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Dual specificity mitogen-activated protein kinase kinase 1 (MEK1) has been

found to regulate aging through the Ras/Raf/MEK/ERK cascade in terrestrial

animals. However, few reports have focused on MEK1 promoting aging in

marine bivalves. In this study, we aimed to examine the potential roles of MEK1

in the regulation of aging in two Argopecten scallops, the bay scallop A.

irradians and the Peruvian scallop A. purpuratus, which are closely related

but with distinct lifespan. The complete ORFs of AiiMEK1 and ApuMEK1 were

both 1209 bp, encoding 403 identical amino acids but with 41 synonymous

SNPs, which may have contributed to the different activities of MEK1 in two

scallops. Nutrient restriction, one of the most effective non-genetic means of

promoting life span, significantly inhibit the expression of AiiMEK1 and

ApuMEK1. The response in hepatopancreas of A. irradians to nutrient

restriction was more persistently than that in A. purpuratus. RNAi of AiiMEK1

significantly increased the expression of its downstream genes known to favor

longevity, such as FoxO and SOD, while decreased the expression of ERK1/2

and the key genes in the mTOR signaling pathway, as well as the b-GAL activity
(a marker for senescence). These results indicated that AiiMEK1 may play a

negative role in longevity through Ras/Raf/MEK/ERK pathway. Our results may

provide new perspective for understanding of the conservative functions of

MEK1 in regulation of aging in animals and benefit the genetic selection

of scallops.
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1 Introduction
Aging is an inevitable physiological phenomenon of any

organism, and this process is affected by both genetic and

environmental factors, such as temperature, nutrient level, and

exogenous stimuli. Multiple pathways have been revealed to be

involved in the regulation of aging and lifespan in animals,

including the insulin/IGF1-like growth factor signaling pathway,

mTOR signaling pathway, JNK pathway and AMPK pathway.

Ras/Raf/MEK/ERK multi-layered protein kinase cascade that

regulates gene expression by transmitting extracellular signals to

the nucleus, may also participate the regulation of longevity. In

mice, overexpression of miR-31 drives skin aging by enhancing

the Ras/Raf/MEK/ERK signaling, and inhibiting MEK1 kinase

activity of this pathway can protect the skin from radiation-

induced premature aging (Yu et al., 2021). The Ras/Raf/MEK/

ERK pathway is often drawn in a linear manner such that Ras

activates Raf, which in turn activates MEK and subsequently

ERK (Rouquette-Jazdanian et al., 2012). Mitogen-activated

protein kinase kinase1 (MEK1), as a core component of the

conserved Ras/Raf/MEK/ERK cascade, plays a central role in

these events (Degirmenci et al., 2020; Jin et al., 2020; Qu et al.,

2020; Wu et al., 2020). MEK1 is a member of the dual specificity

protein kinase family and its most prominent function is to

mediate the phosphorylation of threonine and tyrosine in ERK1/

2 which in turn regulates various physiological functions

through the phosphorylation level of transcription factors of

the key genes (Roskoski, 2012; Breitenbach et al., 2019). As this

pathway can often be effectively silenced by MEK1 inhibitors,

resulting in profound effects on cell growth and longevity, the

aging-promoting action of MEK1 has attracted much attention

in recent years.

Insulin/IGF-1 signaling (IIS), an evolutionarily conserved

signaling pathway which has been known to play a key role in

determination of animal lifespan for nearly three decades

(Kenyon et al., 1993; Newell Stamper et al., 2018; An et al.,

2019; Zhao et al., 2021), is one of the major pathways mediated

by MEK1 in lifespan regulation. Numerous studies have

demonstrated the importance of the PI3K/AKT/FoxO branch

of IIS, and we have found it played a vital role in extending

lifespan in Argopecten scallops (Wang et al., 2022; Xu et al.,

2022). Previous studies also have identified an equally important

role for Ras/Raf/MEK/ERK signaling cascade in IIS-dependent

lifespan extension (LeRoith et al., 1995; Luckhart and Riehle,

2007). In Drosophila, the use of the MEK1 kinase inhibitors

against the Ras/Raf/MEK/ERK cascade can reduce insulin/IGF-1

(IIS) signaling and extend lifespan (Slack et al., 2015). Caloric

restriction remains the most effective non-genetic means of

increasing life span in different species (Goldberg et al., 2015;

Rojas-Morales et al., 2020) and can downregulate IIS pathway

activity (Fontana et al., 2010). In rat heart, the Ras/Raf/MEK/

ERK branch of IIS pathway are hyper-activated with aging, and
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caloric restriction treatment restored ERK1/2, the only substrate

of MEK1, activation to near-young values (Castello et al., 2011).

