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Assessment of underwater
navigation safety based on
dynamic Bayesian network
facing uncertain knowledge
and various information

Ming Li1, Ren Zhang2*, Xi Chen1 and Kefeng Liu1

1College of Advanced Interdisciplinary Studies, National University of Defense Technology,
Changsha, China, 2Collaborative Innovation Center on Meteorological Disaster Forecast, Warning
and Assessment, Nanjing University of Information Science and Engineering, Nanjing, China
As ocean environment is complicated and varied, underwater vehicles (UVs) are

facing great challenges in safe and precise navigation. Therefore, it is important

to evaluate the underwater ocean environment safety for the UV navigation. To

deal with the uncertain knowledge and various information in the safety

assessment, we present an evaluation model based on the dynamic Bayesian

network (DBN) theory. Firstly, characteristic indicators are extract from marine

environment systems and discretized with Cloud model. Then, the DBN is

constructed through structure learning and parameter learning based on

Dempster-Shafer (DS) evidence theory. Finally, the dynamic evaluation and

risk zoning of the navigation safety is realized based on Bayesian probabilistic

reasoning. The DBN-based assessment model fully considers the uncertainty

of influence relationships betweenmarine environment and UV navigation, and

effectively fuses expert knowledge and quantitative data for assessment

modeling. The experimental results show the proposed model has high

reliability and good value of application.

KEYWORDS

underwater navigation, safety assessment, Bayesian network, uncertainty,
incomplete information
1 Introduction

With the development and utilization of ocean by human beings, a large number of

underwater vehicles (UVs) have been put into use continuously, such as oceanographic

survey, scientific experiment and resource exploration. As the activity space of UVs, the

complex marine environment is the most crucial factor that restricts their performance.

Evaluating the impact of marine environment on the navigation safety is the premise and
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basis for the effective application of UVs. Therefore, it is of very

practical value to establish and improve a scientific evaluation-

decision system for UV navigation safety in the face of complex

marine environment.

Domestic and foreign studies on the navigation safety

assessment of UVs are mainly include two categories: One is the

kinetics simulation based on the equations of motion. Xu et al.

(2012) established the underwater hovering equation of the UV,

and used the PID method to simulate its hovering in order to

control the stability under water. Liu et al. (2006) started from the

generation mechanism of internal wave and the motion

characteristics of UVs, and deeply analyzed the force of internal

wave on the UV navigation. Licéaga-Castro et al. (2008) added the

sea wave as a disturbance force to the motion equations, and

analyzed the course control of UVs in the case of wave disturbance.

Because the simultaneous equations of UV motion are nonlinear,

high order and multi-dimensional, it is difficult to obtain an

analytical solution. Most of the researches on kinetics simulation

focus on analyzing the influence of one single marine variable on

the UV navigation. The combined effects of multiple environmental

factors are not easy to analyze with the kinetics simulation.

The other is the comprehensive evaluation of navigation

safety based on system science and management science. Wang

et al. (2010) adopted the analytic hierarchy process (AHP)

method to establish an assessment system for the UV

navigation, and conducted a semi-quantitative assessment for

the impact from marine environment with expert knowledge. Fu

(2012) combined the member function transfer algorithm and

the fuzzy comprehensive evaluation (FCE) method based on the

over-standard weight, to evaluate the navigation safety of UVs.

Liu and Song (2008) used the spatial analysis method based on

the geographic information system (GIS) to fuse the marine

environmental information that affects the UV, and carried out

the risk zoning of maritime space. Xu and Yang (2015)

introduced the intuitionistic fuzzy Vague set theory to evaluate

the navigation safety, which fully expresses the ambiguity of the

impact of marine environment on the UV navigation. Jia (2018)

used the fuzzy logic reasoning model and Dempster-Shafer (DS)

evidence theory to construct an assessment model, and evaluated

the marine security situation of UV navigation through weighted

fusion of marine environmental information. By establishing the

indicator system and evaluation model, the comprehensive

impact of various marine environmental factors on the UV

navigation can be evaluated quantitatively. This paper focuses on

the second research.

