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Short-term effects of estradiol
and bisphenol A on gene
expression associated with early
head mineralization in the
seabass Dicentrarchus labrax
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Mélanie Debiais-Thibaud2 and Camille Martinand-Mari2*

1Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD,
Montpellier, France, 2Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier,
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Introduction: Natural and synthetic estrogens are pollutants found in aquatic

ecosystems at low concentrations reaching ng.L-1 to mg.L-1. At these

concentrations, they are able to interfere with the fish endocrine system.

When waterborne exposure occurs at early life stages, when blood estrogens

concentrations are low, this may have significant consequences for estrogen-

sensitive functions such as skeletal development.

Methods: To better understand how (xeno)estrogens may affect early head

mineralization, 12 days post-hatch larvae of the European seabassDicentrarchus

labrax were experimentally exposed for 4 days to the natural estrogen estradiol

E2 and to the xenoestrogen bisphenol A (BPA), both used at either regulatory

concentration of water quality or a 100 times higher concentration. Head

mineralization level was assessed using Alizarin red staining, together with the

relative quantification of mRNA expression levels of several genes playing key

roles in skeletogenesis and estrogen signaling pathways.

Results: We showed that (xeno)estrogen exposure at early larval stage

increases the expression of skeleton-associated genes: matrix proteins

encoding genes (col1a2, col2a1a, col2a1b, bgp1a, bgp1b, sparc), proteolytic

enzyme encoding genes (ctsk) and transcription and signaling factors (sox9a,

sox9b, ihha, runx2, rankl). Although transcriptional overexpression of these

genes was significant in larvae exposed to 40 ng.L-1 E2 and to 1.6 and 160 mg.L-1

BPA, increased mineralization was detected only in E2-exposed larvae,

suggesting a difference in head skeleton development and remodeling in

BPA-treated larvae.

Discussion:Our results suggest that these phenotypic differences could be due

to the implication of other estrogenic signaling pathways involving both

nuclear and membrane-bound estrogen receptors (ERs and GPERs), but also
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estrogen-related receptors (ERRs). This study brings new insights into the

regulatory mechanisms of skeletogenesis by E2 and BPA and into the effects

of waterborne exposure to (xeno)estrogens on the early skeletal development

of teleost fishes.
KEYWORDS

estradiol, bisphenol A, skeletogenesis, bone mineralization, estrogen signaling,
seabass Dicentrarchus labrax
Introduction

Aquatic environments are the ultimate reservoirs for many

anthropogenic chemicals, including xenohormones, that mimic

the functions of natural hormones. One of the currently best-

studied groups of endocrine-disrupting chemicals are estrogenic

or xenoestrogenic compounds that interact with estrogen

receptors. Bisphenol A (BPA), a synthetic polyphenol,

represent a group of ubiquitous environmental xenoestrogens

that are related in structure, although somewhat different from

estrogens. BPA is a monomer by-product of plastic

manufacturing or product breakdown and is considered as a

concern in aquatic ecosystems and a potential threat to wildlife

and public health (Colborn et al., 1994; Flint et al., 2012;

Careghini et al., 2015; Kalb et al., 2016; Liu et al., 2021). In

seawater, the concentrations of BPA range from several hundred

pg.L-1 to several mg.L-1 in polluted areas (Staniszewska et al.,

2015) exposing fish to this chemical during critical periods of

their development or throughout their entire life cycle. In

aquaculture, the use of polycarbonate plastic plumbing and

epoxy paints may increase BPA exposure due to potential

leaching from aquaculture tanks (Sajiki and Yonekubo, 2003).

The additional use of estrogen-enriched diet to increase

productivity and the sex ratio in favor of females is of concern

(Piferrer, 2001; Gorshkov et al., 2004). If exposure to estrogenic

compounds occurs during early developmental stage when

blood estrogen concentrations are low or undetectable, such

exposure may lead to significant changes and developmental

failures (Chin et al., 2018). Given the potential immediate and

long-term implications for individual growth, survival, and

fitness, identifying the effects and mechanisms of action of

environmental (xeno)estrogens in early life stages is essential.

Estrogen signaling is mediated by several types of receptors:

nuclear Estrogen Receptors (ERs) generate genomic (direct or

tethered) regulation via binding to an Estrogen Response

Element (ERE). Membrane-bound estrogen receptors (G

protein-coupled estrogen receptors, GPERs) lead to non-

genomic regulations and directly trigger cellular signaling

events (Xu et al., 2019). The resulting cellular modifications
02
can span time frames from seconds to hours or days (Prossnitz

and Barton, 2011; Marino et al., 2012; Zuo and Wan, 2017).

Among natural estrogens, 17b-estradiol (E2) is the compound

with highest potency toward estrogen receptors (Tremblay and

van der Kraak, 1998; Brion et al., 2012; Delfosse et al., 2014; Le

Fol et al., 2017). Most vertebrates have two ER-encoding genes:

era (or esr1) encoding the ER-alpha protein (ERa), and erb (or

esr2) encoding ER-beta protein (ERb). BPA can mimic the

action of the E2 via its binding to ERs and elicit estrogenic

action in vivo and in vitro despite a binding affinity to estrogen

receptors being about 3 to 4 orders of magnitude lower

(Tremblay and van der Kraak, 1998; Björnström and Sjöberg,

2005; Pinto et al., 2014a; Acconcia et al., 2015; Le Fol et al., 2017).

BPA is also able to bind GPER (Thomas and Dong, 2006; Périan

and Vanacker, 2020). Previous studies have shown that the

affinity of estradiol for GPER is some 10-fold lower than it is

for ER (Revankar et al., 2007). In contrast, the affinity of BPA for

GPER is between 8 and 50 times greater than its affinity for ER,

although this represents only a weak binding affinity (Thomas

and Dong, 2006).

The genomic effects of the estrogen signaling through ERs

are modulated by a family of orphan nuclear receptors: the

estrogen-related receptors (ERR). ERRs include ERRa, ERRb,
and ERRg in mammals, and they show strong sequence

similarity to ERa and ERb in their DNA binding and ligand

binding domains, despite their inability to bind estradiol. The

ERRs have a stronger affinity to BPA than ERs (5 nM and 0.2 mM
respectively for ERa and ERb; (Gibert et al., 2011)). Studies in
human and zebrafish highlighted that BPA may exert ligand-

dependent effects disturbing the endogenous estrogen signaling

by linking members of the ERRs (Takayanagi et al., 2006; Tohmé

et al., 2014), but the putative roles of ERRs in BPA estrogen

receptor-independent effects are still poorly addressed.