In human, under nutritional restriction,the phosphorylation

level and activity of ERK1/2 was also reduced along with a

decrease in insulin signaling (Arcidiacono et al., 2021). FoxO, a

key transcription factor in the insulin/IGF-1 (IIS) signaling

pathway, whose overexpression in model organisms was found

to be associated with longevity (Webb and Brunet, 2013; Tia

et al., 2018), can also be phosphorylated by MEK1 at its serine

residues and result in its ubiquitination and subsequent

proteasomal degradation (Asada et al., 2007; Yang et al.,

2008). In pancreatic cancer cells, the use of MEK1 inhibitor

can help block the phosphorylation of FoxO by ERK, eventually

leading to cycle arrest and apoptosis in cancer cell (Roy et al.,

2010). Conserved mTOR pathway, another important part of

aging regulatory network, is also known to interact with the Raf/

RAS/MEK/ERK cascade (Fan et al., 2020). In T-cells of mice,

MEK1, as an upstream activator, promotes mTORC1 activation

that has been reported to be inversely associated with increased

lifespan (Gorentla et al., 2011; Baar et al., 2016; Ito et al., 2021).

In addition, the role of MEK1 in promoting senescence has been

reported in plants. In Arabidopsis thaliana, studies have shown

that the overexpression of WRKY53 can lead to early senescence,

MEK1 can phosphorylate the WRKY53 transcription factor, but

also bind to the promoter region of the WRKY53 gene to

increase its relative expression (Miao et al., 2007; Benhamman

et al., 2017).

Up to now, most of the studies on lifespan were carried out

in terrestrial model organisms. The ocean was considered as the

origin of life and rich in species resources. Marine animals,

especially marine bivalves with diverse lifestyles and different

lifespans, such as Argopecten scallops, could be more suitable for

aging and longevity research (Ridgway et al., 2011; Lian et al.,

2019). Argopecten scallops are the most cultured scallop species

in the world due to their fast growth rates. The bay scallop (A.

irradians) originated from the Atlantic coasts of United States

and mainly cultured in China, and the Peruvian scallop (A.

purpuratus) originated from the Pacific coasts and mainly

cultured in Chile and Peru (Zhang et al., 2000; González et al.,

2002). Although both belong to the same genus of Argopecten,

they have evolved distinct lifespans after long-term adaptation to

different natural environments. The bay scallops normally have a

shorter lifespan, usually less than 2 years (Ungvari et al., 2013),

and die after spawning in the spring of the following year. The

Peruvian scallops, on the contrary, can live up to 7-9 years and

continue to grow even after sexual maturity (Waller, 1969;

González et al., 2002; Ungvari et al., 2013). Introduction of the

Peruvian scallops into China and hybridization of the two

Argopecten scallops renders us a unique opportunity to explore

the regulatory mechanisms of longevity in bivalves. In this study,

we attempted to examine the roles of MEK1 in the regulation of

aging in these two closely-related bivalves in hope to further our

understanding of the mechanisms underlying animal longevity.
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2 Materials and methods

2.1 Animals

Peruvian scallops and bay scallops were cultured in the open

sea in the Yangma Island area of Yantai, Shandong Province,

China. They were brought into the scallop hatchery of Yantai

Spring-Sea AquaSeed Co., Ltd. located in Laizhou, Yantai,

Shandong Province, China in early spring and conditioned to

mature. They were induced to spawn individually in beakers of 1

L after exposure to air for 30 min. The spawning scallops were

watched carefully to collect eggs and sperm separately. Eggs or

sperm from different individuals of the same species were pooled

together. Then sperm were mixed with eggs of the same species

to obtain fertilized eggs for seed production. Approximately 10

days after fertilization, when approximately 50% of larvae

developed eyespots, they were placed on plastic collectors.

After metamorphosis, the juveniles were moved to a shrimp

pond for nursery for a period of one month and then to the open

sea for another month before they were dispersed into lantern

nets for grow-out. After approximately 9 months of cultivation,

the scallops were collected for subsequent experiments.
2.2 Cloning of the MEK1 gene and
sequence analysis in the two scallop
species

Total RNA of each experimental sample was separately

extracted by the RNA Easy Fast Tissue/Cell Kit (TIANGEN,

China), and genomic DNA was removed using RNase-free

DNase I (TaKaRa, Dalian, China). 1.2% agarose gel

electrophoresis was used to test the RNA integrity and

Nanophotometer spectrophotometer was applied to detect

RNA purity (odds of OD260/280 and OD260/230); Qubit 2.0

Fluorometer was used for accurate quantification of RNA

concentration. Subsequently, the HiScriptIII RT SuperMix for

qPCR (+gDNA wiper) Kit (Vazyme, China) was applied to

reverse transcribe total RNA into cDNA, and store at -20°C

for later PCR The MEK1 sequences of A.irradians and

A.purpuratus from transcriptome data were used to design

specific primers by Primer-Blast (https://www.ncbi.nlm.nih.

gov/tools/primer-last) for cloning the partial cDNA fragment

of these two MEK1 sequences by PCR. PCR reaction systems

were carried out in 25ml-volume reaction contains 12.5ml 2X
PCR Mix (Takala, Dalian, China), 9.5ml ddH2O, 1ml of forward
and reverse primers and 1ml cDNA template. The thermal

cycling sequence of PCR was set following parameters: 1cycle

of 94°C for 3 min, 30 cycles of 94°C for 30 s, 56°C for 45 s, 72°C

for 1 min, and a final extension at 72°C for 10 min. The PCR
Frontiers in Marine Science 03
reaction product was detected by 1.5% agarose gel

electrophoresis, the target fragment was recovered and

purified, and then ligated with pTOPO-TA vector (Aidlab,

Beijing, China) and sequenced by Sangon Biotech Co., Ltd.