As we all know, the navigation safety assessment of UV is a

system engineering. On the one hand, the marine environment is

a complicated system containing many variables. Environmental

factors are coupled and interact with each other, and the

influencing mechanism between the UV navigation and
Frontiers in Marine Science 02
marine environment is significantly nonlinear and uncertain.

It is difficult to establish an accurate analytical model for

navigation safety assessment. On the other hand, the data

types of navigation assessment modeling are diverse, including

both large datasets, small samples and qualitative information.

There are sufficient quantitative data for marine environmental

variables, but the correlation samples between the environment

and UV navigation are very scarce, which are mostly qualitative

descriptions. It can be seen that the uncertainty of knowledge

and the diversification of modeling information have caused

great difficulties in the navigation safety assessment of UVs.

However, the evaluation methods used in the above studies

cannot deal with the problems well: AHP method achieves the

evaluation modeling by establishing a hierarchical index system,

but it cannot describe nonlinear relationships between

environmental factors and the UV navigation. FCE method

only considers the ambiguity of the influencing mechanism in

one side, and ignores the uncertainty such as randomness. Both

AHP and FCE are carried out based on experience and

knowledge of experts in the modeling course, causing strong

subjectivity (Li et al. 2021a). By contrast, the DS evidence theory

has ability in dealing with the uncertainty of the navigation

safety assessment through fusing uncertain and imprecise

information, but it is difficult to express and reason about

complex relationships among various environmental factors,

especially non-linear relationships. In addition, the above

evaluation methods are weak in processing multi-source

heterogeneous data and cannot achieve effective fusion of

quantitative data and qualitative knowledge. To sum up, for

the safety assessment of UV navigation, it is urgent to develop

new assessment models under the conditions of uncertain

knowledge and diversiform information.

Bayesian network (BN), as the typical representative of

uncertain artificial intelligence (AI) algorithms, is a powerful

tool for modeling with complex systems. It has been effectively

applied in many complicated problems such as natural disaster

assessment, ship navigation assessment, and financial risk

assessment (Zhang, 2003; Li et al. 2018a; Li and Hong, 2018b).

Based on probability theory and graph theory, BN is a quantitative

causal graph model, which can not only deal with the uncertainty

of complicated problems through probability theory, but also

express complex relationships with the help of topology structure.

Most importantly, based on prior probability and conditional

probability, BN can effectively achieve the fusion of qualitative

knowledge and quantitative data, so it is suitable for processing

diverse data types. Therefore, we will introduce the BN theory for

the safety assessment modeling of UV navigation.

Through the above analysis, there are many problems

including various influencing factors, nonlinear influencing

relationships, and diverse modeling information in the
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navigation safety assessment, causing great uncertainty. Besides,

it is worth noting that the marine environment is constantly

changing, and the impact of environmental factors on the UV

navigation is also dynamic. However, the existing studies have

hardly carried out the dynamic assessment for navigation safety

of UVs. In view of the above problems, we adopt the dynamic

Bayesian network (DBN) to evaluate the UV navigation safety.

Based on the new BN learning algorithm proposed by the author

of this article (Li et al. 2021b), the dynamic assessment model for

the UV navigation safety is constructed through indicator

extraction, structure construction, parameter learning and

probabilistic reasoning. The chapters are organized as follows:

Section 2 introduces the basic theory of DBN, and presents the

technical route of evaluation modeling based on DBN. Section 3

carries out the evaluation modeling of UV navigation safety, and

Section 4 discusses and analyzes the evaluation results.
2 Evaluation theory and models

In this section, we first introduce the basic theory of DBN

and its learning methods. Then we design the technical

framework of the DBN-based assessment model and give a

brief elaboration of the technical procedure.
2.1 Dynamic Bayesian network

Bayesian network (BN) is first proposed by Judea Pearl

(1998) and includes the classical Bayesian network (CBN) and

the dynamic Bayesian network (DBN), whose theoretical basics

are graph theory and probability theory. DBN is an

improvement of CBN, which integrates the time correlation

into CBN to explain the temporal causality. Therefore, DBN is a

dynamic reasoning model with an ability of probabilistic analysis

and prediction of temporal information.

