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Visual detection technology is essential for an unmanned surface vehicle (USV)

to perceive the surrounding environment; it can determine the spatial position

and category of the object, which provides important environmental

information for path planning and collision prevention of the USV. During a

close-in reconnaissance mission, it is necessary for a USV to swiftly navigate in

a complex maritime environment. Therefore, an object detection algorithm

used in USVs should have high detection s peed and accuracy. In this paper, a

YOLOv5 lightweight object detection algorithm using a Ghost module and

Transformer is proposed for USVs. Firstly, in the backbone network, the original

convolution operation in YOLOv5 is upgraded by convolution stacking with

depth-wise convolution in the Ghost module. Secondly, to exalt feature

extraction without deepening the network depth, we propose integrating the

Transformer at the end of the backbone network and Feature Pyramid Network

structure in the YOLOv5, which can improve the ability of feature expression.

Lastly, the proposed algorithm and six other deep learning algorithms were

tested on ship datasets. The results show that the average accuracy of the

proposed algorithm is higher than that of the other six algorithms. In particular,

in comparison with the original YOLOv5model, the model size of the proposed

algorithm is reduced to 12.24 M, the frames per second reached 138, the

detection accuracy was improved by 1.3%, and the mean of average precision

(0.5) reached 96.6% (from 95.3%). In the verification experiment, the proposed

algorithm was tested on the ship video collected by the “JiuHang 750” USV

under different marine environments. The test results show that the proposed

algorithm has a significantly improved detection accuracy compared with

other lightweight detection algorithms.
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1 Introduction

In recent years, unmanned surface vehicle (USV) technology

has developed rapidly, and USVs are widely used in maritime

safety tasks, such as orderly and complex patrols ,

reconnaissance, and detection and tracking of specific objects.

Traditional ship detection and tracking systems typically employ

radar or AIS (Vesecky et al., 2009; Dzvonkovskaya and Rohling,

2010; Vesecky et al., 2010; Sermi et al., 2013). However, the radar

has a relatively long scanning period and slow detection speed. It

cannot distinguish between specific types of objects, and hence

false and missed detections easily occur. Information collected

by AIS can be intentionally turned off by ships, which sometimes

results in AIS unreliability. The existing ship detection methods

are based on vision; they not only have a long detection range

but also have high resolution and object detailing. The

traditional detection methods based on vision are mainly

Mean-shift (Liu et al., 2013) and HOG-SVM (Xu and Liu,

2016). Their characteristic is that they mainly rely on a single

shallow feature to complete the ship detection task. However,

these features are easily affected by the ship’s appearance, shape,

and complex environment, resulting in poor robustness. With

the rapid development of the visual field, visual object detection

based on deep learning has become a popular research topic.

Object detection algorithms based on deep learning have broad

application prospects in the marine environment (Chen et al.,

2021; Wang et al., 2022); nevertheless, their applications have

not been fully valued until now (Mittal et al., 2022). For example,

object detection can be used to perceive the surrounding

environment. The object’s orientation and image information

plays an important role in path planning, collision avoidance,

and object monitoring of a USV. At present, an object detection

algorithm based on deep learning can more accurately classify

and detect object positions. However, it has high requirements

for the vision-based processing system of the USV; moreover,

speed and accuracy of the object detection algorithm are also

major challenges.

In this study, we propose a lightweight object detection

network based on the You-Only-Look-Once-v5 (YOLOv5) to

obtain fast detection speed and high accuracy for USVs. The

object detection performance in a complex environment has

been improved. The proposed network has reduced detection

time and improvements in terms of anchor boxes, backbone, and

feature pyramid network (FPN) structure. We obtained a set of

anchor boxes through the K-means clustering method to adopt

to the ship’s characteristics. The Ghost module upgraded the

convolution (Conv) in the backbone to reduce the network

detection time. The Transformer is integrated into the cross

stage partial network (CSPNet) of the backbone and FPN

structure to achieve more useful feature extraction. The

proposed network is composed of these simple but effective

modules, thus balancing detection speed and accuracy well.
Frontiers in Marine Science 02
Figure 1 shows the detailed flowchart of our training model.