(Qingdao, China). The ligation product was transformed into

DH5a competent cells, and the positive clones were sequenced

with M13 primers and sequenced by Sangon Biotech Co., Ltd.

(Qingdao, China).
2.3 Sequence analysis

Analysis of the cDNA sequences was conducted to query

known sequences in GenBank using the BLASTX search

program provided by NCBI (https://www.ncbi.nlm.nih.gov/

BLAST/). The open reading frame (ORF) of AiiMEK1 and

ApuMEK1 were confirmed using the NCBI ORF Finder tools

(http://www.ncbi.nlm.nih.gov) and sequences were translated

into amino acid sequences using DNAMAN software. MEGA

7.0 was used to investigate the number of base substitutions per

site between AiiMEK1 and ApuMEK1. The functional sites and

domains in the deduced amino acid sequence were predicted

with SMART programs (https://www.smart.emblheidelbergde/).

Multiple sequence alignments of MEK1 proteins were

performed using the Clustal W program packaged in

DNAMAN 8.0 software. The protein parameters (molecular

mass and isoelectric point) of MEK1 were predicted by using

the Protparam (http://www.expasy.org/tools/protparam.html),

SignalP (https://services.healthtech.dtu.dk/service.php?SignalP-

4.1) was used to predict the cleavage site of the signal peptide,

the phosphorylation sites were predicted by NetPhos (https://

services.healthtech.dtu.dk/service.php?NetPhos-3.1). The

secondary and three-dimensional structures of the MEK1 were

predicted by SOPMA (http://nhjy.hzau.edu.cn/kech/swxxx/jakj/

dianzi/Bioinf7/Expasy/Expasy8.htm) and SWISS-MODEL

(https://www.swissmodel.expasy.org/interactive), respectively.
2.4 Sequence alignment and
phylogenetic study of the MEK1 gene

The amino acid sequences of MEK1 from other species were

obtained from GenBank database, and multiple sequence

alignment of the MEK1 sequences from 11 different species

was conducted using ClustalW2 (http://www.ebi.ac.uk/Tools/

msa/clustalw2/). For phylogenetic tree analysis, MEGA 7.0

software was used with 1,000 replicates to construct a NJ

phylogenetic tree based on the amino acid sequences of all the

above 36 species.
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2.5 Expression profile of MEK1 gene in
two Argopecten scallops

A.purpuratus and A.irradians irradians at 5 and 12 months

of age were collected to examine the expression profiles of MEK1

in various tissues at different developmental stages with 3

replicates for each stage. The sampled tissues including

adductor muscles, gills, gonads, hepatopancreases, and mantles

were used to extract total RNA and the first-strand cDNA was

synthesized using a Reverse transcription kit ReverTra Ace®

qPCR RT Master Mix With gDNA Remover (Toyobo, Japan).

The expression level of MEK1 in two scallop species were

evaluated by quantitative real-time PCR (qRT-PCR) using

specific qRT-PCR primers for MEK1 as listed in Table 1. The

elongation factor EF-1a was chosen as the reference for internal

standardization according to the previous study (Xu et al., 2022).

Reactions were carried out on the QuantStudioTM 5 Real-Time

PCR Instrument (Applied Biosystems) using SYBR green as

fluorescent dye. A complete reaction system for PCR reaction

contained 5 ml of Taq Pro Universal SYBR qPCR Master Mix

(Vazyme, China), 1 ml of the diluted cDNA, 0.2 ml of each primer
Frontiers in Marine Science 04
(10 mM), and 3.6 ml of sterile distilled H2O. The PCR parameters

were set at 95°C for 60 s, followed by 40 cycles of 95°C for 5 s and

60°C for 15 s. All reactions were performed in triplicates. The

relative level of genes expression was analyzed using the2−DDCt

methods (Livak and Schmittgen, 2001).
2.6 Expression of AiiMEK1 and ApuMEK1
in response to nutrient restriction

Healthy and vigorous 7-month-old bay scallops and

Peruvian scallops were randomly selected to explore the

differences in the MEK1 gene expression between the two

scallops under nutritional restriction. After having been

acclimated in filtered and aerated seawater (salinity 30,

temperature 22 ± 0.5 °C) for 1 week, each of the two scallops

species were equally divided into a nutritional restricted group

and a control group, respectively. During the experiment, the

control group was fed with 3×104 Chaetoceros sp. per scallop a

day while the nutritional restricted group were received only

50% diet of the control group. The hepatopancreas were
TABLE 1 Primers used in this study.

