of

the seawater (Grob et al., 2007; Ras et al., 2008). In addition,

some non-POC components, such as air bubbles and mineral

particles, can also cause changes in the optical environment of

the water column, affecting the accurate acquisition of scattering

of organic particulate matter (Tassan and Ferrari, 1995; Stramski

and Tegowski, 2001). These variations cause changes in the

relationship between bbp and POC, introducing uncertainty in

estimating the POC concentration of bbp. Based on an in situ

measurement dataset, Gardner et al., 2006 found a robust

relationship between cp and POC. However, satellite remote

sensing retrieval of cp is difficult because cp is the sum of

particulate absorption and total particulate scattering. Total

particle scattering is dominated by forward scattering, to

which Rrs is theoretically insensitive (Evers-King et al., 2017;

Le et al., 2018). Although machine-learning methods are robust

in retrieval studies of global ocean surface POC concentrations

(Liu et al., 2021), a better understanding of the relationship

between particle properties and IOPs can improve POC

algorithms by providing insight into the composition of the

total POC pool (Evers-King et al., 2017).

When bbp and cp in IOPs were verified and limited, scholars

started focusing on absorption coefficients. Stramski et al., 2001

have demonstrated that organic particles contribute more to the

absorption coefficient than the backscattering coefficient, especially

for the phytoplankton community, which is the main contribution

to the optical variability in open oceans. For high productivity

waters, Woźniak et al. (2010) indicated that the variation range of

POC-specific particulate absorption coefficients spans one order of

magnitude, while the variation of particulate scattering spans two

orders of magnitude, suggesting that the POC-specific absorption

coefficients are more constrained.

The successful application of the BG algorithm in open

oceans demonstrates that the absorption coefficient is a
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meaningful optical proxy for the POC. The variation of Rrs

(443) and Rrs(560) used by the BG algorithm is mainly driven by

the variation of the absorption coefficient (Stramski et al., 2008).

Unlike in open oceans, the mineral particles and CDOM in

coastal waters mainly contribute to optical properties. The

absorption at the short blue bands (i.e., 412 nm and 443 nm)

is strongly influenced by aCDOM, which is one of the reasons for

the poor performance of the BG algorithm in these waters (Le

et al., 2018). In addition, the size and scope of in situ datasets

used to build the empirical algorithm also impact the accuracy of

the BG algorithm (Siegel et al., 2005; Evers-King et al., 2017).

In this study, a(490) was selected as a proxy for POC

concentration. First, all types of particles (mineral-dominated,

organic-dominated, and mixed) have stronger absorption in the

longer blue and shorter green wavelengths range (Allison et al.,

2010; Woźniak et al., 2010), especially around 500 nm (see

Figure 4 in Woźniak et al., 2010). We tried to use both a(490)

and a(510) as proxies for POC and establish the relationship.

Compared with a(490), the variation of a(510) was more

constrained, thus amplifying the error when retrieving the

POC concentration despite the similar fitting performance.

Second, selecting a(490) as a proxy can reduce the effects of

absorption by CDOM, especially in coastal waters (Le et al.,

2017; Le et al., 2018). The direct use of a (490) obtained from the

QAA algorithm reduces the error introduced by using Rrs in a

single band as a proxy for the absorption coefficient. Despite the

extensive spatial and larger concentration distribution range of

the in situ dataset used to develop the a-POC algorithm, the

POC concentrations were slightly overestimated in open oceans

while underestimated in highly productive waters. Errors may

occur as all the empirical algorithms were established based on

certain assumptions (Hu et al., 2012). The a-POC algorithm

assumes that aCDOM and absorption of nonalgal inorganic

particles in seawater are covariant with the absorption of

organic particulate matter. As a result, the a-POC algorithm

misestimates the contribution of non-POC sources to the

absorption coefficient. Due to the absence of optical property

data in the in situ POC dataset, the a-POC algorithm is not an

“in-water” algorithm. It cannot show the actual physical

relationship between the absorption coefficient and the POC

concentration. In addition, the in situ dataset used in this study
TABLE 3 Statistical metrics between POC concentrations in the Bohai Sea match-up dataset and algorithm retrievals applied to OLCI data pre-
processed by different atmospheric correction algorithms.

Atmospheric correction Count Algorithm MAPD (%) RMSD (mg/m3) Bias (mg/m3)

BAC 23
a-POC algorithm 29.92 40.08 16.80

BG algorithm 33.85 396.94 741.83

POLYMER 28
a-POC algorithm 19.13 35.97 -89.04

BG algorithm 40.77 66.26 -297.80
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was derived from multiple cruises over a long period. The

measurement method of POC concentration was difficult to

standardize, creating uncertainty in the development of the a-

POC algorithm. However, compared to “in-water” algorithms,

the a-POC algorithm considers the partial errors introduced by

atmospheric correction and the QAA algorithm, which helps the

end-user to use the algorithm directly and to obtain

higher accuracy.
5 Conclusions

In this study, a large in situ POC dataset was merged, which

spans an extensive time and space and accurately captures the

changing characteristics of seawater optical properties. The a-

POC algorithm was formulated based on the in situ dataset.

Compared with the BG algorithm, the application of the a-POC

algorithm to the OC-CCI data improved the accuracy of POC

concentration retrieval, especially in medium and high

productivity waters. This improvement can be attributed to

the robust relationship between the absorption coefficient at

490 nm from the OC-CCI v5.0 product suite and POC. As a

result, the long-time series variation of POC concentrations in

the global surface ocean was supported, and the estimation of

total pools of POC in the mixed layer was promoted.

Furthermore, the a-POC algorithm was also suitable for OLCI

data, producing reliable results in the Bohai Sea of China. The a-

POC algorithm was less sensitive to the influence of atmospheric

correction algorithms, which was associated with low

dependence on a single band when calculating the absorption

coefficient using the QAA method. The a-POC algorithm was

established based on the in situ POC dataset and the absorption

coefficient of remote sensing data, which considered the

uncertainty in the generation of remote sensing data.

Therefore, when applying the a-POC algorithm to the original

remote sensing data processed by different methods, the

parameters of the algorithm need to be adjusted to reduce the

error. In future field surveys, both the optical properties of

seawater and biochemical parameters should be included in

the measurement task, facilitating the verification of the

genuine physical relationship between the absorption

coefficient and the POC.
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