Lastly, the experimental results demonstrate its excellent

performance on the task of detecting ship objects.

The contributions of this study include the following:
• We obtain a new set of anchor boxes to adapt to the

structural characteristics; i.e., the width of the ship is

longer than the height used by the K-means clustering

algorithm on the ship dataset.

• A combination of Conv stacking with depth-wise Conv

in the Ghost module was adopted to structure the

backbone feature extract ion in YOLOv5. In

comparison with the original Conv, the Ghost module

has better computing efficiency, which not only reduces

the model training and detection times but also

improves accuracy.

• We integrated the Transformer into the end of the

backbone and FPN structure in the YOLOv5 network,

which can improve the feature expression ability and

enhance the detection accuracy without deepening the

network depth.

• The proposed algorithm has achieved a good balance

between detection accuracy and speed. In the actual

marine environment testing process, our algorithm

obtains a high accuracy rate and is found to be robust

in the sea fog environment.
The remainder of this paper is organized as follows. In

Section 2, we show the data augmentation and related work. We

describe our approach in Section 3. The experimental results

performance and discussion are presented in Section 4. In

Section 5, we summarize this work.
2 Related work

2.1 Data augmentation

The purpose of data augmentation is to generate more

training samples based on existing datasets. The method of

data augmentation is to randomly transform the local or

global features of the images, and its role is to improve the

robustness and generalization ability of our trained model. In

certain special circumstances, highlighting, blurring, and

occlusion were encountered in the future detection process of

our model. Therefore, the hue, saturation, and value have been

adjusted in the model training process. With regard to the

geometric distortion of the image, certain operations are

performed, i.e., rotation, horizontal and vertical translation,

scaling, and shearing of the image. In addition, there are some

special data enhancement methods, such as Mixup (Zhang et al.,

2017) and Mosaic (Bochkovskiy et al., 2020). In the Mixup data
frontiersin.org
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enhancement method, new sample-label data are generated by

adding two image sample-label data pairs in proportion. In the

Mosaic data enhancement method, a new picture is generated

using four pictures through random reduction, cropping, and

arrangement. In this paper, we used a combination of Mixup,

Mosaic, and traditional data augmentation methods.
2.2 Visual object detection based on
deep learning

In recent years, visual detection technology has made great

progress, particularly detection methods that are based on deep

learning. The deep learning-based object detection algorithms

are mainly divided into two types—two-stage and one-stage. The

first step of a two-stage object detection algorithm is to generate

a position box by generating a region proposal that can extract

features; then, the second step is to perform category prediction.

It has high accuracy but slow speed; thus, it is not suitable for

real-time object detection like Fast R-CNN (Girshick, 2015) and

Faster R-CNN (Ren et al., 2015). A one-stage object detection

algorithm performs classification and bounding box regression

while generating candidate boxes and has fast speed but less

accuracy; hence, it is suitable for real-time object detection

like SSD (Liu et al., 2016) and YOLOv3 (Redmon and Farhadi,

2018). High object detection speed is essential for a USV

platform; therefore, one-stage object detection algorithms are

more suitable.

In the case of maritime object detection, many scholars have

investigated from sea–skyline detection to ship detection. Bai et al.

(2021) proposed a sea–skyline detection method based on local

Otsu segmentation and Hough transform. Later, the monopole

object detection method was introduced for ship detection, which

reduces a certain amount of interference and calculations, and it

optimizes the accuracy and speed of ship detection. Chen et al.

