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boosting model
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Introduction: In underwater acoustic applications, the three-dimensional

sound speed distribution has a significant impact on signal propagation.

However, the traditional sound speed profile (SSP) measurement method

requires a lot of manpower and time, and it is difficult to popularize. Satellite

remote sensing can collect information on a large ocean surface area, from

which the underwater information can be derived.

Method: In this paper, we propose a method for reconstructing the SSP based

on an extensible end-to-end tree boosting (XGBoost) model. Combined with

satellite remote sensing data and Argo profile data, it extracts the characteristic

matrix of the SSP and analyzes the contribution rate of each order matrix to

reduce the introduction of noise. The model inverts the SSP above 1000 m in

the South China Sea by using the root mean square error (RMSE) as the

precision evaluation index.

Result: The results showed that the XGBoost model could better reconstruct

the SSP above 1000 m, with a RMSE of 1.75 m/s. Compared with the single

empirical orthogonal function regression (sEOF-r) model of the linear

regression method, the RMSE of the XGBoost model was reduced by 0.59

m/s.

Discussion: For this model, the RMSE of the inversion results was smaller, the

robustness was better, and the regression performance was superior to that of

the sEOF-r model at different depths. This study provided an efficient tree

boosting model for SSP reconstruction, which could reliably and

instantaneously monitor the 3D sound speed distribution.
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1 Introduction

Underwater sound is an important carrier of signal

propagation in underwater wireless sensor networks.

Compared with radio or optical signals, acoustic signals have

less attenuation and a better ability to travel over long distances

(Erol-Kantarci et al., 2011; Li et al., 2022). Therefore, underwater

sound plays an important role in underwater communication,

disaster prediction, underwater rescue, sonar ranging,

positioning, and other fields (Isik and Akan, 2009; Teymorian

et al., 2009; Carroll et al., 2014; Liu et al., 2016; Li et al., 2022; Li

et al., 2022). The sound speed profile (SSP) refers to a sets of

sound speed values at different depths and at specific latitude

and longitude coordinates, which represents a column vector.

The traditional methods employed to obtain the SSP consist of

direct measurements made using a sound velocity profiler (SVP)

or indirect measurements using a conductivity-temperature-

depth (CTD) system. However, both SVP and CTD systems

usually need to be transported to a designated location by a ship.

This process is costly in terms of manpower and time, and the

three-dimensional sound speed distribution cannot be

quickly obtained.

The development of satellite remote sensing technology

allows the continuous observation of sea areas and collection

of long-term and large-scale, high-resolution remote sensing

data. However, most of the data concerns the ocean surface, and

it is difficult to directly monitor ocean depths and investigate

important activities occurring in these deeper regions.

Nevertheless, most of the deep ocean activities are still related

to surface information, and these dynamic phenomena can be

analyzed through surface features (Klemas and Yan, 2014). For

any given day, the vertical profiles of temperature and salinity

from the sea surface to the seafloor can be calculated from

regression coefficients (Fox et al., 2002). Then the concept of

basis function was proposed to reduce the dimension of the

inversion process (Kundu et al., 1975; Tolstoy et al., 1991; Cheng

et al., 2022).Carnes proved that there was a functional

relationship between remote sensing parameters and empirical

orthogonal functions (EOF), and successfully predicted

temperature profiles in the northwestern Pacific and

northwestern Atlantic Oceans based on this method, which is

a single empirical orthogonal function regression(sEOF-r)

(Carnes et al., 1990; Carnes et al., 1994). Previous studies had

established ocean parameters under a linear framework, but the

ocean is a complex nonlinear system, it is difficult to guarantee

accuracy in the analysis when describing the ocean parameters

with a linear system.

In recent years, machine learning algorithms have been

greatly improved (Li et al., 2019; Chen et al., 2020). Bianco

et al. provided a detailed overview of the application of machine

learning in acoustics and showed that these techniques are very

promising in the estimation of ocean parameters, such as
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seafloor properties, distance, and SSP inversion (Bianco et al.,

2019). Among the commonly used machine learning methods

with high precision, such as support vector machines, random

forests, generalized regression neural networks, ensemble

algorithms, etc. The deep learning methods, represented by the

recurrent neural network and the convolutional neural network,

have achieved good results in the SSP inversion through their

powerful model structure. By combining satellite remote sensing

data and machine learning, Su et al. and Li et al. used classical

machine learning methods and support vector regression to

predict global ocean temperature profiles above 1000 m (Su

et al., 2015; Li et al., 2017). Li et al. successfully inverted the SSP

in the South China Sea through a neural network based on a self-

organizing map (Li et al., 2021).