Though estrogens are commonly referred to as sex

hormones, they play many other key physiological roles by

acting as signaling molecules in a variety of early functions,

including skeleton development and mineral homeostasis (Zuo

and Wan, 2017). Estrogen signaling has an effect in all skeletal

cell types in bony vertebrates: chondrocytes, osteoblasts, and
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osteoclasts (Kousteni et al., 2001; Pinto et al., 2014b; Almeida

et al., 2017; Zuo and Wan, 2017). Chondrocytes are cells

involved in cartilage matrix synthesis and homeostasis. As

such, they provide the supporting architecture for bone

synthesis during the embryonic and early post-embryonic

development. Osteoblasts are involved in the secretion and

mineralization of bone, while osteocytes are osteoblasts

enclosed in the mineralized matrix. Bone renewal over life is

allowed by the degradation activity of osteoclasts (reviewed in

Prein and Beier, 2019). According to Hammond and Schulte-

Merker (2009), osteoclast activity begins as soon as 12 dpf in

zebrafish, synchronously with early head mineralization

(Verreijdt et al., 2006; Aceto et al., 2015). Several studies have

shown the effect of E2 on chondrogenesis and ossification in the

development of the zebrafish craniofacial skeleton (Cohen et al.,

2014; Pashay Ahi et al., 2016; Zare Mirakabad et al., 2019) with

massive inhibition of cranial cartilage development with high

concentrations of E2 (Fushimi et al., 2009; Pashay Ahi et al.,

2016). Similarly, embryonic and larval treatment of the estuarine

mummichog, Fundulus heteroclitus , impacted skeletal

development at high doses of E2 by inhibiting mineralization

but not cartilage development (Urushitani et al., 2002).

The European seabass Dicentrarchus labrax is a non-model

species of high commercial interest for fisheries and aquaculture

where skeletal malformations are a major issue. Although

osteoblasts never turn into osteocytes in this species

(Kranenbarg et al., 2005; Davesne et al., 2018), mononuclear

osteoclasts are still present (Boglione et al., 2013) and the head

skeleton development involves cartilage growth and ossification

(Darias et al., 2010). In this study, we investigated whether

waterborne exposure to (xeno)estrogens impacts early head

mineralization in Dicentrarchus labrax. Since reproduction

and breeding are managed in aquaculture, experimentation in

very early life stages was performed: 12 days post-hatched (dph)

larvae were exposed to a four-day treatment with E2 and BPA,

both used at a regulatory concentration of water quality and a

100 times more elevated concentration. Mineralization was

recorded using Alizarin Red staining and the transcription

levels of several genes playing a key role in skeletogenesis and

estrogen signaling pathways were measured.
Material and methods

Experimental design

Animals
A first cohort of European seabass Dicentrarchus labrax was

used for the developmental longitudinal analysis (6-, 10-, 17-day

post-hatch, dph). This cohort was obtained from in vitro

fertilization of gametes produced by five unrelated wild native

Mediterranean breeders (3 males and 2 females) at the Ifremer

marine station of Palavas-les-Flots (France). The eggs were kept
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in the dark at 12°C and 35 ppt salinity until hatching, then the

salinity of the rearing water was gradually decreased from 35 to

25 ppm (5 ppm/day) and larvae were grown in 500 L tank, at 20°

C, 16/8 hours light/dark photoperiod. The second cohort for

experimental exposure (about 12,000 larvae) was obtained from

the aquaculture farm Les Poissons du Soleil (Balaruc les Bains,

Hérault, France) from natural reproduction of Mediterranean

progenitors. This cohort was transferred directly into McDonald

jars at the Ifremer station of Palavas-Les-Flots at the age of 11-

dph, when the swim bladder was formed to avoid strong

mortality due to manipulation and transfer (10/14 hours light/

dark photoperiod, 17°C, 25 ppt salinity, dissolved 02 above 7.5

mg.L-1). Both cohorts were fed twice a day with type AF INVE®

live artemia nauplii preys (one prey.mL-1). All the experiments

were conducted according to the guidelines of the European

Union (directive 86/609) and of the French law (decree 87/848)

regulating animal experimentation. The experimental design has

been approved by the French legal requirement concerning

welfare of experimental animals (APAFIS permit no.

9045-201701068219555).

Experimental exposure and sampling
E2 (17b-œstradiol, ≥98% purity, Sigma-Aldrich) and BPA

(bisphenol A, ≥99% purity, Sigma-Aldrich) were dissolved at 40

mg.L-1 and 40 g.L-1 respectively, in ethanol (100%, Fluka). Stock

solutions were kept at 4°C in dark conditions. Exposure

solutions were prepared by diluting working stocks in filtered

25 ppt seawater at a final vehicle concentration of 0.0008%

ethanol in solvent control and all treatment groups.

Exposure was conducted in McDonald jars mainly

composed of glass to avoid any additional BPA contamination

of the water due to plastic materials. For each condition, 400

larvae of 11-dph were placed in a recirculated closed circuit

consisting of two 9-L McDonalds jars connected with a 5-L

beaker filled with 25 ppt seawater for a total volume of 22 L per

device (see the experimental setup in Figure S1). They were

acclimated in this experimental setup for 24 hours, then 12-dph

larvae (0.57 ± 0.02 cm standard length, SL) were exposed for 4

days (until 16-dph) to the following nominal concentrations: 0.4

or 40 ng.L-1 E2, 1.6 or 160 mg.L-1 BPA and 0.00008% ethanol for

solvent control. The lowest concentration of exposure chosen for

E2 and BPA is environmentally realistic and refers to regulatory

concentrations applicable to surface water (Water Framework

Directive): Environmental Quality Standards (EQS, Directive

2008/105/EC) or PNECaqua when EQS was not available:

respectively PNECaqua = 1.6 mg.L-1 for BPA (EC, 2008) and

provisional EQS = 0.4 ng.L-1 for E2 (EC, 2018). After this initial

water contamination, E2, BPA and ethanol were delivered using

a peristaltic pump (8-canals, IPC-N, Ismatec) at a renewal rate of

12 hours, through a BPA-free pharmed tube (diameter 0.51 mm,

PharMed® BPT, Saint-Gobain Performance plastics). Half the

volume of water was renewed with freshly contaminated water

every 48-h, and the working solutions delivered by the peristaltic
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pump were also freshened. Larvae were fed twice a day during

exposure with artemia nauplii from AF INVE® (1 prey.mL-1).

The stability of temperature, salinity, dissolved oxygen

concentration and ammonia was checked every day.

After 4 days of exposure, 16-dph larvae were collected and

euthanized in 100 ppm benzocaine on ice. Twelve larvae of each

condition were individually imaged under a binocular

stereomicroscope to measure their standard length and to

assess possible bladder abnormalities and flash frozen in liquid

nitrogen and stored at -80°C for subsequent molecular analysis.