Primer name Sequence (5’-3’) Application

AiiMEK1-F CAATCAAATCATCAGGGAACTC ORF amplification

AiiMEK1-R GATATCCACGTCTTCTGTTTCT ORF amplification

ApuMEK1-F AGTACTCCATGAATGTAACTCC ORF amplification

ApuMEK1-R GTTTCCGAGTTTGTCTTCATC ORF amplification

RT-MEK1-F GCCTAAGAGGACTTTTGAGGACA qRT-PCR

RT-MEK1-R AGCAGTAATACGTTTGTCTGGGT qRT-PCR

RT-ERK1/2-F GAAAGGGGCCTAGGAATCGTAT qRT-PCR

RT-ERK1/2-R ATCTGTGGTTTCTGAAGGCAT qRT-PCR

RT-MnSOD-F GACAGCCATGTTGGAGATTTGG qRT-PCR

RT-MnSOD-R TCCTGTGTCTGTTCCTTCATGG qRT-PCR

RT- IF4E -F TTTCGGACAACATGGCTTCAAC qRT-PCR

RT- IF4E -R AATAAGGGCGTCTGGTGAAAGT qRT-PCR

RT-FoxO-F CACAAGTTCTGCAGGTTGGAAG qRT-PCR

RT-FoxO-R CAGGGTTTATGACCCACCATGA qRT-PCR

RT-S6K1-F AGAAATGCCAAAGACACAGCAC qRT-PCR

RT-S6K1-R TCCCTCCCGTTTGAAAAGCATA qRT-PCR

RT-4EBP1-F AGGACGTGAAATCCCAAACAGA qRT-PCR

RT-4EBP1-R ACCGCCTGGAGTTGTAGAAAAT qRT-PCR

RT-ULK1-F AAAGTCGAGAGCGAGAACTTGT qRT-PCR

RT-ULK1-R CAGTCTTCCCTTCTGTGAACGA qRT-PCR

RT- mTORC1-F TGGGGAGTCCGTCTATCTATGT qRT-PCR

RT- mTORC1-R CCGCTCATTGACGATGAAGACT qRT-PCR

RT- CAT-F CGCTTGGTGGAGAATATTGCAG qRT-PCR

RT- CAT-R TCCAGCAGTTTCTGGATACCAC qRT-PCR

RT-EF1a-F GAAAGGGGCCTATGGAATCGTAT qRT-PCR

RT-EF1a-R ATCTGTCTGGTTTCTGAAGGCAT qRT-PCR

AiiMEK1 GCCAACUCCUUCGUAGGAATT RNA interference
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collected from 3 healthy scallops in each group on 30 and day 56

day and quickly frozen in liquid nitrogen and stored at −80°C for

RNA extraction and MEK1 expression analysis.
2.7 RNA interference of MEK1
in A. irradians

The sequence-specific AiiMEK1-siRNA was synthesized

using the T7 promoter in vitro transcription kit (Takara,

China) according to the manufacturer’s instruction. The

AiiMEK1-siRNA were dissolved in sterilized 0.1% DEPC water

to reach a final concentration of 2mg/ml, and then 1.0% agarose

gel electrophoresis and Nanodrop 2000 (Thermo Scientific,

USA) were used to detect the fragment integrity and

concentration of siRNA. About 120 vigorous 12-month-old A.

irradians (33.59 ± 4.19g in whole weight) from the same batch

were randomly selected and divided into two groups, the

AiiMEK1-siRNA injection group, and the control group. The

experiment was performed according to the standard of 1mg
(siRNA):1g (wet weight) (Ning et al., 2021). Eighteen microliter

of AiiMEK1-siRNA, and PBS were injected into the

cardiocoelom of each scallop in the AiiMEK1-siRNA injection

group, and control group, respectively, using a micro-syringe. At

6h, 12h,and 24h after injection, the hepatopancreas of five

scallops were separately collected and dissected. The

hepatopancreas were frozen in liquid nitrogen immediately for

RNA extraction and cDNA synthesis. The expression profiles of

MEK1 mRNA were examined by real-time quantitative PCR as

described above.
2.7.1 Expression analysis of aging-related
genes in the AiiMEK1-silenced scallops

After knocking down the expression of AiiMEK1 gene by

RNAi, qRT-PCR was used to detect the expression profiles of 9

aging-related genes in hepatopancreases of bay scallop,

including the only downstream target gene ERK1/2

(Extracellular Signal-Regulated Kinase 1/2), antioxidative and

DNA damage repair genes SOD (superoxide dismutase), CAT

(Catalase), FoxO (Forkhead box class O), autophagy-related

gene ULK1 (Unc-51 like autophagy activating kinase 1) and

nutrient sensing pathway-related genes mTORC1, S6K1

(Ribosomal Protein S6 Kinase B1), 4EBP1 (eukaryotic

translation initiation factor 4E binding protein 1) and IF4E

(eukaryotic translation initiation factor 4E). The gene-specific

primers used for qRT-PCR analysis were shown in Table 1.