(2021) proposed an integrated ship detection framework based on

an image segmentation method for edge detection. The Canny edge
Frontiers in Marine Science 03
detector and Gaussian filter are used to detect the edges of ships in

the image, suppress the edges related to the background, and,

finally, connect them to form the outline of the ship; the method

achieved an effect of 32 fps. In ship detection methods based on

deep learning, Gupta et al. (2021) proposed a classification method

for ship detection based on support vector machines (SVMs) and

convolutional neural networks (CNNs). First, the feature package is

used to deal with diverse features of different types of ships, and

then the CNN is used for feature extraction. Finally, 2,700 images

are used for training, and the accuracy rate of their model reaches

91.04%. Zou et al. (2019) improved a maritime object detection

method based on Faster R-CNN. The ResNet-50 network is

replaced by the VGG16 network. The results show that the

recognition and detection effect of small ships was significantly

improved. Zou et al. (2020) proposed an improved SSD algorithm

based on the MobileNetV2 CNN that is used in ship detection and

identification. The results show that the SSD_MobileNetV2

algorithm has better performance for ship images. Shi and Suo

(2018) proposed a ship detection algorithm based on an improved

visual attention model. Firstly, the wavelet transform (WT) is used

for feature extraction; secondly, the improved Gabor filter and deep

multifaceted transformers (DMT) algorithm are used to obtain the

directional and edge texture features of the image. The final test

demonstrated high detection accuracy and good real-time

performance. For the existing ship detection algorithms based on

deep learning, it is difficult to simultaneously obtain good detection

accuracy and real-time performance.
2.3 Ship detection based on YOLO

Since the YOLO algorithm was published, it has been widely

studied because of its good computational efficiency and

detection accuracy. Lee et al. (2018) applied the YOLOv2

algorithm to ship detection and classification. In comparison

with other machine learning algorithms, their model has better

robustness and scalability. Li and Qiao (2021) proposed a ship
FIGURE 1

Detailed flowchart of the proposed model training.
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detection and tracking algorithm based on YOLOv3. They used a

graph matching algorithm and Kalman filter to achieve object

matching and tracking, which solves the problems of object

occlusion and label switching. Jie et al. (2021) improved

YOLOv3 for ship detection and tracking in inland waterways;

the K-means clustering algorithm was used to improve the

anchor boxes, and it was improved by taking the single

softmax classifier and introducing the Soft-NMS algorithm.

Their algorithm could enhance the safety of inland navigation

and prevent collisions and accidents. Zhang et al. (2020)

improved a maritime object detection algorithm based on

YOLOv3. They proposed an E-CIoU loss function for

bounding box regression, and the improved method

accelerated the convergence speed and improved the detection

accuracy. Liu and Li, (2021) studied ship statistics in waterway

videos. To realize automatic detection and tracking by YOLOv3,

they designed a self-correcting network combining regression-

based direction judgment and object counting method with

variable time window. The results show that their algorithm

can achieve automatic analysis and statistical data extraction in

waterways videos. Sun et al. (2021) optimized the backbone

network CSPDarkNet of YOLOv4 for application in an auxiliary

intelligent ship navigation system. They added a receptive field

block module, and the FPN of YOLOv4 was improved by

combining the Transformer mechanism. Their algorithm

improves the inference speed and detection accuracy. Liu et al.

(2021) improved the USV maritime environment perception

ability using an improved YOLOv4 object detection algorithm.

The reverse depth-wise separable convolution (RDSC) was

applied to the backbone and FPN structures of YOLOv4,

which reduced the number of parameters of the network and

improved the accuracy by 1.78% compared with the original

model. Thus, the algorithm has a small network size and better

performance in terms of detection speed.

In summary, the ship detection methods are mostly difficult to

apply on USVs because of limited computing resources and

detection speed. Thus far, the problems of accuracy and speed of

maritime object detection have not been resolved. In comparison

with traditional object detection algorithms, the deep learning-

based object detection algorithm has good accuracy rate, but slow

detection speed. Therefore, this study focuses on improving an

object detection algorithm based on YOLOv5 to solve the problems

of real-time performance and accuracy of the maritime ship

detection algorithm applied to the USV platform.
3 Methods

The maritime object detection includes two tasks, i.e.,

classification and positioning of ships. A robust object detection

algorithm should not only consider the detection speed, but also

consider the complex environmental scenarios. In the field of object

detection, the YOLO object detection algorithm performs well in
Frontiers in Marine Science 04
various environments, such as changes in illumination in a complex

sea environment, and recognition of distant small targets in the sea.