The remaining larvae were collected for Alizarin Red staining,

used for visualizing the mineralized elements. They were fixed

48-h at 4°C in 4% paraformaldehyde prepared in phosphate

buffer saline adjusted at 25 ppt, then dehydrated in ethanol and

stored at −20°C.
Biometric and bladder analyses

The mean survival rate between 12 and 16 dph was 29 ±

14%, which is consistent with the survival rates recorded in

aquaculture at these early life stages (Villamizar et al., 2011). The

mean growth percentages were +18% for solvent control (0.70 ±

0.03 cm) and E2 0.4 ng.L-1 (0.70 ± 0.06 cm), +14% for E2 40

ng.L-1 (0.67 ± 0.04 cm) and + 20% for BPA 1.6 mg.L-1 (0.71 ±

0.04 cm) and BPA 160 mg.L-1 (0.71 ± 0.04 cm) between 12 and 16

dph, without any significant difference in larval size between the

different treatments at the end of the exposure. Abnormal swim

bladder was observed in 33% of 12-dph individuals at the

beginning of the exposure, while it was 37 ± 10% in 16-dph

individuals with about ⅔ of over-inflation and ⅓ of under-

developed swim bladders. Larvae with abnormal bladder were

discarded for subsequent mRNA or Alizarin analyses.
Alizarin staining and mineralization level
determination

Fixed larvae were gradually rehydrated in Ethanol/KOH

0.5% (v/v) then in KOH 0.5%. They were depigmented by

incubation in a 0.3% hydrogen peroxide in KOH 0.5%

solution for 30 minutes in the dark, washed in KOH 0.5%,

incubated overnight in a solution of 0.01% Alizarin red in KOH

0.5%, and washed in KOH 0.5%. Stained larvae were transferred

in graded series of KOH 0.5%/glycerol and then stored and

imaged in 100% glycerol. Staining was carried out

simultaneously for all treatments to avoid technical variability

of the staining.

For each pictured individual after Alizarin staining (ventral

and lateral views), head mineralized structures were identified

and counted. Based on the mineralization level of each cranial

unit studied (0: no mineralization, 0.25: 1 quarter mineralized,

0.5: half mineralized, 0.75: 3 quarter mineralized, 1: fully
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mineralized), an overall mineralization score was assigned to

each larva corresponding to the sum of the cranial unit

mineralization scores (see Supplementary data Figure S2 as an

example of mineralization level quantification).
mRNA expression analysis

Selection of target genes
Sequences of selected genes were retrieved from gene models

derived from the seabass genome draft assembly (dicLab v1.0c)

(Tine et al., 2014). Orthology of each candidate gene with other

vertebrate genes was tested by phylogenetic reconstruction (data

not shown). Several classes of genes were selected, including

cartilage and bone structural matrix proteins: the type I collagen

encoding gene (col1a2), known to be expressed in the

perichondrium and osteoblast cells in the zebrafish (Li et al.,

2009; Eames et al., 2012), and two homologs of the type II

collagen encoding genes col2a1a and col2a1b, known in

zebrafish to be divergent in their function, respectively

expressed in chondrocytes and perichondrium/osteoblast cells

(Dale and Topczewski, 2011; Eames et al., 2012). We further

identified calcium-interacting matrix protein encoding genes: a

single sparc gene, expressed in osteoblasts of Oreochromis

mossambicus (Weigele et al., 2015) and Takifugu rubripes

(Kaneko et al., 2016); both bgp1a and bgp1b paralogs present

in most teleost fishes including in seabass (Leurs et al., 2021)

while the bgp1a gene is known to be expressed in zebrafish

osteoblasts (Topczewska et al., 2016). We also selected the tissue

nonspecific alkaline phosphatase (alp) gene for its critical role in

the mineralization mechanisms (according to Yang et al., 2012),

and both paralogs encoding for Indian hedgehog factors (ihha

and ihhb), that are expressed by chondrocytes in the zebrafish

(Avaron et al., 2006) and ihha has been shown to be a

chondrocyte-secreted signaling factor that activates osteoblasts

(Paul et al., 2016). We identified three transcription factors that

are classically associated with the differentiation of chondrocytes

(sox9) and osteoblasts (runx2 and sp7) (Yan et al., 2002; Li et al.,

2009; Topczewska et al., 2016). In the zebrafish, both runx2a and

runx2b are expressed in osteoblasts and chondrocytes, although

with higher levels in osteoblasts (Eames et al., 2012). In the

medaka, both sox9a and sox9b are involved in chondrogenic

differentiation (Wang et al., 2020). We selected three genes

known to be expressed along with osteoclast activity: the rankl

gene, an osteoclast activator synthesized by osteoblasts (Imangali

et al., 2021), and ctsk and acp5 genes that are two classical

markers of osteoclast remodeling activity (To et al., 2015). Note

that ctsk is also expressed at early stages of skeletal development

in chondrocytes and perichondrium/osteoblast cells in the

zebrafish (Petrey et al., 2012; Sharif et al., 2014). Regarding

estrogen signaling, we used both duplicates of the estrogen

receptor beta erb1 and erb2 (due to the teleost-specific whole

genome duplication) and the only known copy for the estrogen
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alpha receptor era that all have previously been identified in

Dicentrarchus labrax (Halm et al., 2004), both genes of

membrane G protein-coupled estrogen receptor gpera and

gperb identified in Dicentrarchus labrax (Pinto et al., 2018)

and the five estrogen receptor-related receptors (erra, errb1

and errb2, errga and errgb) isolated from Dicentrarchus

labrax databases.

RNA extraction and reverse transcription
RNA extraction was performed on whole larvae, using the total

RNA extraction kit which includes a DNase step (Nucleospin®

RNA, Macherey-Nagel, Germany). Quantity and purity of

extraction products were verified using a UV spectrophotometer

(NanoDrop™ One/OneC Spectrophotometer, Thermo Scientific,

Waltham, MA, USA). RNA quality was checked using Bioanalyzer

2100 and RIN levels were all above 8. Reverse transcription was

performed using one microgram of RNA using the qScript™

cDNA SuperMix (Quanta Biosciences™) providing all necessary

components for first-strand synthesis: buffer, oligo(dT) primers,

random primers and qScript reverse transcriptase.
Quantitative real-time polymerase chain
reaction

Real time q-PCR conditions were as follows: 2 min

denaturation at 95°C followed by 35 cycles (95°C for 30 s, 61°C

for 45 s and 72°C for 1 min) followed by a final elongation step at

72°C for 4 min. All measurements were run in triplicates, and no-

template control (water) Ct was above 40. The reference genes

18S, EFa and L13 were tested according to previous studies

performed in seabass (Mitter et al., 2009). According to

Normfinder stability analysis (Andersen et al., 2004), L13 and

EFa did not fit the stability criteria and 18S was the most stable

reference gene. Therefore, relative mRNA levels were normalized

to 18S rRNA levels and expressed as DDCt (Ct, threshold cycle

number) as described by (Pfaffl, 2001) using solvent control as a

reference for treatment effect comparison, or 6-dph condition as a

reference for longitudinal analysis of mineralization-related gene

expression. Primer sequences and efficiencies are given in Table 1.

Gene expressions with Ct greater than 32 were considered under

the limit of quantification, as was the case for era, gpera and errgb

genes in both the 6-10-17 dph longitudinal analysis and the

analysis of E2 and BPA treatment effects (data not shown).

These genes are not further discussed.
Estrogen response element identification
The putative presence of Estrogen Response Elements

(EREs) in the non-coding regions surrounding candidate genes

was assessed by automatic identification of the ERE consensus

motifs (Bourdeau et al., 2004): 5’ AGGTCA nnn TGACCT 3’.