2.7.2 Senescence-associated b-galactosidase
activity assay

Hepatopancreas were collected from three animals in the

control and RNAi group 6 h after injection, and b-galactosidase
activity was detected using the b-galactosidase assay kit
Frontiers in Marine Science 05
(Microplate method) (purchased from Geruisi Biotechnology,

Suzhou, China) in accordance with the manufacturer’s

instructions. b-GAL can convert p-nitrobenzene-b-D-

galactoside into p-nitrophenol, which has an absorption peak

at 405 nm. The b-Gal activity was determined by calculating the

rate of increase in absorbance at 405 nm. Tissues were

homogenized in 9 volumes of 0.86% cold saline and

centrifuged at 12,000 rpm for 10 min at 4°C, then the

supernatants were taken and diluted with cold saline and

protein concentration was determined using a BCA protein

assay kit (Shanghai Epizyme Biotechnology Co., Ltd.,

Shanghai, China).
2.8 Statistical analysis

Statistical analyses were performed using SPSS 26.0 software.

Data obtained from this study were presented as the mean ±

standard deviation (S.D.) and analyzed by t-test. Differences

were considered statistically significant at P < 0.05 (*) and P <

0.01(**).
3 Results

3.1 Cloning and sequence analysis of
AiiMEK1, ApuMEK1

The cDNA sequences of AiiMEK1 and ApuMEK1 were

cloned and identified respectively, and the complete ORF

sequences are deposited in the NCBI GenBank repository,

accession numberOP490349 and OP490348. The complete

ORFs of AiiMEK1 and ApuMEK1 were both 1209 bp,

encoding 403 identical amino acids and the deduced protein

molecular weight and theoretical isoelectric point were 44.502

kDa and 6.35, respectively. Forty-one synonymous SNPs were

found in AiiMEK1 compared with the ApuMEK1 (Figure 1),

including 29 transition and 12 transversion mutations, and

transition-to-transversion ratio was 2.42. Among all the

conversions of AiiMEK1 sequence, the transition from

cytosine (C) to thymine (T) (or G to A on the complementary

chain) was more prominent, with 18 loci accounting for 62% of

all transition. No potential functional sites such as sequence

signal peptide and glycosylation were found in the AiiMEK1 and

ApuMEK1 amino acid sequence, but 40 phosphorylation sites

were predicted in both sequences (Figure 2A).

An analysis of conserved domains using SMART revealed

that both AiiMEK1 and ApuMEK1 contained a conserved

domain of serine/threonine protein kinases (S-TKc) with a

length of 300 amino acids (Figure 2B). Further analysis of

AiiMEK1 and ApuMEK1, sequence revealed that there was an

ATP binding site (84-107aa) and a catalytic activity site (196-

208aa) within the central domain, which was crucial for its
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kinase activity (Han et al., 2021). Thirty-two (78%) SNPs in the

conserved S-TKc domains and 2 SNPs in the catalytic active site

were found between AiiMEK1 and ApuMEK1, with one SNP

locating in the near upstream and downstream sequence of the

ATP binding site, respectively (Figure 3).

Secondary structure prediction of AiiMEK1 and ApuMEK1

demonstrated that the amino acid sequences contained 46.02%

random coil, 40.80% a-helix, 9.9% extension chain fraction and

3.23% b-turn (Figure 4A). The tertiary structures of AiiMEK1

and ApuMEK1 were further predicted by the Swiss-Model

online tool and the results showed that both AiiMEK1 and

ApuMEK1 were mapped to the crystal structure of 6pp9.1.B

(BRAF : MEK1 complex) with identities of 70.87% (Figure 4B).

Multiple sequence alignment of AiiMEK1 and ApuMEK1

with other homologous sequences indicated high similarity in

protein kinase family characteristics but large evolutionary

differences in ATP binding site between invertebrates and

vertebrates. AiiMEK1 and ApuMEK1 shared similarity with

the homologous sequence in the Mizuhopecten yessoensi (with

99.00% identity), followed by Pecten maximus (with 98.26%

identity), Crassostreagigas (with 86.50% identity) and Tegillarca

granosa (with 83.98% identity) (Figure 5). However, at the

nucleotide level, ApuMEK1 shared high similarity with the
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homologous sequence in the long-lived species such as Pecten

maximus (XM_033895226.1, with 89.44% identity) and

Mizuhopecten yessoensi (XM_021516679.1, with 87.66%

identity), while AiiMEK1, compared to ApuMEK1, represented

lower similarity with MEK1 in Pecten maximus (with 89.19%

identity) and Mizuhopecten yessoensi (with 87.51% identity).

The topological structure of phylogeny tree showed that the

MEK1 of Argopecten scallops were first clustered into a branch,

and then clustered into a mollusk cluster with closely related

Mizuhopecten yessoensis and Pecten Maximus. The MEK1 of

mammals, birds, and fish were clustered separately to form a

large branch of MEK1 in vertebrates (Figure 6).
3.2 Expression profiles of the MEK1 gene
in A. irradians and A. purpuratus

To explore the spatiotemporal expression profile of MEK1

gene in Argopecten scallops, the transcriptional levels of MEK1

gene were detected in the adductor muscles, mantles, gills,

gonads, and hepatopancreases of 5-month-old and 12-month-

old A. irradians and A. purpuratus, respectively. In 5-month-old

A.irradians, the expression of MEK1 was the highest in gill,
FIGURE 1

Nucleotide and amino acid variations between AiiMEK1 and ApuMEK1.
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followed by mantle, gonad and hepatopancreas, and the lowest

in adductor muscle (Figure 7A). In 5-month-old A. purpuratus,

the expression of MEK1 was the highest in the mantle, followed

by the hepatopancreas and gills, and the adductor muscle was

also the tissue with the lowest expression of MEK1 (Figure 7B).