In the present study, the South China Sea was selected as the

inversion area. The region is affected by the monsoon season and

the complex terrain of the seabed, frequent marine activities,

eddies, internal solitary waves and other dynamics, therefore it is

difficult to invert the profile. Due to the influence of various

factors, the South China Sea has obvious regional and seasonal

characteristics, and especially in the summer, the strong

sunshine forms a large negative temperature gradient. The aim

of this study was to propose a method for reconstructing the SSP

based on an extensible end-to-end tree boosting (XGBoost)

model (Chen and Guestrin, 2016). The method was applied to

invert the SSP of the South China Sea (above 1000 meters) in

different seasons in 2018. In addition, the accuracy of the model

was estimated and its robustness and stability were evaluated

with respect to seasons.
2 Materials and methods

2.1 EOF dimensionality reduction

The SSP can be calculated using the sound speed empirical

formula, combined with water temperature and salinity. The

temperature profile can be inverted by sea surface parameters,

and it has a relatively stable temperature–salinity relationship

with the salinity profile. Therefore, the SSP can be obtained by

inversion based on the sea surface parameters. On this basis,

LeBlanc proposed that the EOF was the minimum basis function

for inverting the SSP, which can be expressed as (Leblanc and

Middleton, 1980):

C zð Þ = C0 zð Þ +o
∞

s=1
asks zð Þ   (1)

Where C(z) is a column vector, representing the sound speed

distribution at a particular latitude and longitude, and the

elements of the vector represent the sound speed values at

different depths. C0(z) is the long-term, stable background

profile of the ocean, usually calculated as an average of many
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years, KS(z) is the EOF, and as is the EOF’s projection coefficient,

its subscript s is the modal number of the EOF. Generally, the

higher the order, the greater the background noise. Considering

the reconstruction accuracy and noise suppression combined

with the previous research on profile reconstruction, the fifth-

order EOF mode is here selected to reconstruct the SSP. The

EOF is the most commonly used perturbation shape function in

SSP inversion and is the main mode capable of identifying ocean

perturbations (Pauthenet et al., 2017). The EOF modes can be

obtained by extracting the principal components of the SSP

sample matrix. The SSP anomaly matrix Y is an n×m matrix,

where n refers to n discrete depths per section andm refers to the

total number of sections, and it is calculated by subtracting the

background profile from each SSP sample matrix. The EOF

modes of various of orders can be derived from principal

component analysis as follows (Kundu et al., 1975):

X = Y� YT   (2)

X � k = k � l   (3)

Where X is the covariance matrix of Y The eigenvalue is l. k
is the modal function of each order of EOF. In this study, the

fifth-order EOF modal function is used to invert the SSP. In

order to adapt the model to noise generated by background

profile, a sequence of all 1s is artificially added before the fifth-

order EOF mode as the 0-order mode. By regressing k and Y the

projection coefficient (a0,a1,a2,a3,a4,a5) Is obtained and the

SSP can be expressed as:

C zð Þ = C0 zð Þ + a0k0 zð Þ +  a1k1 zð Þ + a2k2 zð Þ + a3k3 zð Þ
+ a4k4 zð Þ + a5k5 zð Þ     (4)
2.2 Profile estimation based on remote
sensing data

2.2.1 Inversion based on sEOF-r
With the development of remote sensing technology, a large

amount of data has been continuously accumulated, providing a

stable basis for the statistics of linear regression. Based on the

regression analysis of a large number of samples, the observed

sea surface height anomaly (SSHA), sea surface temperature

anomaly (SSTA), and EOF projection coefficient A can be

approximated as a linear relationship. Using this approximate

linear relationship for the linear fitting (Chen et al., 2018), the

following relationship is obtained:

ai tð Þ = Ai,0 + Ai,1 � SSHA tð Þ + Ai,2 � SSTA tð Þ + Ai,3 � SSHA tð Þ � SSTA tð Þ
, i = 0, 1, 2, 3, 4, 5  