According to Bayesian theory, BN is a directed acyclic graph

expressing the causal relationship among variables, which is

composed of nodes, directed arcs, and conditional probability

distribution tables (CPTs). The nodes represent the variables; the

arcs represent the causal relationships (cause-to-effect); CPTs

express the strength of the causality quantitatively. DBN is an

extension of CBN in the time dimension, and could be explained

by a bigram 〈B0, B!〉
Fron
• BO denotes the initial network, that is the CBN in each

time slice. It contains the network structure and CPTs of

nodes at the same time;

• B!denotes the transition network, which contains the

structural arcs and the transition probability distribution

of nodes in contiguous time slices.
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Define a variable set X=(X1,X2,⋯,Xn) and a finite time

segment (0,1,⋯,T), then the joint probability distribution of

X0,…,XT is:

P(X0,…,XT ) = P(X0) ·
YT
t=1

YN
i=1

P½Xt
i ∣ p(X

t
i )�  (1)

Where: Xt
i denotes the node i in the time slice t; p(Xt

i )

denotes the parent of Xt
i . The probabilistic reasoning with

different time slices and different node states is achieved by Eq.1.

The construction of DBN includes structure learning and

parameter learning: the former requires to construct B0 and B! ;

the latter requires to determine the conditional probability P((Xt
i ∥

p(Xt
i )) and the transition probability P(Xt∥Xt−1). Based on the

network structure and probability distribution, posterior probability

of each nodes in different time slices can be obtained by reasoning,

achieving probabilistic prediction of network nodes. Previous

studies have summarized two common learning approaches for

DBN: manual construction based on professional knowledge and

automatic learning based on intelligent algorithms (Chickering et al.

2012). In this paper, we use the combination of subjective

knowledge and objective data for DBN learning.
2.2 Modeling technology framework

It has been stated in Introduction that the navigation safety

assessment of UVs is a systematic engineering with multi-factor

influence, nonlinear correlation and dynamic change, which is

full of high uncertainty and manifested in the following

specific characteristics.

①Multiple factor: Temperature, salinity, density, ocean

current, mesoscale eddy, internal wave, ocean front, spring

layer, seafloor topography and other oceanic phenomena and

oceanic systems all have a significant impact on the navigation

safety of UVs. There are many indicators involved in the

navigation evaluation modeling.

②Nonlinear effect: The interaction and coupling among

environmental variables are complex, and the influence

relationship between factors and the UV navigation are

significantly nonlinear, which are difficult to express intuitively

through linear functions.

③Diverse data types: The modeling information of UV

navigation safety not only includes quantitative environment

data, but also includes unstructured semantic information, such

as expert experience knowledge and case samples. The diversity

of assessment information sources leads to the diversity of

data types.

④Incomplete information: Due to the lack of information

collection methods during the navigation of UVs, it is extremely

difficult to obtain modeling information, and the correlation

information between environmental factors and UV navigation
frontiersin.org
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is extremely scarce, and the sparse data cannot meet the basic

requirements of conventional statistical modeling.

Aiming at the above difficulties, DBN is a powerful model for

complex system modeling. The nonlinear relationship among

multiple variables can be effectively handled through probabilistic

network. However, it should be pointed out that the problem of

incomplete information causes certain obstacles to network

learning. Data-driven network learning algorithms are difficult to

apply practice. To solve this problem, the author of this paper has

proposed a novel network learning algorithm based on DS evidence

theory (Li et al. 2021b). The algorithm steps are shown as follows:

Network Parameter Learning Algorithm Based on DS
Evidence Theory

Input: Incomplete dataset of network nodes

Output: Optimal parameters of network nodes

Step 1: Determine initial weights of nodes based on expert knowledge.
Using Dempster combination rules to fuse expert knowledge to
generate prior weights;

Step 2: Use the coefficient of variation method to determine the objective
weight of nodes;

Step 3: Integrate the prior weight with the objective weight, and use the
Monte Carlo method to generate the initial conditional probability
distribution of the node;

Step 4: The expectation maximization (EM) algorithm is used to generate the
optimal conditional probability distribution of nodes.
Frontier
DS evidence theory is an uncertain reasoning theory jointly

established by Professor Dempster (1967) and Shafer (1976),

which has been integrated with other intelligent approaches in

recent years and applied to such fields as target identification,

safety assessment and military command (Aven et al, 2014;

Sridharan, 2015; Zhao et al. 2022). The basic concepts of DS

evidence theory are as follows.
• Definition 1: Let Q be a recognition frame, if the set

function m: 2Q![0,1] satisfies m(F)=0 and o
A∈Q

m(A) =

1, then m is the basic credibility distribution on the

recognition frame Q . If A⊂Q and A≠F , then m(A) is

the basic credibility of proposition A. Ifm(A)>0 , then A

is called a focal element of evidence, and the set of all

focal elements is called the core.

• Definition 2: Let m1, m2 be the two basic credibility

distribution functions on the same recognition frame,

and their focal elements are A1, A2, ⋯, Ap and

B1, B2, ⋯, Bq , respectively. The combined result of

m1, and m2 is denoted as m1⊕m2 , and the evidence

combination rule is expressed as shown by Eq.2.
m(A) = m1 ⊕m2 =

1
1−K o

Ai∩​Bj=A
m1(Ai)m2(Bj), A ≠ F

0,  A = F

8<
: (2)
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where: i=1, 2,⋯, p ; j=1, 2,⋯, q ; K = o
Ai∩​Bj=F

m1(Ai)m2(Bj).

1
1−K is planning factor. When K=1 , the combination rule cannot

be applied. For the combination of multiple evidences, this rule

can be used to fuse them in sequence.

DS evidence theory defines the famous evidence

combination rule and provides a powerful tool for the

expression, reasoning and fusion of uncertain information.

The above algorithm realizes the evaluation modeling based

on BN under the condition of small sample, which will be used

in the navigation assessment modeling.

Through integrating objective data and expert knowledge,

this paper will combine DS evidence theory and Cloud model to

build a DBN-based assessment model for UV navigation safety.

The modeling technology route is shown in the Figure1.

Firstly, collect the information of evaluation indicators,

including marine variable data, description of UV navigation

rules, and experience of experts; Secondly, quantify and

discretize the indicator data to obtain regular modeling

samples; Then, expert knowledge and index data are combined

for network structure construction and parameter learning, thus

the DBN for UV navigation safety is established; Finally, input

the evaluation index information, and quantitative assessment

and risk division of UV navigation are achieved through

network probabilistic reasoning. In the next section, we will

adopt the above technical route to evaluate the UV navigation

safety in the South China Sea.
3 Navigation safety assessment
modeling

In this section, our proposed assessment model is applied to

evaluate the navigation safety. We first construct characteristic

indicators and divide different levels. Then we combine indicator

data and expert experience to build the network structure and

learn node parameters. Finally, the DBN of UV navigation safety

is established.
3.1 Assessment indicator and
data sources

Studies have shown that ocean current, mesoscale eddy,

internal wave, ocean front, spring layer, seafloor topography

and other oceanic phenomena and oceanic systems have a

significant impact on the navigation safety of UVs (Mo and

Tian, 2012). However, the marine environmental system

described by dynamic equations cannot be directly used for

evaluation modeling, and characteristic indicators need to be

extracted quantitatively. In this section, characteristic

indicators are extracted and constructed by analyzing the
frontiersin.org
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influencing mechanism between UV navigation and marine

environmental factors.