On each locus, non-coding regions (10kb before and 5kb after

the transcription start) were extracted from the seabass genome

and given as input to EREfinder (Anderson and Jones, 2019),
Frontiers in Marine Science 05
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EREfinder was used with a 15b-wide sliding window, sliding one

base at a time to calculate a dissociation constant (Kd) specific to

the estrogen receptor b (rat ERb). EREfinder reports the inverse
of Kd, so that larger values represent stronger binding. For each

locus, only the EREs with 1/Kd values higher than 0.08 were

kept. These EREs correspond to those with one perfect half-site

and only one substitution (AT - CG) on the other half.
Statistics

Statistical analyses were performed on GraphPad Prism

(version 6, GraphPad Software Incorporated, La Jolla, CA 268,

USA). Since data did not fit normality or homoscedasticity

assumptions, differences between groups were tested using the

nonparametric Kruskal-Wallis test followed by Dunn’s multiple

comparison test. Multiplicity adjusted p-value are given,

accounting for familywise error rate due to multiple pairwise

comparisons. The strength and direction of the linear

relationship between fish standard length and head

mineralization level was tested using the nonparametric

Spearman correlation test (p<0.05). To compare the effect of

treatment on mineralization levels, nonparametric ANCOVA

was performed to test differences between predicted non-linear

regression curves using the r package fANCOVA (0.6-1). Three

pairwise comparisons were made for each data set. Therefore,

the significance threshold was adjusted to p <0.017 according to

the Bonferroni correction.
Results

Morphological and molecular
aspects of mineralization in
control rearing conditions

Only the otoliths, cleithrum and jaws are mineralized at 12

dph in control conditions, similarly to the previous description

of (Darias et al., 2010) (Figure 1A). In addition to these

structures, the parasphenoid, branchial arches and

basioccipital bones are mineralized at 16 dph (Figure 1C). At

these stages, the vertebrae are not visible as they are not yet

mineralized under our rearing conditions (Figure 1).

Three larval developmental time points were chosen to

compare the expression levels of selected genes involved in

early skeletal initiation in a first cohort: (i) 6 dph, when only

the cleithrum and maxillary have started their mineralization;

(ii) 10 dph, when the mandibular has started its mineralization;

(iii) 17 dph, when the mineralization of many other cephalic

structures is undergoing (Table 2).

While col1a2 expression appears constant over time, the

chondrocyte-associated col2a1a showed a decrease in expression
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TABLE 1 Primers used for the analysis of gene expression by quantitative RT-PCR and their efficiency.

gene (protein encoded) Primer sequence (5’-3’) Efficiency % Sequence Id (reference)
Matrix proteins

sparc (osteonectin) F: GAGGCTGTTAGATCGTCCCG 97 DLAgn_00112870

R: GGCCTCGTCAAACTCTCCAA

bgp1a (osteocalcin 1a) F: GCCAGTGACAACCTTGCTCA 100 DLAgn_00186150

R: CCATAGTAGGCGGTGTAGGC

bgp1b (osteocalcin 1b) F: CATCGTTGCCGCATACACTG 100 DLAgn_00181030

R: CCTTTTAGTCCTGGGGCTCC

col2a1a (collagen alpha-1a(II) chain) F: CCCTGCTGATGCCAGTGCC 100 DLAgn_00128260

R: TGCACCAACTTCTCCGCGTGA

col2a1b (collagen alpha-1b(II) chain) F: AGCCGACCAGGCTTCCGGAAA 100 DLAgn_00095140

R: ACCAGTTCTTGCGAGGGATGC

col1a2 (collagen alpha-2(I) chain) F: AGAGCCAAGGACTACGAGGT 92 DLAgn_00200090

R: GTTCTTCTGGGCGATGCTCT

Phosphatase and proteolytic enzymes

acp5 (tartrate-resistant acid phosphatase type 5) F: TTATCTCTGCGGCCATGACC 97 DLAgn_00177200

R: TGGGAGAGGACAGTGCGATA

alp (alkaline phosphatase) F: GACGAGAGAAACCTGGTGCA 84 DLAgn_00096700

R: CCCCAGGTTCAAAGAGACCC

ctsk (cathepsin K) F: GTCCGAGAAGATGACTGGCC 97 DLA_LG16_000100

R: AACAAGAGCCACAGGAACCC

Transcription and signaling factors

sox9a (SRY-box transcription factor 9a) F: CTCAAGGGCTACGACTGGAC 95 DLAgn_00098680

R: CGGGTGATCCTTCTTGTGCT

sox9b (SRY-box transcription factor 9b) F: GCCGATTCTCCAGCGTCTAG 93 DLAgn_00190250

R: GTCCACAGCTCCAAAGTCGA

sp7 (osterix) F: GTGCAGGGCTGATTGAGAGT 99 DLAgn_00095250

R: AGTTGGGGCAGTCACATGAG

runx2 (runt-related transcription factor 2) F: GAGAGGATGAGGGTGAGGGT 100 DLAgn_00067520

R: TGGTAGAGTGGACTGAGGGG

ihha (indian hedgehog ligand a) F: CTCACCCCGAACTACAACCC 100 DLA_LG24_000240

R: CATAGTGCAGCGACTCCTCC

ihhb (indian hedgehog ligand b) F: ACGAGTCCAAAGCCCACATT 88 DLA_LG15_002450

R: CCGTGACCGTCTGATGTTGA

rankl (receptor activator of NFkB ligand) F: GAACGCCCTGAGAGACACAA 96 DLAgn_00054660

R: GTTTCCCCTTCTGGTAGCCC

Nuclear estrogen receptors

era (nuclear estrogen receptor alpha) F: CGCCAACCCACCACTATC 95 DLA_LG17_005350

R: CAGGACCACACCCCGTAG

erb1 (nuclear estrogen receptor beta 1) F: CCACGTCCAGGGTGAGAG 100 AVK43095.1

R: TGTTGGCGGAAGCTAAGG

erb2 (nuclear estrogen receptor beta 2) F: GTGGAGGGCATCATGGAG 100 AVK43096.1

R: GTCGACAGGCCCATTTTG

Membrane estrogen receptors

gpera (G protein-coupled estrogen receptor alpha) F: GCCACCCTTCTCCCTTTCACC 98 DLAgn_00191960

R: TTCGCCCAATCAGAGAGTAGCAT (Pinto et al., 2016)

gperb (G protein-coupled estrogen receptor beta) F: ACAGCAGCGTCTTCTTCTTAACC 92 DLAgn_00100480

R: AGATGAGGACACCCAGATAAGGCAG

(Continued)
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level between 6 and 10 dph which was maintained at 17dph,

while the perichondrium/osteoblast-associated col2a1b

increased expression between 6 and 17 dph. These patterns

were consistent with the timing of mineralization initiation in

the head of the larvae. The three genes sparc, bgp1a and alp

exhibited an increase in their expression levels detected at 17

dph, with a start as early as 10 dph for bgp1a (Table 2).

Regarding ihha and ihhb, sox9a and sox9b, runx2 and sp7

genes, no significant transcriptional regulation of these

signaling and transcription factors was detected according to

developmental timing (Table 2). Though a 1.9-fold transient

decrease in ctskmRNA expression was observed at 10 dph, when

compared with its expression at 6 dph, the expression of rankl

and acp5 genes did not significantly change in the earliest phase

of skeletal mineralization (Table 2).