The fifth version YOLO object detection algorithm has been

developed, and its efficiency is very good.

YOLOv5 has high performance in terms of detection speed

and accuracy. According to the depth and width of the network,

it is divided into four versions: YOLOv5s, YOLOv5m, YOLOv5l,

and YOLOv5x. The basic network of the four versions is similar.

The structure of YOLOv5 is mainly composed of the input,

backbone, Neck, and Prediction. At the input, we perform data

augmentation operations, such as Mixup and Mosaic, which can

enrich the ship dataset and improve the detection efficiency of

small objects. Feature maps of different scales are extracted at the

backbone network. The FPN and path aggregation network

(PANet) at the Neck strengthen the feature fusion ability. The

FPN transfers high-level semantic features in a top-down

manner, and the PANet transfers low-level strong localization

features in a bottom-up manner after the FPN. The final output

is the prediction of the network, and the prediction uses the non-

maximum suppression (NMS) algorithm to filter the object

boxes. Then, we make predictions on the image features,

generate bounding boxes and predict classes.

In this study, we examine the ability of the USV to detect and

classify an object quickly. We used YOLOv5 as the base network

and improved it. The architecture of the improved YOLOv5 is

shown in Figure 2.
3.1 Anchor box calculation

In object detection tasks, choosing suitable anchor boxes can

significantly improve the speed and accuracy of object detection.

Anchor boxes are boxes presented by a fixed aspect ratio in YOLO,

which is used to predict the category and position offset of the

bounding box. The default anchor boxes are generated in the MS

COCO and VOC datasets. The COCO and VOC datasets have 80

and 20 classes, respectively, but ships are only one of their classes.

Therefore, the default anchor boxes are not fully applicable to the

objects in the ship dataset. To adapt the structural characteristics of

the width of the ship being longer than the height of the ship, we

used the K-means clustering algorithm on the ship dataset to obtain

a set of anchor boxes. The clustering results for the ship dataset

labels are shown in Figure 3. The steps to implement the

Algorithm 1 are described as follows.
Input:
A ground truth label dataset: S ={x1, x2, x3
… xm}

The number of cluster centers: k

Output:
A group of anchor boxes: {c1, c2, c3 …

ck}
frontiersin.org
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Fron
Procedure:
First, select randomly nine boxes of

ground truth labels from the ship dataset

as the cluster centers;

for i = 1,2 … k do
REPEAT

for j = 1,2,3 … m do
Calculate the distance between xj and each

cluster center {c1, c2, c3 … ck} dji = ||xi – ci
||2;

Return each label xj to cluster centers ci

with the closest distance; Update the
tiers in Marine Science 05
cluster center ci for each class in each

cluster ci = Sx∈ci
xi
jci j;

end for
UNTIL Cluster centers no longer change.
ALGORITHM 1
Pseudocode of K-means clustering algorithm for anchor boxes.

Finally, nine sets of adaptive anchor boxes are generated

using the K-means clustering algorithm, i.e., (29,23), (58,31),

(109,30), (62,60), (112,39), (114,50), (78,89), (112,65), and (112,

87). The anchor boxes of the clustering algorithm can effectively

accelerate the convergence speed of the network and effectively

improve the gradient descent problem in the training process.
3.2 Ghost model

There are limitations regarding the memory and computing

resources of embedded industrial computers in USVs; therefore,

the key to ship detection on an USV is to find a lightweight

detection model that can balance detection accuracy and

computational complexity. CNNs are usually composed of

many convolution kernel operations, which will result in large

computational cost. During model training, many redundant

feature maps will be generated, as shown in Figure 4. Redundant

feature maps not only have high similarity but also

greatly increase computational complexity. To reduce the

computational load of the model and raise the detection speed,

an efficient architecture and high-performance GhostNet (Han

et al., 2020) structure are adopted.