Evaluation indicators should meet the principles of totality,

quantifiability, independence and comparability (Kolluru, 1996).

For the current, the greater the flow rate, the less safe the UV

navigation, so the flow rate is taken as the characteristic index.

For the mesoscale eddy, the stronger the vortex and the higher

the frequency of occurrence, the more unfavorable it is for the

UV navigation. The strength of mesoscale eddy is usually

measured by vortex kinetic energy and vortex amplitude. In

addition, for regions with strong eddies, the RMS of sea surface

height anomalies is also big. Therefore, occurrence frequency of

eddy, eddy kinetic energy, eddy amplitude, and RMS of sea

surface height (SSH) anomaly are selected as the characteristic

indicators of mesoscale eddy. For the internal wave, the greater

the amplitude, the more dangerous the navigation, so we take the

amplitude as the characteristic index.
Frontiers in Marine Science 05
The larger the density gradient, the more unstable the UV

navigation. For the spring layer, the vertical gradient of density is

used as the indicator. For the ocean front, the horizontal gradient

of density is used as the indicator. For geographical terrain, it is

closely related to the parameters of UV itself. The influence of

the distance from obstacles on the navigation safety is connected

to the length of UV. When the distance from the obstacle is long,

if the length of UV is relatively longer, the UV is not necessarily

safe; if the distance from the obstacle is short, but the length of

UV is shorter, the UV is maybe safe. So this indicator is

expressed as “distance from obstacle / UV length”. For the

water depth, if UV has a large seaworthy depth, but the actual

water depth is limited, it is unsafe, so the indicator is expressed

as “water depth − UV seaworthy depth”.

Finally, the evaluation indicator system of UV navigation

safety is constructed as shown in Table 1, and the consistency

analysis of each evaluation indicator is conducted, in order to
FIGURE 1

Assessment modeling route based on DBN.
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clarify the relationship between the indicators and navigation

safety. The data sources of environmental variables are shown in

the Table 2.
3.2 Indicator discretization

Before evaluation modeling based on DBN, it is necessary to

grade the evaluation indicators, that is, to discretize the indicator

data. At present, the commonly used discretization methods

include expert judgment method, natural breakpoint method,

and interval division method (Zeng and Tao, 2013; Li et al,

2021). However, all the above methods achieve the rigid division

for assessment indicators, and leave no regard for the

uncertainty such as fuzziness and randomness. It is easy to

misjudge the level to which the indicator belongs at the level

division boundary.

In view of the shortcomings of the above methods, we use

the adaptive Gaussian cloud transformation (AGCT) algorithm

(Liu, 2015) to divide levels of each evaluation indicator, and then

determine the assessment level to which indicator samples

belongs, and provide a data basis for network structure and

parameter learning. The AGCT algorithm, based on the Cloud

model, does not need to specify the number of concepts in

advance. Considering the data characteristics of actual samples,

it automatically forms multiple categories of concept clouds that

conform to the laws of human cognition, thereby automatically

dividing the data distribution into different concepts. The

specific steps of the AGCT algorithm are presented as follows:

AGCT algorithm

Input: Data sample set X, confusion degree of concepts a

Output: Number of Gaussian cloud according to concept m

Step1: Calculate the number of peaks M of the frequency distribution p of X,
as the initial value of the concept

Step2: Adopt heuristic Gaussian cloud transform to cluster X into M
Gaussian clouds

Step3: Compare confusion degree of Gaussian cloud according to a, adjust
the number of concepts

Step4: Loop Step 2−3 to generate m Gaussian clouds with confusion degree
less than a
Frontier
Each indicator has different spatial and temporal resolutions.

To facilitate the training of DBN, visualization and comparative

analysis of results, regular data processing is first conducted.

Original data of each indicator in the experimental area [100°E-

125°E,0-30°N] from 2001 to 2013 are read, and the bilinear

interpolation method (Zhou and Jing, 2004) is used to

interpolate the data to the regular latitude–longitude grid of

0.25° × 0.25° in order to unify the resolution.