(5)

where Ai is the coefficient obtained by linear fitting and i

represents the EOF order. The SSHA and SSTA of the test
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data are input into Equation (5) to calculate the projection

coefficient Ai ,and then this is substituted into Equation (4) to

invert the SSP. Obviously, the sEOF-r model is obtained by

linear fitting based on a large number of samples. This linear

relationship is a statistical result, and samples with large

differences between individual and statistical characteristics are

often difficult to handle (Stammer, 1997; Wunsch, 1997).
2.2.2 Inversion based on the XGBoost model
Considering that samples with large differences between

individual and statistical characteristics will cause large errors

and that the ocean is a complex dynamic system. It is believed

that the accuracy of inversion can be improved by breaking the

constraints of linear inversion. To this end, we introduce a

scalable end-to-end tree boosting model called XGBoost. The

objective function of this model is written as a traditional loss

function plus the model complexity, as follows:

Obj =o
m

i=1
l yi, byið Þ +o

K

i=1
W fkð Þ   (6)

Where i represents the i-th sample, m represents the total

amount of data imported into the k-th tree, and K represents all

the trees established by the model. yi is the true value and ŷi is the

predicted value. After calculation, the formula can be

transformed into:

Obj =o
m

i=1
l yti , ŷ

t−1ð Þ
i

� �
+ ft xið Þgi +

1
2

ft xið Þð Þ2hi
� �

+o
t−1

i=1
W fkð Þ +Wð

=o
m

i=1
f t xið Þgi +

1
2

f t xið Þð Þ2hi
� �

+W f tð Þ    

(7)

where t represents the t-th iteration, gi and hi are the first and

second derivatives of ŷ(t−1)i on l(yti , ŷ
(t−1)
i ), respectively. XGBoost

is a natural overfitting model, so a regular term needs to be

introduced to penalize it. In this study, the regular terms L1 and

L2 are introduced in the following equation:

W ftð Þ = ΥT + 1
2 a  o

T

j=1
wj

�� �� +  
1
2
l  o

T

j=1
w2

j   (8)

where T represents the total number of leaf nodes, j is the

index of each leaf node, wj is the sample weight on the leaf node,

and Y is a certain tree.

Then, q(xi) is used to represent the leaf node where sample xi
is located, and wq(xi)wj to represent the score obtained by the

sample falling to the q(xi)-th leaf node on the k-th tree, which

results in the following equation:

f t xið Þ = wq xið Þ     (9)

Equations (8) and (9) are substituted into equation (7) to

obtain:
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Obj =o
m

i=1
wq xið Þgi +

1
2
w2

q xið Þhi

� �
+ ΥT +

1
2
a  o

T

j=1
wj

�� ��
+  

1
2
l  o

T

j=1
w2

j     (10)

The wj on each leaf is the same. The difference is the gi
corresponding to each sample, therefore all samples have to be

assigned to any node of the T leaf node clock. Consequently, the set

of samples contained in the leaf with index j is defined

as Ij. Given that Gj = o
i∈Ij

gi, Hj = o
i∈Ij

hi , equation (10) could be

transformed into:

Obj =o
T

j=1

wj � o
i∈Ij

gi

 !
+ 1

2o
T

j=1
(w2

j � o
i∈Ij

hi) + ΥT +
1
2
a  o

T

j=1
wj

�� �� +  
1
2
l  o

T

j=1
w2

j  

             

=  o
T

j=1
wjGj +

1
2
w2

j Hj + l + a
� �� �

+ ΥT

(11)

Given that F*(wj) = wjGj +
1
2 w

2
j (Hj + l + a) (12)

the objective function is the minimum when F*(wj) takes

the minimum value. Therefore, the derivative of wj is obtained

from F*(wj), and the extreme value of the objective function is

obtained when the first derivative is equal to 0, which in this case

resulted in:

wj = −
Gj

Hj + l + a
    (13)

Then, equation (13) is substituted into equation (11) to

obtain:

Obj = −
1
2o

T

j=1

G2
j

Hj + l + a
+ ΥT   (14)
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Equation (14) shows that l, a, and Y are the set

hyperparameters, Gj and Hj Are jointly determined by the loss

function and the prediction result under this structure, and T is

only determined by the tree structure. Therefore, the objective

function is a function of T. The effect of the model is directly

related to the total number of leaf nodes and the structure of the

tree, the smaller the objective function, the better the structure of

the tree. This is the advantage of the XGBoost model. Figure 1

shows the XGBoost model training and testing process. Firstly, a

dataset was created including all the data from 2009 to 2018,

such as the remote sensing parameters SSHA and SSTA, LAT

and LON, DATE. LAT and LON are obtained by taking the

cosine of latitude and longitude, and DATE is obtained by

ordering the measurement time of the sample. Secondly,

according to the year, the 2009–2017 data were assigned to the

training data, and the 2018 data were assigned to the test data.