The detailed structure of the Conv and Ghost model is shown

in Figure 5. Figure 5A shows the Conv operaton. A given input is
FIGURE 3

Result of ship dataset using K-means clustering. The x-
coordinate is the width of the ground truth bounding box and
the y-coordinate is the height of the ground truth bounding box.
FIGURE 2

Improved YOLOv5 network structure proposed in this paper.
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defined as X∈Rc×h×w , where c is the number of channels of the

input; h and w are the height and width of the input data,

respectively. The n feature maps are generated through ordinary

convolution that can be expressed as Y =X*f + bwhere Y∈Rc×k×k×n

is the output feature map with n channels, and * is the convolution

operation; f denotes the convolution filter of this layer, b is the bias

term, and k×k is the size of the convolution kernel f. The value of

the floating point of operations (FLOPs) can be expressed as

n·h·w·c·k·k . Owing to the large values of n and c, the usual

parameters of the model are very large. The Ghost model

comprises Conv and depth-wise Conv with less parameters and

computations. The Ghost model first obtains the necessary feature

map of half channel of the input features through Conv. These

necessary feature maps are used to perform the depth-wise Conv

that can obtain similar feature maps of the necessary feature maps.

Finally, the two parts of the feature maps from Conv and depth-

wise Conv are spliced. The schematic diagram of the Ghost

module is shown in Figure 5B. Specifically, we used the primary

convolution Y′=X*f′ generate m feature maps Y'∈Rh'×w'×m . To

obtain the required n feature maps, the following cheap operations

are used for each intrinsic feature in Y’:

yij = Fi,jðy0iÞ,∀ i = 1, 2,…m, j = 1, 2,…… s (1)

where y'i is the ith intrinsic feature map in Y’ and Fi,j is the

depth-wise Conv operation to generate the jth (except the last

one) Ghost feature map yij; y’i can obtain one or more feature

maps. The last Fi,s is the identity mapping to preserve the

intrinsic feature map as shown in Figure 5B. We can obtain

n=m·s feature maps for Y=[y11,y12…yms] , which are taken as the

output of the Ghost module. The value of the Ghost module
Frontiers in Marine Science 06
FLOPs can be expressed as n
s · h · w · c · k · k + n

s (s − 1) · h · w ·

k · k. The operations Fi,j are convoluted on one channel. One

convolution kernel of ordinary convolution is convoluted on

every channel. The computational cost of the depth-wise Conv

operation is much lower than that of the ordinary convolution.

The original convolution operation in the YOLOv5

backbone network is upgraded to Conv stacking with depth-

wise Conv in the Ghost module, which can raise the operation

speed and reduce the number of parameters of the model.
3.3 Transformer encoder block

In the case of ship detection, the classification result of the

model can be affected because of the high similarity of ship

features. Generally, an image contains rich visual information,

such as the object and background information. The key is to

fully mine the information in the sample and solve the problem

of low accuracy. The Transformer’s (Vaswani et al., 2017; Zhu et

al., 2020) self-attention mechanism is used to learn the

association between the foreground and background in the

sample, so that the model can focus on the key areas for

detection. The Transformer can improve the detection

accuracy of objects. First, the Transformer constructed the

sample features into sequence form and added positional

encoding. Then, the self-attention mechanism of the

Transformer model was used to learn the association between

each feature block and assigned different attention to each

feature block. Lastly, the original feature sequences are fused,

and each feature block in the sequence can contain useful
FIGURE 4

Redundant feature maps generated by original convolution.
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information for detection in other feature blocks. These

operations can enhance the feature expression ability of

training samples and improve the accuracy of classification

and detection.

The Transformer encoder comprises L layers of alternating

Multihead Self-Attention (MSA) and Multilayer Perceptron

(MLP) modules. The model structure of Transformer is shown

in Figure 6. Therefore, the output Zlif layer l based on the

Transformer encoder is:

Z 0
l =  MSA LN   Zl−1ð Þð Þ +  Zl−1 (2)

Zl =  MLP   LN   Z0
l

� �� �
+  Z 0

l (3)

where l = {1, 2,…, L} represents the number of layers, LN(·)

presents the layer normalization operation, and Z'l represents the

output of the Lth layer of the MSA. The final output (hidden

feature) of the Transformer encoder is ZL∈ RN×P ×P .