Regarding estrogenic signaling related genes, we detected an

increased expression of erb1 between 10 and 17 dph, but no

variation of erb2 in this time window (Table 2). Concerning the

gper family, only gperb was detected and its mRNA expression

increased between 6 and 10 dph. Among the five estrogen-

related receptors, errb2 and errga expression is constant over

time, erra and errb1 expression decreases at 10 dph and 17

dph, respectively.

Comparisons between gene expression levels show that

extracellular matrix genes have the highest levels of expression,

i.e. the three structural collagen genes (col1a2, col2a1a, col2a1b)

and sparc are 10 to 100 times more represented than the others

(Figure 2), which highlights the intense secretory activity of

skeletal cells (chondrocytes and osteoblasts) over this period. In

addition, the estrogen-related receptors erra, errb1 and errga are
Frontiers in Marine Science 07
about one order of magnitude more expressed than the nuclear

estrogen receptors erb1 and erb2 (Figure 2) suggesting their

potential functioning in ER signaling modulation at these

developmental stages, despite not identifying in which cell

types they are expressed.
E2 and BPA exposures disrupt
morphological and molecular aspects of
larval mineralization

Variation of head mineralization levels in 16-dph larvae is

represented in Figure 3. Head mineralization score is positively

correlated to the standard length for every treatment with

Spearman correlation coefficient values ranging between 0.68

and 0.88 (p<0.001). Larvae exposed to E2 40 ng.L-1 for 4 days

exhibit significantly higher head mineralization levels compared

to the solvent control, along the full range of observed sizes

(from 0.55 to 0.75 cm; nonparametric ANCOVA, p<0.01,

Figure 3A). Conversely, no significant difference in head

mineralization level was statistically detected between larvae

exposed to E2 0.4 ng.L-1, BPA 1.6 and 160 mg.L-1 compared to

the solvent control.

No significant effect of E2 0.4 ng.L-1 treatment could be

detected on the expression of any of the selected

skeletogenesis-related genes. Conversely, the E2 40 ng.L-1

induced a significant increase in expression of 9 out of 16

genes (Figure 4), four of them are expressed by osteoblasts

(col1a2, col2a1b, sparc and runx2), one (ihha) is expressed by

hyper t roph ic chondrocytes to act iva te os teob las t
TABLE 1 Continued

gene (protein encoded) Primer sequence (5’-3’) Efficiency % Sequence Id (reference)

Estrogen-related receptors

erra (estrogen-related receptor alpha) F: CCGTGAACTGGTCGTCATCA 86 DLAgn_00040210

R: AAAACGGCGAGCAAGTTGAC

errb1 (estrogen-related receptor beta 1) F: GAGAGTAGCCAGCACCAGGA 93 DLAgn_00021470

R: GGGGTCTCCTTCTCCTGAGT

errb2 (estrogen-related receptor beta 2) F: TCCCTGACCCTCTCTGCTAC 100 DLAgn_00069380

R: AGCATGCCAGGGTTGAACAT

errga (estrogen-related receptor gamma a) F: TCTAGTCCTGCCTCCCTGAC 99 DLAgn_00156640

R: CACACCAGACACAGCCTCTT

errgb (estrogen-related receptor gamma b) F: CATCGTTGCCGCATACACTG 85 DLAgn_00068750

R: GCCTCTCTCTGAAAGCCTGG

Reference RNA

18S (ribosomal protein) F: AGGAATTGACGGAAGGGCAC 91 KU820862

R: TAAGAACGGCCATGCACCAC (Masroor et al., 2018)

L13a (ribosomal protein) F: TCTGGAGGACTGTCAGGGGCATGC 96 DT044539

R: AGACGCACAATCTTGAGAGCAG (Lorin-Nebel et al., 2014)

EF1a (elongation factor-1 alpha) F: GGCTGGTATCTCTAAGAACG 99 AJ866727

R: CCTCCAGCATGTTGTCTCC (Lorin-Nebel et al., 2006)
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differentiation, both sox9a and sox9b are expressed during

chondrogenesis and two genes (rankl, ctsk) are expected to

be expressed by osteoclasts. The expression of skeletal genes is

significantly modified only with high concentrations of E2 and

seems to act mostly on bone secreting (osteoblasts) and

degrading (osteoclasts) cells.

In contrast, we observed a general tendency towards a dose-

dependent up-regulation of most tested genes in both BPA

exposure experiments (Figure 4). Exposure to BPA 1.6 mg.L-1

induced a significant over-expression of 6 of the 16 studied
Frontiers in Marine Science 08
genes: three extracellular matrix markers (col1a2, bgp1b and

sparc), the transcription factor sox9b and the osteoclast markers

rankl and ctsk. This effect is quite similar to the observed results

of E2 40 ng.L-1 treatment. In contrast, the exposure of BPA 160

mg.L-1 has a significant effect for 11 of the 16 genes studied, and
often with a stronger overexpression than the values obtained

after E2 40 ng.L-1 exposure (Figure 4; Table 3). The BPA

treatment with high concentration therefore has a stronger

impact on gene expression for all skeletal cells, both

quantitatively and qualitatively.
FIGURE 1

Lateral views of D. labrax larvae at 12 dph [(A) 5.4 mm SL] and 16 dph [(B) 6.2 mm SL]. Ventral view of D. labrax osteocranium at 16 dph
[(C) 7.1 mm SL]. BOC, basioccipital; CBR 1-4, ceratobranchial 1-4; CH, ceratohyal; CL, cleithrum; HSY, hyosymplectic; MAX, maxillary; MD,
mandibular; O, opercular; Oth, otholiths; PASPH, parasphenoid; UPJ, upper pharyngeal jaw. Bone nomenclature was assigned according to
Gluckmann et al., 1999 and Kužir et al., 2004.
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E2 and BPA exposures impact
differentially the expression of er, gper
and err gene families

No significant effect of the E2 0.4 ng.L-1 treatment could be

detected on the expression of any of the ER or ERR encoding genes

(Figure 5). Conversely, E2 40 ng.L-1 induced a significant

overexpression of gperb, erra, errb2 and errga. This exposure

condition also induced a weak (about 2-fold) but non-significant

up-regulation of erb1 and erb2 (Table 3). Three estrogen-related

receptors were induced in response to BPA: errb2 and errga at BPA

1.6 mg.L-1, and erra at BPA 160 mg.L-1. In contrast to the results

obtained with E2 treatments, gperb mRNA expression was not

significantly modified by BPA exposure but the expression of erb2
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was significantly overexpressed compared to solvent control in

response to both tested concentrations of BPA. As a consequence,

in both cases, the effects of exposure might be amplified by a

putative better availability of estrogen receptors (Gperb with E2, or

ERb with BPA), and of estrogen-related receptors.
Putative EREs are found in most of up-
regulated skeletal genes

The estrogen-ER genomic signaling pathway involves the

binding of ERs to ERE in the promoter of the target genes. ERRs

can also bind the ERE and they may act as modulators of this

genomic pathway (Acconcia et al., 2015; Tanida, 2022). We tested
TABLE 2 Longitudinal analysis of mineralization-related genes and estrogenic endocrine control related genes mRNA expression according to
developmental timing in 6-, 10- and 17-dph individuals maintained in control rearing conditions (first cohort).