Third, the projection coefficient was used as the model output

label, and the coefficients for the 2009–2017 period and those for

2018 were divided into training labels and test labels,

respectively. Because the XGBoost model was a single-output

regression model, it was necessary to regress the coefficients of

each order separately. Then, the SSP was inverted based on

equation (4), and the accuracy of the model was evaluated by the

root mean square error (RMSE).
3 Data

3.1 Satellite remote sensing data

The study used sea surface height data and sea surface

temperature data from the 2009–2018 period, which were

obtained from the AVISO data center and from daily data

sourced at NOAA data centers in the United States,
FIGURE 1

Flow chart of the XGBoost model training and testing.
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respectively. The time resolution of the above two datasets was 1

day and their spatial resolution was 0.25° × 0.25°.
3.2 Background profile data

The background profile is the constant part in the SSP

reconstruction. The background profile comprised climate

profile data obtained from the World Ocean Atlas (WOA13)

(https://www.nodc.noaa.gov/0C5/woal3/) and it contained the

average values of temperature, salinity, and other parameters.

This study selected the data of WOA13 in the South China Sea,

with a spatial resolution of 1°×1°, were selected.
3.3 Argo data

The Argo data were obtained from the “Global Ocean Argo

Scatter Dataset” (ftp://ftp.argo.org.cn/pub/ARGO/global/). All

the temperature and salinity profiles measured in the South

China Sea from 2009 to 2018 were selected, and the sound speed

empirical formula was used to convert the data into the SSP.

Interpolate the SSP to the same sampling rate as the

background profile.

The areas covering the 12°–20°N and 110°–120°E

coordinates in the South China Sea were selected as the

inversion regions. The study area has a complex topography, a

monsoon climate, and frequent marine activities, such as eddies

and internal solitary waves. The combination of these factors

challenges the validity of the model. Figure 2A shows the

distribution of all samples, amounting to a total of 3881 SSPs.
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Figure 2B shows the divided training and test data. The profiles

from 2009 to 2017 were divided into training data for a total of

3757 items, while the profiles of year 2018 were divided into test

data for a total of 124 items.
3.4 EOF analysis

The EOF can describe the perturbation of most SSP features

and reduce the dimension of the perturbation of a sample

(Carnes et al., 1994). Figure 3 shows the first five modes after

EOF normalization, excluding the zero-order mode. From the

perspective of the EOF amplitude distribution, the perturbation

mainly occurred at a depth of about 100 m, and the perturbation

was close to zero at about 1000 m. The samples in the South

China Sea are sparse, and the larger the depth, the fewer the

samples. Considering the number of samples and EOF

perturbation, the research focuses on SSP inversion within

1000 meters.

Table 1 presents the reconstruction properties of the 1st-to-

5th-order EOFs. The contribution rates of these five EOF modes

to the variance were 70.72%, 16.24%, 4.67%, 3.30%, and 1.57%,

respectively, and the cumulative variance contribution was

96.50%. Although the inversion range was large, there were

still several major EOF modes that could describe most of the

changes, which confirmed the consistency of the EOF in the

South China Sea. The average reconstruction error of the 5th-

order EOF was 0.60 m/s, indicating that the reconstruction of

this EOF was accurate. Therefore, in the subsequent comparison

of the sEOF-r model with the XGBoost model, the SSP was

reconstructed using the 5th-order EOF.
A B

FIGURE 2

(A) Distribution of the Argo samples in the South China Sea. (B) Training, test, and background profiles.
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4 Results and discussion

In this study, the RMSE was used as the precision evaluation

index to assess the effect of the two models in the profile

inversion in the South China Sea. For the SSP, the RMSE of

the XGBoost inversion was 1.75 m/s, and that of the sEOF-r

inversion was 2.34 m/s, and the reconstruction accuracy was

improved by 25%. Figure 4 shows the error comparison between

the sEOF-r and XGBoost models during SSP reconstruction.

Except for individual samples, the inversion accuracy of the

XGBoost model was significantly better than that of the sEOF-r

model. The maximum and average SSP inversion errors

produced in the sEOF-r model were 5.02 and 2.21 m/s,

respectively, while those produced in the XGBoost model were

3.92 and 1.66 m/s, also respectively. In addition, most of the

inversion errors of the XGBoost model were below 1.70 m/s, and

their total variance was 0.33 m/s, which was much lower than the

value of 0.62 m/s measured in the sEOF-r model. The qualities of

robustness and stability were better in the XGBoost than in the

sEOF-r model. The latter was obtained by linear fitting based on

a large number of samples. This linear relationship represented a

statistical result, and it was difficult to deal with samples with

large differences between individual and statistical

characteristics (Stammer, 1997; Wunsch, 1997). Therefore, the
Frontiers in Marine Science 06
ensemble XGBoost learning algorithm was introduced to

eliminate the constraints of linear inversion. In this algorithm,

latitude, longitude parameters and time parameters of

measuring were introduced to improve the inversion accuracy

Especially in samples with large errors, the effect was significant.