To improve the detection accuracy of the network without

deepening the network depth, we focused on the fusion of

multilayer features on the PANet and optimization of the

feature transfer on the FPN structure. High-quality feature

map upsampling and forward transfer were obtained, and the

interference of the underlying feature background was reduced.

The Transformer was integrated into YOLOv5, which could

improve the feature expression. The Transformer was taken into

the end of the backbone structure and CSPnet module of the
Frontiers in Marine Science 07
FPN structure. The spatial areas of low-level features were

weighted by the salient target position information contained

in the attention map, which highlighted the salient regions of

the low-level features and suppressed the interference of the

background. Thus, it could be more conducive to the

identification and classification of ships.

The Transformer could guide the model’s attention to

reliable and useful channels, while reducing the impact of

unreliable and useless background channels. Based on the

YOLOv5 model, we integrated the Transformer block at the

end of its backbone and Neck networks. Because the resolution

of the images at the end of the backbone network was relatively

low, applying the Transformer module on the low-resolution

feature maps could reduce the additional computational cost.
4 Experiment

4.1 Datasets

In marine transportation, there are generally five basic types

of vessels, namely, cargo ships, general cargo ships, carrier ships,

bulk carriers, and oil tankers. In addition, there are other types of

ships, such as ro-ro, reefer, barge, and liquified natural gas

carrier. Among them, cargo, carrier, and cruise ships account

for 60%–70% of global ships (Electronic Quality Shipping
A B

FIGURE 5

Conv and Ghost module structure diagrams (A) The Conv operaton, (B) The Ghost module.
FIGURE 6

Transformer encoder architecture.
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Information System, 2020). Therefore, we selected a ship dataset,

which can be found on Kaggle (Jain, 2021). It includes five

different ship types: cargo, military, carrier, cruise, and oil

tanker. Additionally, the dataset comprises 7,604 ship images,

including 1,853 cargo ships, 916 warships, 829 transport ships,

1,281 cruise ships, and 1,062 tankers. Figure 7 shows sample

images that were randomly selected from ship datasets.

The “JiuHang750” USV is designed and fabricated to detect

and trace ships and is used as our research platform. The USV was

equipped with the three-light photoelectric platform, which

comprises a 30× continuous zoom high-definition visible light

camera, an 80-mm uncooled infrared thermal imager, and a 5-km

laser rangefinder. The visible light camera can achieve 30× optical

zoom and output video images with a 1,920 × 1,080 resolution; the

stabilization accuracy of the photoelectric platform reaches 0.5

mrad, the rotation range can reach 360°, and the pitch angle can

reach 70° up and down. Based on this optoelectronic platform, the

“JiuHang750” USV collected images in the areas of Yellow Sea to

test the detection ability of the algorithm in the maritime

environment in October and December 2021 and February

2022. The video screenshots are shown in Figure 8.
Frontiers in Marine Science 08
4.2 Experimental environment
and parameters

To ensure experimental consistency, all experiments in this

study were carried out under the same hardware platform and

software framework. All models used an NVIDIA RTX2080Ti

GPU (11 GB) for training and testing. The operating system was

CentOS 7, the test framework was PyTorch1.9.0, and the CUDA

version 10.2 was the parallel computing framework. The

networks were trained for 200 epochs.
4.3 Analysis of results

4.3.1 Comparison with other object
detection algorithms

In this section, we evaluate the performance of the proposed

improved YOLOv5 algorithm. Multiple evaluation indicators

were used to evaluate the performance of the different object

detection algorithms, including Average Precision (AP),

Precision (P), Recall (R), and F1-score. The mean average
FIGURE 7

Randomly selected sample images from the dataset.
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precision (mAP) was adopted to evaluate the accuracy of the

object detection algorithms. P was adopted to measure the

algorithm classification accuracy, and R was used to measure

the recall ability of the algorithm detection. The F1-score can

consider both P and R. The frames per second (FPS) is an

important indicator to evaluate the speed of a target detection

algorithm, which indicates the number of frames per second

processed by the detection algorithm. The calculation formulas

are presented as follows:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
Z 1

0
PR · dR (6)

F1   =   2� P � R
P + R

(7)
Frontiers in Marine Science 09
mAP = o
n
i=1APi
n

(8)

where P represents the precision rate, R represents the recall rate,

TP represents the situation where the prediction and label are

both ships, and FP represents the situation where the prediction

is a ship but the label is the background; FN represents the

situation where the prediction is the background but the label is

the ship. n represents the number of classes.