Compared with 5-month-old scallops, the expression of

AiiMEK1 was significantly increased in all tested tissues,

especially in adductor muscle, gills and the hepatopancreases

were extremely significant in 12-month-old A. irradians(p <

0.01). Compared with 5-month-old scallops, the ApuMEK1

expression was significantly increased in the gills, gonad (p

<0.01) and adductor muscle (p < 0.05) but not in mantle and

hepa topancrea s (p > 0 .05 ) in the 12-month-o ld

scallops (Figure 7B).
3.3 RNA expression of MEK1 under
nutrient restriction

The relative mRNA expressions of MEK1 under nutrient

restriction were examined in A. irradians and A. purpuratus. In

A. irradians, AiiMEK1 expression was significantly decreased in

hepatopancreas under nutritional restriction on Day 30 (p <

0.05), while it was significantly increased in the adductor muscle

and mantle than that of the control group (Figure 8A); on day

56, the expression of AiiMEK1 in the hepatopancreas of the

nutritional restriction group was still significantly lower than
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that of the control group, but no difference was detected in other

tissues (Figure 8B). In A. purpuratus, ApuMEK1 expression level

in hepatopancreas under nutritional restriction on Day 30 was

also significantly lower (p < 0.05) than that in the control group,

whereas the expressions in other tissues in nutritional restriction

group were maintained at levels close to that of the control group

(Figure 8C); the expression level of ApuMEK1 in the gills and

mantle of the nutritional restriction group on day 56 were

significantly lower (p < 0.05) than that in the control group on

day 56 (Figure 8D).
3.4 RNA interference of MEK1 in A.
irradians

The interference efficiency of the synthesized siRNA on the

MEK1 gene in the hepatopancreas of 12-month-old A. irradians

is shown in Figure 9. Compared with the control group, the

expression of MEK1 gene was significantly inhibited by the

interference for 6h, with an interference efficiency of 66.37%.

Therefore, hepatopancreas tissue injected with AiiMEK1-siRNA

for 6h was selected for subsequent experiment.

3.4.1 b-GAL activity after RNAi of MEK1 in
A. irradians

b-GAL is a widely used marker of cellular senescence, and its

activity increases with age. At 6h after RNAi of MEK1, the b-
B

A

FIGURE 2

The predicted phosphorylation sites (A) and functional domains (B) in AiiMEK1 and ApuMEK1.
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FIGURE 3

The SNPS in the conserved domains of AiiMEK1 and ApuMEK1. Sequences were highlighted with a yellow shading indicates the region of S_TKc
in AiiMEK1 and ApuMEK1. The purple box indicates the ATP-binding site, and blue box indicates the activation site of S_TKc.
B

A

FIGURE 4

The secondary structures (A) and tertiary structures (B) of AiiMEK1 and ApuMEK1.
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GAL activity in the experimental group was significantly lower

than that in the control group (p < 0.05) (Figure 10).

3.4.2 Expression of aging-related genes after
RNAi of MEK1 in A. irradians

The expression pattern of aging-related genes in

hepatopancreas tissue after RNAi of AiiMEK1 in A. irradians

is shown in Figure 11. The results showed that the expressions of

antioxidant and DNA damage repair genes SOD and FoxO were

significantly up-regulated, while the expression of ERK1/2, the

only target gene downstream to MEK1, and CAT and

autophagy-related gene ULK1, as well as the nutrient-sensing

pathway-related genes including mTORC1, S6K1, 4EBP1 and

IF4E were significantly down-regulated.
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4 Discussion

In this study, we analyzed the variations in the sequences of

MEK1, and examined the expression of MEK1 in response to

nutrient restriction in Peruvian scallops and bay scallops, as well

as the expression of its downstream target genes and b-GAL
activity (a marker for senescence) after RNAi of MEK1. Our

results firstly suggested that MEK1 may play a central role on

aging in Argopecten scallops.

Sequences of MEK1 with very high similarity were obtained

in the two scallops, and in total 41 synonymous SNPs (including

29 transitions and 12 transversion) were discovered between

AiiMEK1 and ApuMEK1. It was reported that the transitions

occurred more frequently than transversions in gene mutation
FIGURE 5

Multiple alignment of amino acid sequences. The red box indicates the region of the S_TKc domain, the yellow box indicates the ATP binding
site of this domain and the blue box indicates the active site of S_TKc.
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(Wang et al., 2015; Storz et al., 2019; Mohanta et al., 2020), and

in especial for synonymous substitutions (Lim et al., 2017).