Based on the regularized daily indicator data, the AGCT

algorithm is used to adaptively divide each indicator into
s in Marine Science 06
multiple levels, and then the cloud generator is designed based

on the numerical characteristics of each cloud, which is used to

convert continuous quantitative samples into discrete

evaluation levels.

As shown in Figure 2, flow rate, occurrence frequency of

mesoscale eddy, amplitude of internal wave, and density

gradient are divided into two levels. Kinetic energy of

mesoscale eddy, amplitude of mesoscale eddy, RMS of sea

surface height anomaly, and occurrence frequency of internal

wave are divided into three levels.

Table 3 shows the cloud-based expression of each indicator

level. The means of expression based on the Cloud model

comprehensively considers the ambiguity and randomness of

the grade division, and effectively expresses the uncertainty at

the edge of the level. Based on the above grade division, the

indicator data can be converted into discrete grade samples for

DBN structure and parameter learning.
3.3 Network learning

3.3.1 Structure learning
The construction of the network structure needs to determine

the causal relationship between child nodes and parent nodes. We

take evaluation indicators as network nodes. As for structure

learning of DBN, both the initial network structure in the same

time slice and the transition network structure between adjacent

time slices need to be determined. For the initial network

structure, the constructed indicator is taken as the child node of

the network, that is, the input node; the UV navigation safety is

taken as the parent node, that is, the output node. For the transfer

network structure, we focus on the causal association and

influence of the navigation safety between the adjacent time

slices. With the help of professional expert knowledge, the DBN

structure of UV navigation safety assessment is constructed, as

shown in Figure 3. It should be noted that the time interval

between adjacent time slices in the transfer network is 1 day.

3.3.2 Parameter learning
After the DBN network structure is established, the network

parameters can be learned based on the discrete indicator

samples and the network structure, that is, the influence

relationships among network nodes are quantitatively mined

and expressed in the form of conditional probability. Parameter

learning requires the determination of observation conditional

probability and transition conditional probability (Li et al. 2020).

We adopt the learning algorithm based on DS evidence theory,

supplemented by variation coefficient (VC) method, Monte

Carlo (MC) method and EM algorithm, to learn the

conditional probability distribution of nodes. The algorithm

flow of parameter learning is shown in Figure 4.

Firstly, the indicator weight is determined by a combination

of subjective and objective calculation methods, which has been
frontiersin.org
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proposed in our previous study (Li et al. 2021c). The VC method

is an objective method for calculating weights, and its basic

principle is to determine the weight according to the variability

of data sets. When the information entropy reflected by the

indicator data is smaller, it shows that the variation degree of the

indicator is greater, and the effect of the indicator on the

evaluation object is greater, that is, the bigger the weight.

Based on the modeling samples, the VC method is used to

calculate the objective weight. At the same time, three experts are

invited to determine the weight of each indicator according to

their experience and knowledge, and the DS evidence theory is

used to integrate different expert knowledge to obtain the

subjective weight according to DS combination rule. The

average of the subjective and objective weight is used as the

final weight of each indicator, as shown in Table 4.

Then, the optimal probability distribution of network nodes

is learned by combining MC algorithm and EM algorithm. The

basic idea of MC algorithm is that when the problem to be solved

is the expectancy value of a random variable, the probability of

the variable is estimated from the occurrence frequency by
Frontiers in Marine Science 07
means of a random number simulation experiment. We

conduct 300 random number experiments to generate the

initial probability distribution of each network node, and then

use the EM algorithm to perform iterative optimization to

determine the optimal probability distribution.

Finally, the weights are integrated into the optimal

probability distribution to obtain the weighted probability

distribution. Table 5 shows the conditional probability

distribution between the input node d1, d2, d3 and the output

node W, and Table 6 shows the transition probability

distribution P(Wt∥Wt−1) of the output node W. So far, it is

completed to construct the DBN model for UV navigation

safety assessment.
4 Analysis and discussion
of assessment

The DBN for the navigation safety has been constructed in

Section 3. Input the prior information of the evaluation
TABLE 1 Navigation safety assessment index system.