gene (protein encoded) 6-dph 10-dph 17-dph
Matrix proteins

col1a2 (collagen alpha-2(I) chain) 1.74 ± 2.175 1.08 ± 1.27 1.67 ± 1.62

col2a1a (collagen alpha-1a(II) chain) 1.34 ± 0.88 0.54 ± 0.45 (p = 0.0378) 0.53 ± 0.37 (p = 0.0195)

col2a1b (collagen alpha-1b(II) chain) 1.47 ± 1.56 6.98 ± 11.17 15.85 ± 9.57 (p = 0.0022)

sparc (osteonectin) 1.31 ± 1.41 2.34 ± 1.56 62.29 ± 54.06 (p < 0.0001)

bgp1a (osteocalcin 1a) 1.12 ± 0.52 3.16 ± 1.58 (p = 0.0137) 5.04 ± 1.62 (p < 0.0001)

bgp1b (osteocalcin 1b) 0.96 ± 0.44 0.90 ± 0.79 1.37 ± 0.50

Signaling and transcription factors

sox9a (SRY-box transcription factor 9a) 1.12 ± 0.55 1.21 ± 0.33 1.22 ± 0.25

sox9b (SRY-box transcription factor 9b) 1.10 ± 0.46 1,15 ± 0.39 1.27 ± 0.29

ihha (indian hedgehog ligand a) 1.02 ± 0.21 0.84 ± 0.31 0.96 ± 0.30

ihhb (indian hedgehog ligand b) 1.02 ± 0.21 1,12 ± 0.57 1.38 ± 0.91

rankl (receptor activator of NFkB ligand) 1.12 ± 0.52 1,22 ± 0.53 1.37 ± 0.46

runx2 (runt-related transcription factor 2) 1.10 ± 0.48 1.16 ± 0.34 1.45 ± 0.45

sp7 (osterix) 1.15 ± 0.59 1.50 ± 0.98 1.42 ± 0.75

Phosphatase and proteolytic enzymes

alp (alkaline phosphatase) 1.66 ± 1.89 4.19 ± 4.58 9.71 ± 8.08 (p = 0.0033)

acp5 (tartrate-resistant acid phosphatase type 5) 1.09 ± 0.42 0.93 ± 0.31 1.06 ± 0.22

ctsk (cathepsin K) 1.18 ± 0.61 0.63 ± 0.16 (p = 0.0091) 1.26 ± 0.40

Nuclear estrogen receptors

erb1 (nuclear estrogen receptor beta 1) 1.08 ± 0.42 1.20 ± 0.90 2.16 ± 0.85 (p = 0.0045)

erb2 (nuclear estrogen receptor beta 2) 1.09 ± 0.47 0.75 ± 0.27 1.00 ± 0.31

Membrane estrogen receptors

gperb (G protein-coupled estrogen receptor beta) 1.04 ± 0.28 1.49 ± 0.48 (p = 0.0302) 1.05 ± 0.18

Estrogen-related receptors

erra (estrogen-related receptor alpha) 1.10 ± 0.49 0.63 ± 0.40 (p = 0.0303) 0.65 ± 0.12 (p = 0.0268)

errb1 (estrogen-related receptor beta 1) 1.07 ± 0.40 0.67 ± 0.36 0.49 ± 0.13 (p < 0.0001)

errb2 (estrogen-related receptor beta 2) 1.20 ± 0.67 1.07 ± 0.55 0.66 ± 0.20

errga (estrogen-related receptor gamma a) 1.13 ± 0.54 0.94 ± 0.55 0.75 ± 0.20
Relative mRNA levels are expressed as DDCp with 6-dph individuals set as a reference. A non-parametric Kruskal-Wallis test was performed followed by Dunn’s multiple comparison test to
compare the mean rank of 10- and 17-dph individuals with the mean rank of 6-dph individuals (exact multiplicity adjusted p-value is given). Mean ± s.d., n=14. Up-regulated genes are
highlighted in bold green and down-regulated genes are highlighted in bold red.
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the presence of putative ERE consensus sequences in the non-

coding sequences of all 23 genes, with 1/Kd>0.08 threshold: nine

genes displayed one putative ERE (col1a2, col2a1a, col2a1b, sox9a

and sox9b, rankl, erb2, gperb, errb2) while acp5, erra and errga had

two putative EREs and sparc and ctsk had three in their vicinity

(Table 3). In these conditions, no ERE was identified in the 15kb

surrounding the promoter region for bgp1a and bgp1b, ihha and

ihhb, runx2, sp7, alp, erb1 or errb1. Putative EREs were therefore

identified in the vicinity of 14 of the tested genes, of which 13

showed modified expression after E2 and/or BPA exposure. Only

acp5 showed no significant change in its expression after E2 or

BPA exposure despite the detection of two putative EREs. The

expression of col2a1a and erb2was not altered in the E2 treatments

but increased in the BPA treatments. Of the 9 genes without any

detected ERE, 5 genes (ihhb, sp7, alp, erb1 and errb1) display no

response to E2 and BPA treatments, supporting independence of

their transcriptional regulation from a genomic estrogen signaling.

Despite the absence of putative ERE, two genes (bgp1a and bgp1b)

have their expression induced by the BPA treatments only, the

ihha gene had its expression induced by E2 40 ng.L-1, and runx2

had its expression increased at E2 40 ng.L-1 and BPA 160 mg.L-1.

Discussion

Early larval stages of skeletal
development are impacted by
estrogenic compounds

Since early developmental stages are often more sensitive

to xenobiotic exposure, studying the potential precocious
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deleterious effects of xenobiotics is of great interest in

ecotoxicology and aquaculture. The potential physiological

disturbance due to estrogenic compounds exposure occurring

at early life stages, when blood estrogen concentrations are low

or undetectable, have to be addressed, because low

concentration of estrogens may potential ly lead to

significant endocrine disruption or other developmental

failures (Chin et al., 2018). In non-model species of

ecological interest, early life stages are generally less

considered due to rearing or other technical difficulties, yet

in the European seabass Dicentrarchus labrax, as in other fish

species, critical developmental steps for survival occur

(Chatain and Dewavrin, 1989): mouth opening and

exotrophy start around 4-5 dph (Barnabé, 1974; Cucchi

et al., 2012) and the correct establishment of the swim

bladder occurs between 3 and 7 dph (Chatain, 1986). In our

study, the rates of swim bladder anomalies observed were in

the range of those commonly observed in aquaculture in

Dicentrarchus labrax (Chatain and Dewavrin, 1989; Miller,

2009). Its early skeletal development is cephalic and is linked

with the function of collecting food and the development of

the respiratory function. We detected an acceleration of head

mineralization as a result of specifically the E2 40 ng.L-1

treatment (not detected in any BPA treatment, or lower E2

treatment), showing that exposure to waterborne estrogens

has an impact on fish skeletal development even at early

larval stages.