For example, the maximum error of the XGBoost model

inversion was 1.10 m/s smaller than that of the sEOF-r model,

and the maximum error of the two models happened to be

generated in the same sample. The results showed that the

XGBoost model was more suitable than the linear sEOF-r

model for defining the complex marine activities of the South

China Sea.

Figure 5 shows the reconstruction error at different depths.

At all depths, the XGBoost model produced smaller errors than

the sEOF-r model. For both models, the maximum error was

generated at depths close to 100 m, with values of 4.78 m/s for

the sEOF-r model and 3.69 m/s for the XGBoost model, which

was consistent with the perturbation range of the leading mode

in Figure 3. Temperature is the main factor influencing the

variation of the speed of sound. Therefore, the sea surface

parameters have great influence on the calculation of sea

surface sound speed, so the error is small. with large seasonal

and diurnal variations in the temperature of the mixed layer, as

well as internal solitary waves and other oceanic dynamic

activities, leading to the concentration of errors at these

depths. When the depth exceeds the mixing layer, the error

becomes smaller because the disturbance of the basis function

becomes smaller.

Figure 6 shows the first SSP of each month in the

reconstructed SSP. The results were consistent with those

reported in Figures 4, 5, showing that XGBoost is closer to the

measurement profile than the sEOF-r model in almost every

sample. This also indicates that the linear model will produce

large errors when dealing with numerous samples, especially if

containing large differences between individual and statistical

characteristics. In the XGBoost model, the simple linear law was

broken, and the resulting error was small. Figure 7 shows a

comparison of the measured and estimated values of the 0-to-

5th-order projection coefficients. Clearly, the ensemble learning

model provided better results, and the linear sEOF-r model

lagged behind in most cases. As the order increased, the error of

the projection coefficient tended to increase. In general, the

higher the order, the greater the background noise. Considering
TABLE 1 Variance contribution rate and error of the 1st-to-5th-order EOFs reconstruction.

EOF Modal Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Variance contribution rate 70.72% 16.24% 4.67% 3.30% 1.57%

Cumulative variance contribution rate 70.72% 86.96% 91.63% 94.93% 96.50%

Reconstruction error (m/s) 1.74 1.33 1.16 0.82 0.60
front
FIGURE 3

The first five modes of normalized EOF.
iersin.org
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the reconstruction accuracy and noise suppression, it is

concluded that choosing the 5th-order EOF inversion is

sufficient to ensure reconstruction accuracy.
5 Conclusions

The present study proposed a method for reconstructing the

SSP based on XGBoost model using SSHA, SSTA, LAT, LON,

and DATE as the input data, and the 0-to-5th-order projection

coefficients as the output data. Both input and output data were
Frontiers in Marine Science 07
then converted into training data for the 2009–2017 period and

test data for 2018 years. The XGBoost model was trained

through the training data, and then the test data was used to

obtain the SSP’s projection coefficient in 2018. Based on this, the

2018 SSP was inverted, and the RMSE was used as the evaluation

metric of the model’s accuracy. The results showed that the

RMSE of the XGBoost model was 1.75 m/s, which was 25% less

than the 2.34 m/s error detected in the sEOF-r model. Compared

with the linear regression model, the XGBoost model showed a

better performance. Specifically, it overcame linear constraints,

more relevant parameters could be introduced for regression
frontiersin.org
FIGURE 5

Reconstruction errors of the sEOF-r and XGBoost models at different depths.
FIGURE 4

Reconstruction error of two models for different samples.
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FIGURE 7

Results of the inversion of the normalized projection coefficients of the first five orders. The straight line indicates perfect inversion. The five
orders, from zero to the fifth, are indicated from left to right.
FIGURE 6

Reconstruction results of the first effective profile for each month.
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(such as longitude and latitude, measurement date, etc.), there

was no analytical restriction, and the relationship between

parameters could be more easily discovered. The experiments

showed that the XGBoost model had a better and more robust

effect than the linear model in the inversion of SSP information.
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