Assessment Target Marine Environment FeatureIndicator Indicator Properties

Navigation Safety of Underwater Vehicles
( W)

Current Flow rate ( d1) NC

Mesoscale eddy Occurrence frequency ( d2) NC

Eddy kinetic energy ( d3) NC

Amplitude ( d4) NC

RMS of SSH anomaly ( d5) NC

Internal wave Occurrence frequency ( d6) NC

Amplitude ( d7) NC

Ocean front Density horizontal gradient ( d8) NC

Spring layer Density vertical gradient ( d9) NC

Water depth Water depth − Seaworthy depth ( d10) PC

Terrain Distance from Obstacle / Length ( d11) PC
(NC represents negative correlation; PC represents positive correlation).
TABLE 2 Data sources of evaluation indicator.

Evaluation Indicator Data Sources

Flow rate Select the Global Simple Ocean Data Assimilation Analysis System to generate oceanic reanalysis data that matches
atmospheric reanalysis data (SODA).
Spatial resolution: 0.5°×0.5 ° ; Average data coverage period: Since January 1958

Eddy frequency The Chelton eddy data set, which is the eddy data detected by the AVISO satellite altimeter for many years.
Time resolution: 1 day; Spatial resolution: 0.25°×0.25 ° .Eddy kinetic energy

Eddy amplitude

RMS of SSH anomaly Select the gridded sea level anomaly data provided by the AVISO data center in France (Archiving Validation and
Interpretation of Satellite Oceanographic Data).
Spatial resolution: (1/3)°×(1/3)°; Time resolution: 1 day.

Occurrence of frequency and amplitude of
internal wave

Use the monthly gridded data of internal wave constructed by Dr. Wang (2010) through the fuzzy logic inference model.
Spatial resolution: 0.25°×0.25 ° .

Density horizontal gradient
Density vertical gradient

Select global atmospheric reanalysis products provided by ECMWF.
Spatial resolution: 0.125°×0.125°, Time resolution: 6h.
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FIGURE 2

The cloud expression of indicator level. [Flow rate (A); Eddy frequency (B); Eddy kinetic energy (C); Eddy amplitude (D); RMS of SSHa (E); Internal
wave frequency (F); Internal wave amplitude (G); Density horizontal gradient (H); Density vertical gradient (I)].
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FIGURE 3

The DBN structure of UV navigation safety.
TABLE 3 Cloud model expression of indicator level.

Indicator Level Cloud model Discrete value

Flow rate Low risk C1 (0.218, 0.046, 0.009) 1

High risk C2 (0.479, 0.121, 0.013) 2

Eddy frequency Low risk C1 (0.211, 0.042, 0.007) 1

High risk C2 (0.432, 0.086, 0.014) 2

Eddy kinetic energy Low risk C1 (0.028, 0.003, 0.0006) 1

Medium risk C2 (0.103, 0.013, 0.0014) 2

High risk C3 (0.147, 0.018, 0.0021) 3

Eddy amplitude Low risk C1 (3.122, 0.261, 0.0431) 1

Medium risk C2 (8.991, 0.749, 0.1254) 2

High risk C3 (14.11, 1.176, 0.1961) 3

RMS of SSH anomaly Low risk C1 (0.034, 0.004, 0.0006) 1

Medium risk C2 (0.059, 0.007, 0.0007) 2

High risk C3 (0.079, 0.005, 0.0005) 3

Internal wave frequency Low risk C1 (0.211, 0.014, 0.0018) 1

Medium risk C2 (0.402, 0.027, 0.0034) 2

High risk C3 (0.593, 0.039, 0.0049) 3

Internal wave amplitude Low risk C1 (4.211, 0.467, 0.0466) 1

High risk C2 (9.432, 1.048, 0.0107) 2

Density horizontal gradient Low risk C1 (0.152, 0.019, 0.004) 1

High risk C2 (0.358, 0.045, 0.006) 2

Density vertical gradient Low risk C1 (0.132, 0.029, 0.003) 1

High risk C2 (0.319, 0.071, 0.009) 2
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indicators, and the dynamic evaluation and risk zoning of UV