Four deep learning and two lightweight algorithms were

used to compare with the proposed algorithm, including SSD,

YOLOv3, YOLOv4, YOLOv5, YOLOv3-tiny, and YOLOv4-tiny.

The specific test results in Table 1 show that the proposed

algorithm achieves the best results between detection speed and

accuracy, and its detection precision is better than SSD,

YOLOv3, YOLOv4, YOLOv3-tiny, and YOLOv4-tiny. The

ship detection precision of our study is 0.7% and 1.5% higher

than that of YOLOv3 and YOLOv4, respectively, and 28.8% and

43.9% higher than that of YOLOv3-tiny and YOLOv4-tiny,

respectively. The FPS value of our algorithm was 138. The

detection speed of our algorithm is faster than that of SSD,
A B

FIGURE 8

(A) “JiuHang750” USV and (B) its video images collected under different weather conditions.
TABLE 1 Performance comparison of SSD, YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5 and the proposed algorithm in the ship dataset.

Methods mAP0.5 (%) mAP@0.5:0.95 (%) P (%) R (%) F1 (%) Model size (M) FPS

SSD 95.2 72.1 81.3 85.7 83.4 92.6M 83

YOLOv3 95.9 77.3 95.1 94.8 94.9 117M 54

YOLOv3-tiny 72.6 31.4 67.0 72.4 69.6 16.6M 149

YOLOv4 93.5 77.5 81.2 96.4 88.1 488M 26

YOLOv4-tiny 88.9 63.9 51.9 91.5 66.23 45M 98

YOLOv5 95.3 70.9 95.8 94.5 95.1 13.61M 131

Ours 96.6 79.2 95.8 94.7 95.2 12.24M 138
frontiersi
The bolded areas inside the table represent the best performance.
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YOLOv3, YOLOv4, YOLOv4-tiny, and YOLOv5. The results

show that the detection algorithm of the proposed algorithm

achieves optimal results between speed and accuracy. Therefore,

the ship detection algorithm of our study is suitable for

application to USVs.

Figure 9 shows the Precision–Recall (P–R) curves of

YOLOv3, YOLOv4, YOLOv5, and the proposed algorithm.

The P–R curves represent the predictions of the test set

samples as positive samples under different thresholds, and

different precision and recall rates are obtained. The larger the

area enclosed by the P–R curve with the coordinate axis, the

better the precision and recall of the detection algorithm. After

comparison, it can be seen that the area enclosed by the

algorithm in this study is larger than that of other object
Frontiers in Marine Science 10
detection algorithms. Hence, the algorithm in this paper is

better than the three algorithms of YOLOv3, YOLOv4, and

YOLOv5 in terms of detection performance.
4.4 Comparison of actual test results
of USV

To test the detection effect of the proposed algorithm in an

actual maritime environment, we conducted several maritime

experiments in the Yellow Sea near Qingdao to detect and

classify ships. Figure 10 shows the detection results of the

proposed algorithm and lightweight models YOLOv3-tiny,

YOLOv4-tiny, and YOLOv5 on images collected by the
A B

DC

FIGURE 9

Precision-Recall (P-R) curves of different object detection algorithms on the ship dataset (IoU = 0.5). (A) is from YOLOv3, (B) is from YOLOv4,
(C) is from YOLOv5 and (D) is from our proposed algorithms.
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“JiuHang750” USV. The results show that the proposed

algorithm has the best detection performance in the actual

maritime environment. Each column presents the original

image and the detection results of YOLOv3-tiny, YOLOv4-

tiny, Yolov5, and the proposed algorithm from left to right.