In the present study, despite the lack of phenotypical effects

in most of our 4-day treatments, results obtained after

exposure to E2 (40 ng.L-1) and BPA (1.6 and 160 µg.L-1)

suggest that both molecules exert a stimulatory effect on

skeleton-related genes, in a dose dependent manner. The

identification of putative ERE in the promoters of most of

the up-regulated skeleton genes supports the hypothesis of

genomic regulatory pathways as a result of E2 and BPA

exposure. The concentration of E2 40 ng.L-1 induced a

significant increase in expression of genes known to be

expressed by osteoblasts and hypertrophic chondrocytes,

involved in osteoblast differentiation. This transcriptional

induction of osteoblast-linked gene expression suggests a

stimulation of osteoblast activity, but also of osteoblast

differentiation (runx2 and ihha are early cell differentiation

markers), having as a physiological consequence more head

mineralization (Figures 3A, 4, 6). In addition, the

concentration of E2 40 ng.L-1 also induced a significant

increase in expression of genes known to be expressed by

osteoclasts involved in bone remodel ing. A lower

concentration of E2 did not induce such changes in gene

expression, suggesting that estrogenic signal has to be strong

to have an effect at early stages where the level of estrogen

receptors, and therefore estrogen sensitivity, is low.

Interestingly, ihha and runx2 do not have putative ERE while

both their expression was increased upon treatment with E2 40
FIGURE 2

Relative mRNA levels of mineralization-related genes and estrogen-
related endocrine control in 16-dph (n=8-10) individuals
maintained in control rearing conditions (second cohort). Relative
mRNA levels are expressed as DDCpwith the bgp1a gene used as a
reference. In boxplots, hinges indicate first and third quartiles;
whiskers indicate the min and max values, and horizontal lines
indicate the median.
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ng.L-1. This up-regulation could be indirect and mediated by

other transcription factors, or could be due to non-genomic

regulation pathways (Björnström and Sjöberg, 2005) including,

at least in part, Gperb (Pinto et al., 2014b).

Compared to E2, BPA treatment exerted an overlapping

but wider positive effect on the transcriptional expression of

skeletal genes. Notably, the matrix proteins encoding genes

col2a1a, bgp1a and bgp1b were upregulated only by BPA and

not by E2 (Figures 4, 6). These genes are considered to be

chondrocytes and osteoblasts derived (Dale and Topczewski,

2011; Eames et al., 2012; reviewed in Leurs et al., 2021) though

in situ hybridization techniques would help to localize mRNA
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expression to specific cell types in the seabass. However, the

significant stimulatory effect of BPA was not correlated to any

significant change in head mineralization (Figure 3B). The

lack of significant induction of major precocious signaling and

transcription factors (namely sox9a, ihha, ihhb, runx2) may

explain that the head of larvae exposed to BPA 1.6 mg.L-1 was
not more mineralized than in controls. In contrast, BPA 160

mg .L-1 exposure resul ted in the same or stronger

transcriptional activation of mineralization-related genes, as

compared to E2 40 ng.L-1 (Table 3). However, a stronger

activation of osteoclast-related genes was detected in BPA 160

mg.L-1 exposed larvae, as shown by higher levels of
A

B

FIGURE 3

Distribution of head mineralization level as a function of the fish standard length (cm) in 16-dph individuals exposed for 4 days at nominal
concentrations of E2 0.4 and 40 ng.L-1 (A), BPA 1.6 and 160 mg.L-1 (B) and ethanol 0.0008% (v/v) as a solvent control (A, B). Linear regression
curves are shown to illustrate the linear relationship. Since data does not fit normality assumption, a non-parametric Spearman’s correlation
coefficient r was calculated to evaluate the strength and the direction of the monotonic relationship. A nonparametric analysis of covariance
was used to test the difference between two treatments. The p-value is given in the table (ns, not significant according to the Bonferroni
adjusted p<0.017 threshold).
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transcription of rankl (10.3-fold changes versus 4.4-fold in E2

40 ng.L-1) and ctsk (6.7-fold changes versus 4.0-fold in E2 40

ng.L-1) (Table 3). This suggests that the balance between bone

mineralization (due to chondrocytes and osteoblast markers

activation) and bone degradation (due to osteoclast markers

activation) may be differentially regulated by E2 and BPA at

elevated concentrations (Figure 6). To confirm this

hypothesis, osteoclast activity should be validated by TRAP/

ACP5 staining in larval tissues. Overall, our results suggest

that E2 exerts a positive physiological effect on head

mineralization and that BPA does not strictly mimic this

pos i t ive e ffec t a t ske le ta l l eve l , though BPA can

transcriptionally induce the same genes as E2 (Figure 6).
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BPA versus E2 effects

The genomic effect of both E2 and BPA may act through

the ERb1 endogenously up-regulated in larvae during the

studied developmental stages (Table 2). In both BPA

treatments, this genomic effect may be also amplified through

ERb2 whose expression was induced (Figure 5). However, E2

40 ng.L-1 exposure may activate or amplify a non-genomic

activity as the expression level of gperb is increased (Figure 5).

In mammals, GPER is expressed in osteocytes, osteoclasts,

osteoblasts and chondrocytes and is involved in estrogen-

induced bone growth and development (Urushitani et al.,

2002; Heino et al., 2008). GPERs are known to be involved in
FIGURE 4

Relative mRNA expression of mineralization-related genes in 16-dph individuals exposed for 4 days at nominal concentrations of E2 0.4 and 40
ng.L-1, BPA 1.6 and 160 mg.L-1, and ethanol 0.0008% (v/v) as a solvent control. Relative mRNA levels are expressed as DDCp with solvent control
as a reference (n=8-10 individuals). In boxplots, hinges indicate first and third quartiles; whiskers indicate the min and max values, and horizontal
lines indicate the median. Difference between treatments was tested using the non-parametric multiple comparison test Kruskal-Wallis,
followed by Dunn’s post-hoc test. Black stars indicate significant differences compared to the solvent control (multiplicity adjusted p-value:
*p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001).
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scale mineralization in seabass (Pinto et al., 2016). It may be

hypothesized that the difference between E2 and BPA effects is

an over-activation of the non-genomic pathway by E2, as

opposed to an over-activation of the genomic pathway by

BPA. This may expla in the di ff erent outcome in

mineralization. Despite this difference, both molecules

similarly impact erra, errb2 and errga expression levels.

During bone development, ERRs were previously shown to

be involved in the differentiation and functional activation of

osteoblasts and osteoclasts (Bonnelye and Aubin, 2013). The

fact that EREs were found in the erb2, gperb, erra, errb2 and

errga promoters supports the hypothesis for a potential

crosstalk between nuclear ERs and orphan ERRs in the
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European seabass. Indeed, the ERRs have been postulated to

modulate E2 signaling by either synergizing or competing with

ERs in regulating multiple shared transcriptional targets

(Horard and Vanacker, 2003; Cheung et al., 2013). In

contrast to ERs, ERRs assume an active state without a ligand

being bound to the ligand binding domain (LBD) (Kallen et al.,

2004) which makes them constitutive transcription factors

when linked to their ERR-response Element (ERRE).

However, BPA was suggested to modify ERRs genomic

activity through its binding, making BPA also a modulator of

ERR activity (Tohmé et al., 2014). In addition, the presence of

ERREs was identified in human bgp (Wang and Wang, 2013).