Previous study has shown the prevalence of cycline (C) to

tyrosine (T) transition tends to increase the hydrophobicity of

the amino acid and the accumulation of peptides with altered

function, may ultimately leading to the premature aging

phenotype of Polg mutant mice (Ni et al., 2015). In AiiMEK1,

the transition is also dominated by cycline (C) to tyrosine (T),

this result implying that high frequency cycline (C) to tyrosine
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(T) transition may affect the function of AiiMEK1 protein in

regulating scallop senescence. In addition, massive literature has

reported that synonymous and non-synonymous substitutions

can significantly change protein functions through multiple

mechanisms, such as protein level, translation accuracy,

secretion efficiency, and post-translational modification (Tuller

et al., 2010; Walsh et al., 2020). The synonymous SNPs in

AiiMEK1 and ApuMEK1 may lead to significant differences in

the protein structure and conformation, suggesting that MEK1
FIGURE 6

NJ phylogenetic analysis of AiiMEK1 and ApuMEK1 with other species.
BA

FIGURE 7

Expression of AiiMEK1 (A) and ApuMEK1 (B) at 5th and 12th month (* p < 0.05 and ** p < 0.01).
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B

C D

A

FIGURE 8

Expression of MEK1 on Day 30 and Day 56 in the dietary restriction group and the control group in Airradians (A, B) and A purpuratus (C, D) (*p
< 0.05 and ** p<0.01).
FIGURE 9

Relative expression of MEK1 in the hepatopancreas of A. irradians after RNAi (**p < 0.01).
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in the two scallops may have evolved into different activities

during their adaptation to different environments (Drummond

et al., 2008). However, the MEK1 nucleotide sequence of other

species with long lifespans (such as Pecten maximus,

Mizuhopecten yessoensis) share higher similarity with

ApuMEK1 than AiiMEK1, indicating that this feature sequence

might contribute to longevity in these animals. The deduced

amino acid sequences of both AiiMEK1 and ApuMEK1

contained the highly conserved S_TKc domain (300aa)

including the ATP binding sites and catalytic segment, which

were crucial for MEK1 to function as a protein kinase (Lu et al.,

2014; Abdelfatah et al., 2019). This S_TKc domain was identical

in amino acid sequence in two scallops and was highly
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homologous to the S_TKc domain of other invertebrates and

vertebrates, indicating the function of MEK1 in different species

was evolutionarily conserved. Mutations that occur in MEK1

catalytic core cause constitutive activation of the MEK1 kinase,

and the research showed that more than 3/4 of synonymous

mutations were harmful and could change the level of gene and

protein expression (Shen et al., 2022). However, a total of 32

(78%) SNPs were found between ApuMEK1 and AiiMEK1 in

this region, which might lead to different catalytic activity of

MEK1 in the two species. Besides, phylogenetic tree analysis

showed that MEK1 was obviously clustered with other bivalve

MEK1, suggesting that MEK1 was a member of the dual

specificity protein kinase family.
FIGURE 10

The change in b-GAL activity after RNAi of AiiMEK1 (*p < 0.05).
FIGURE 11

Relative expression levels of other aging-related genes after knockdown of AiiMEK1 gene expression (* p < 0.05 and ** p < 0.01).
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As an evolutionary conserved signal transduction factor, the

widespread distribution of MEK1 in various tissues of mammals

and teleosts has been extensively reported. Likewise, in this study,

MEK1 was expressed in all examined tissues, indicating that it was

not a tissue-specific gene and may play roles in various

physiological processes. With the aging of the bay scallop, the

expression of AiiMEK1 was significantly upregulated in all tested

tissue especially in adductor muscle and gills. These results

suggested that the adductor muscle and gills were aging tissues

in the scallops. It has reported that gonad, hepatopancreas and

gills of bivalves were the vital organs susceptible to environmental

stress (Cannuel et al., 2009; Sun et al., 2014; Dell'Acqua et al.,

2019). The increased expression of MEK1 in these tissues at 12

months scallops might have resulted from the complex

environmental factors, suggesting that MEK1 may perform the

same function under the adverse effects of environmental stress.

InhibitingMEK1 can upregulate the activity of SOD, an important

protective enzyme against oxidative damage and thus neutralizing

the adverse effects of ROS generated during aging (Subramanian

and James, 2010; Mossa et al., 2015; Shi et al., 2021). Research

carried out in another closely related short-lived scallop

(Argopecten ventricosus, maximum lifespan potential only 2

years) revealed a decrease of SOD and CAT activities in tissues

(such as adductor muscle, mantle, and gills) in the elderly

population (Guerra et al., 2012). Therefore, we speculated that

MEK1 may have promoted tissue senescence by affecting the

antioxidant level of tissues in bay scallop.