The first row shows a ship clearly. Although YOLOv4-tiny

detects the object, the detection box is significantly smaller

than the actual position of the ship in the image. In the

second row, we show the image of a ship that is far away from

the ship and has wake waves. YOLOv4-tiny recognizes the waves

as a ship object, and the detection accuracy of the proposed

algorithm is significantly higher than that of other detection

algorithms. The third row shows the ship image under the swing

of the USV. YOLOv3-tiny and YOLOv4-tiny also detect the ship

object, but the detection box is inconsistent with the actual

position of the ship in the image; additionally, YOLOv5 does not

detect the ship object. The fourth row shows the image of the

ship under dark clouds; all algorithms detect the ship object, but

YOLOv4-tiny splits one ship object into two different objects.

Furthermore, the accuracy of the proposed algorithm is

significantly higher than that of other detection algorithms.

The fifth and sixth rows show the ship image in the case of

sea fog. Two images do not detect the ship object of YOLOv3-

tiny and YOLOv4-tiny, and the detection accuracy is also low;
Frontiers in Marine Science 11
however, the accuracy rate of the ship object detected by the

proposed algorithm is higher.
4.5 Ablation experiments

To further evaluate the effectiveness of the proposed

algorithm and each module, ablation experiments were

designed, and Table 2 presents the results. Experiment 1 is set

as the benchmark, which demonstrates the performance of

YOLOv5s without any modification. Then, we replaced the

original anchor boxes in experiment 2. In experiment 3, we

added the Ghost module to the backbone structure. In

experiment 4, we included the attention mechanism in the

Neck network structure.

The results show that the mAP increased by 0.11% in

experiment 2 after replacing the original anchor boxes. The

original Conv operation in the backbone was replaced by Conv

stacking with depth-wise Conv in the Ghost module in

experiment 3. Compared with the results achieved by

YOLOv5s, the mAP increased by 0.14% and the size of the

model reduced by 1.45 M. In experiment 4, we integrated the

Transformer into the end of the backbone network and FPN

structure, and the mAP increased by 0.43%. These results show
FIGURE 10

Detection results of different object detection algorithms in various environments collected by “JiuHang750” USV.
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that the addition of the two modules can improve the detection

ability of the algorithm.
5 Conclusions

In this study, an object detection algorithm is improved

based on the YOLOv5 model for USVs. First, based on the shape

characteristics of ships, the K-means algorithm was used to

optimize the initial value of the anchor boxes. Second, the Ghost

module was added to the backbone, thus reducing the size of the

network and improving detection efficiency. Third, we

integrated the Transformer at the end of the backbone and

Neck structures in the YOLOv5 network, thereby improving the

model’s attention to reliable and useful features. Finally, we

conducted experiments to verify the accuracy of the proposed

algorithm and its effectiveness in real-time detection tasks. In

comparison with other deep learning object detection

algorithms, the results show that the proposed algorithm

achieves a mAP of 96.6%. Our model size is the smallest

among all other algorithms used for comparison and only

reaches 12.24 M. The detection results in different maritime

environments are also significantly better than those of other

detection algorithms. Additionally, our algorithm has obtained

good detection results in the sea fog environment. Furthermore,

the proposed algorithm was applied to the vision system of the

“JiuHang750” USV and successfully realized the identification

and classification of the surrounding ships of the USV.

Sea images are easily affected by weather and lighting,

resulting in unclear objects on images; thus, feature extraction

of objects can become difficult. In future research, we can resolve

this problem by focusing on the hardware technology for image

acquisition, image stabilization, and other aspects. In addition,

the dataset used in this study is small in terms of size, and it is

necessary to collect more photos of objects on the sea, and

especially pictures at different times and light conditions.
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TABLE 2 The results of the ablation experiment.
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1 94.80 13.61 131

2 ✓ 94.91 13.61 131
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4 ✓ 95.23 13.60 133

5 ✓ ✓ ✓ 96.6 12.24 138
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