As a consequence, some observed variations between E2 and
TABLE 3 ERE consensus motif detection and summary of the significant effects of E2 and BPA treatments on the expression of the selected genes.

gene # ERE E2 40 ng.L-1 BPA 1.6 mg.L-1 BPA 160 mg.L-1

Matrix proteins

col1a2 1 5.2 (**) 4.6 (*) 6.9 (****)

col2a1a 1 ns ns 2.3 (**)

col2a1b 1 2.9 (*) ns 4.2 (***)

bgp1a 0 ns ns 1.9 (*)

bgp1b 0 ns 5.8 (**) 7.5 (**)

sparc 3 3.9 (**) 3.9 (*) 4.4 (*)

Signaling and transcription factors

sox9a 1 3.5 (*) ns 3.5 (**)

sox9b 1 2.7 (*) 2.7 (*) 3.5 (***)

ihha 0 2.8 (**) ns ns

ihhb 0 ns ns ns

rankl 1 4.4 (*) 4.8 (**) 10.3 (***)

runx2 0 2.1 (*) ns 2.3 (*)

sp7 0 ns ns ns

Phosphatase and proteolytic enzymes

alp 0 ns ns ns

acp5 2 ns ns ns

ctsk 3 4.0 (*) 4.4 (*) 6.7 (****)

Nuclear estrogen receptors

erb1 0 ns ns ns

erb2 1 ns 3.2 (**) 3.0 (*)

Membrane estrogen receptors

gperb 1 1.5 (*) ns ns

Estrogen-related receptors

erra 2 3.2 (*) ns 3.6 (**)

errb1 0 ns ns ns

errb2 1 3.8 (*) 4.2 (**) ns

errga 2 3.4 (**) 2.8 (*) ns
# ERE: number of ERE detected with 1/Kd >0.08 threshold. The fold-changes compared to the solvent control are given with the significance level (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001); ns: no significant effect.
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BPA exposure effects on the transcriptional gene activation,

such as those of bgp1a and bgp1b, might be coming from this

effect of BPA on ERRs. In mice, in silico analysis found putative

ERRE sites in the promoter regions of a number of skeletal

development genes, including ihh and runx2 (Cardelli et al.,

2013). This could explain observed upregulations of genes

without an identified ERE (ihha and runx2) in our E2 and/or

BPA treatments. Our data highlight the importance of

including ERRs in future research on the effects of (xeno)

estrogens on physiology, given their putative interaction with

estrogen signaling pathways, especially in teleost where their

role is probably very underestimated.

The action of E2 and BPA also do not seem to be strictly

similar on ERRs: in our experiment, the expression of erra

was activated by high concentrations of both E2 and BPA,

whereas errb2 and errga were activated only following E2 40

ng.L-1 and BPA 1.6 mg.L-1 exposure (Figure 5). In mouse,

ERRa is highly expressed throughout the osteoblast

developmental sequence and plays a physiological role in

bone formation in vitro (Bonnelye et al., 2001) and has been

shown to regulate the expression of sox9a/b and the

downstream genes necessary for cartilage development

during zebrafish embryogenesis (Kim et al., 2015). As a

consequence, our variation of sox9a and sox9b expression

might also result from disruption of the endogenous ERR

effects. In mice, ERRg negatively regulates chondrocyte
Frontiers in Marine Science 14
proliferation and positively regulates matrix synthesis to

coordinate growth plate organization (Cardelli et al., 2013),

and its activity is thought to be dependent on Runx2 (Cardelli

and Aubin, 2014). ERRg was also previously shown to

negatively regulate osteoblast differentiation and bone

formation (Jeong et al., 2009). These variations effects of

ERRg on skeletal cells may also explain why E2 treatment

result in more calcium deposition, while BPA treatment does

not lead to this morphological effect.

This study brings new insights into the regulatory

mechanisms of skeletogenesis by E2 and into the effects of

waterborne exposure to BPA on early skeletal development of

a marine teleost fish. More detailed insights into their effects on

cell activity would require functional and cell-centered studies,

in particular in situ hybridization of genes associated with

mineralization for their specific cell type localization, and

activity assays such as TRAP/ACP5 or ALP. Regarding the

regulation of estrogenic signals, complex ligand-dependent

and ligand-independent pathways could be at stake,

involving the different subfamilies of estrogen receptors,

with potential cross-talks. Our results suggest that the role

of ERR and the interaction between estrogen-linked signaling

pathways are probably very underestimated especially in

teleost. Last, beside the membrane-bound and estrogen

(-related) receptors, emerging data from in vitro and in

silico models show that BPA binds with a significant
FIGURE 5

Relative mRNA expression of nuclear and membrane estrogen receptor genes and estrogen-related receptor genes in 16-dph individuals
exposed for 4 days at nominal concentrations of E2 0.4 and 40 ng.L-1, BPA 1.6 and 160 mg.L-1, and ethanol 0.0008% (v/v) as a solvent control.
Relative mRNA levels are expressed as DDCp with solvent control as a reference (n=8-10 individuals). In boxplots, hinges indicate first and third
quartiles; whiskers indicate the min and max values, and horizontal lines indicate the median. Difference between treatments was tested using
the non-parametric multiple comparison test Kruskal-Wallis, followed by Dunn’s post-hoc test. Black stars indicate significant differences
compared to the solvent control (multiplicity adjusted p-value: *p < 0.05; **p < 0.01).
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number of hormone receptors, including androgen receptors,

as well as the thyroid hormone receptor, glucocorticoid

receptor, and PPARg (Delfosse et al., 2012; MacKay and

Abizaid, 2018; Cimmino et al., 2020), all of them playing a

role in the development and maintenance of cartilage and

bone (Zuo and Wan, 2017; Gouveia et al., 2018; Chou et al.,

2021). This wider range of signalization for BPA might be

another aspect explaining the differences observed between E2

and BPA treated larvae.
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FIGURE 6

Transcriptional and physiological effects of E2 exposure (orange color, (A) 40 ng.L-1), and BPA exposure (green color, (B) 1.6 µg.L-1, (C) 160 µg.L-
1). Bold and colored gene names in each panel represent transcriptional upregulation in this condition. Grey squares with gene names represent
the putative presence of ERE. Colored arrows represent putative retroaction of the exposure on the signaling pathway, on either its genomic or
non-genomic aspects. Bone deposition and resorption, and mineralization, are sized following according to the putative effects of each
exposure onto these physiological processes (see discussion for details).
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SUPPLEMENTARY FIGURE 1

Experimental setup for treatments: two Mac Donald jars were connected
to allow for an optimal larval density per jar. The 5-L glass beaker serves as

a transitional container that collects the overflow from both jars but also
as a receiver of the continuous recontamination provided by the

peristaltic pump. A recirculation pump returns the contaminated water
to the 2 jars. The flow rate of the whole system is regulated by quarter-

turn valves.
SUPPLEMENTARY FIGURE 2

Quantification of the level of head mineralization from alizarin red

staining: comparison between a TS larva versus an E2 40-treated larva
of the same size. For each larva, the picture of its stained head and the

corresponding mineralization score table are given as an example, to
illustrate the method.
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