Prolonging effects of nutritional restriction on animal

lifespan has been well established in many experimental

animals such as yeast, nematodes, flies, rodents, and primates

since its first discovery in healthy rats in 1935 (McCay et al.,

1989; Chiang et al., 2012; Laye et al., 2015; Lien et al., 2020). In

this study, the expression of MEK1 can be inhibited by nutrient

restriction in both species, leading to the upregulation of key

genes such as antioxidant genes and those involved in DNA

repair (Cho et al., 2016), while inhibiting the activity of the

mTOR pathway (Gorentla et al., 2011; Yang et al., 2016). It

seems that MEK1 might play a crucial role in the physiological

response of the scallops to nutrient availability. MEK1

expression was consistently low in the hepatopancreas of the

bay scallop at 30 and 56 days of nutritional restriction, possibly

because the more sensitive to starvation. In addition, the

expression level of MEK1 in adductor muscle and mantle

increased with nutritional restriction on day 30 in A. irradians

may be explained by the time of nutritional restriction was too

short to derepress MEK1 expressions in mantle and adductor

muscle. The decreased expression of MEK1 in gills and mantle

rather than hepatopancreas of A. purpuratus on Day 56 of

nutrient restriction might be a reflection of the fact that A.

purpuratus usually maintain a relatively low level of metabolism

in cold water high latitudes, and thus the hepatopancreas were

less responsive to food limitations than gills and mantle. Hence,

we speculate that MEK1 might also have the conserved function
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in aging by responding to nutrient availability in A. irradians

and A. purpuratus. Research also reported that cold water

temperatures and presumably food limitations might be

favorable for longevity in bivalves by reducing generation of

ROS (Estabrooks, 2007).

To further determine the functions of MEK1 on aging, the

expressions of ERK1/2, FoxO, SOD, CAT, ULK1, mTORC1, S6K1,

4EBP1 and IF4E were detected after AiiMEK1 was knocked down

by RNAi technology in A. irradians. The results showed that

ERK1/2, the only downstream target gene of MEK1 (Olsen et al.,

2014), which is known to affect a variety of physiological functions

by regulating the phosphorylation level of various transcription

factors, was significantly down regulated (Eapen et al., 2011).

Rapid and almost complete downregulation of ERK1/2 activity by

the inhibition of MEK1 has also been found in other studies (Chen

et al., 2014; Lake et al., 2016). The FoxO gene encodes a key

regulator of the IIS pathway, and its high expression helps

improve the ability to fight oxidative stress in vitro, which in

turn increases lifespan (Sun et al., 2017; Hou et al., 2020). The

inhibited expression of AiiMEK1 resulted in a very significant

increase in the transcription level of FoxO, suggesting that the

effect of FoxO in prolonging lifespan may also be conserved in

marine animals. Mitochondria of senescent cells produce ROS

that can cause protein and lipid damage, lead to telomere

shortening and activate DNA damage response. Inhibition of

AiiMEK1 expression also significantly increased the relative

expression of SOD, probably because FoxO protects quiescent

cells from oxidative stress by inducing the expression of SOD

(Kops et al., 2002; Liu et al., 2016). However, the relative

expression of CAT was significantly downregulated, suggesting

that protection of tissues from oxidative damage may be mainly

undertaken by SOD in A. irradians (Chi et al., 2016). Studies have

shown that mTOR signaling pathway can stimulate protein

synthesis through S6K1 kinase and 4EBP1 (Laplante and

Sabatini, 2012; Adamson et al., 2014), and inhibition of the

mTOR signaling pathway by gene knockout, rapamycin

treatment, or dietary restriction can delay aging (Lee et al.,

2013; Chang et al., 2015; Dominick et al., 2017). In this study,

the expression of mTORC1, S6K1 and 4EBP1 was also

significantly decreased with the downregulation of AiiMEK1,

implying that mTOR regulatory signals can be reduced by

inhibition of AiiMEK1 and postpone the senescence of A.

irradians. The physiological process of autophagy can remove

toxic and easily aggregated proteins to maintain the normal

function of cells and thus prolong life (Melendez et al., 2003;

Simonsen et al., 2008; Park and Kim, 2019; Wang et al., 2021). In

this study, ULK1, a key gene in autophagy, was significantly lower

in the MEK1 knock-down group than that in the control group,

might suggest that autophagy is not largely involved in the bay

scallops. b-Gal, a widely used marker of cellular aging, is the gold

standard for identifying senescence, and its activity increases with

age (Shin et al., 2020). In this study, the b-Gal activity of the

interference group with low expression ofMEK1 was significantly
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lower than that of the control group, suggesting that MEK1 is

tightly associated with antiaging in scallops. Based on the above

results, it is thus hypothesized that MEK1 regulates the senescence

of A. irradians by up-regulating the activity of mTOR pathway

and down-regulating the expression of antioxidant and DNA

damage repair genes through Raf/MEK/ERK cascade.
5 Conclusion

The three-layered protein kinase cascade Raf/MEK1/ERK,

with MEK1 as a core member is widely involved in the

regulation of many aging and life-span pathways such as

mTOR and IIS. In terrestrial animals, it has been confirmed

that inhibiting MEK1 can slow down cell aging by inhibiting

ERK1/2, but whether MEK1 has similar function in marine

invertebrates is not clear. In this study, we cloned and identified

MEK1 gene from two closely related scallops with distinct

lifespan. We further examined the expression profile of this

gene in different tissues at different ages in both species and

found that MEK1 expression increased with aging in all tissues.

Nutritional restriction significantly decreased the expression of

MEK1. In addition, knockdown of MEK1 expression by RNA

interference could significantly affect the expression of aging-

related genes and inhibit the activity of b-GAL. It is thus

speculated that MEK1 is involved in regulating the senescence

and life span of Argopecten scallops.
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