navigation safety could be realized based on Bayesian

probabilistic reasoning. In this section, an activity scenario of

the UV is assumed, and the proposed navigation safety

assessment model is used to conduct a daily probabilistic

assessment of the navigation sea area, in order to test the

feasibility and effectiveness of the DBN-based model. Now

suppose an underwater vehicle: 120 meters long, 10 meters

wide, 66 meters of turning radius, 7500 seconds of turning

period, and 300 meters of maximum diving depth. This

underwater vehicle will sail from position A [110°E, 18°N] to

position B [105°E,0] to perform a task in the sea area shown in

Figure 5, and the sailing time is from October 4 to 14, 2020.

Based on the cloud generator, the evaluation indicators from

October 4 to 14 are discretized and input into the network as

hard evidence. Then the joint tree reasoning mechanism is used

for the network probabilistic reasoning. The assessment model

can output the posterior probability distribution of the

navigation safety for 11 consecutive days.

Figure 6 shows the probability distribution of high risk level

and the corresponding zoning results. From the figures we can

see that, in the South China Sea on October 4th, the near-shore

navigation risk is higher than the off-lying sea; The navigation

risk in the central of the South China Sea is lower (level 1 and 2),

where the probability of high risk is less than 0.2; Taiwan Strait

and its southwest side, the southeast coast of Vietnam, and the
Frontiers in Marine Science 10
Gulf of Thailand have the highest level of navigation risk (level 4

and 5),where the probability of high risk is more than 0.75;

There is a small high-risk area (level 3 and 4) in the northern

part of the South China Sea and the west side of the Luzon Strait.

Figure 7 shows the probability distribution of high risk level

and zoning results of high-risk navigation in the water depths of

75 meters and 100 meters on October 4th. It can be seen that at a

water depth of 75 meters, the southeastern coast of Vietnam has

the highest navigation risk (greater than level 4),where the

probability of high risk is more than 0.8; Lu The Song Strait

and Taiwan Strait also have relatively higher navigation risk

(greater than level 3). At a water depth of 150 meters, the

navigation risk in the entire South China Sea is low, where the

probability of high risk is more than 0.2. There is only a small

high-risk area (level 3) along the southeastern coast of Vietnam.

In order to test the validity of the proposed evaluation

model, we compare the DBN-based assessment model with the

classical FCE method, whose reliability has been well recognized.

The FCE method is used to evaluate the UV navigation safety,

and Figure 8 shows the evaluation results of a certain position

[115°E, 18°N] in the experimental area from October 4 to 14.

The risk degree obtained by the FCE method based on expert

knowledge is [0.301, 0.299, 0.386, 0.495, 0.523, 0.804, 0.852,

0.816, 0.695, 0.423, 0.331], which is basically consistent with the

high-risk probability change trend obtained by the DBN-based

model. The comparative results verify the rationality and
TABLE 4 The weights of assessment indicators.

Indicator Weight Indicator Weight

Eddy frequency 0.109 Flow rate 0.085

Eddy kinetic energy 0.098 Density horizontal gradient 0.073

Eddy amplitude 0.073 Density vertical gradient 0.098

RMS of SSH anomaly 0.098 Water depth - Seaworthy depth 0.062

Internal wave frequency 0.122 Distance from Obstacle / Length 0.073

Internal wave amplitude 0.109
front
FIGURE 4

The algorithm flow of parameter learning.
iersin.org
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credibility of our proposed model. However, the FCE method

can only get a deterministic evaluation result. By contrast, the

DBN model can obtain the probability distribution of different

risk levels at the same time, which fully expresses the uncertainty
Frontiers in Marine Science 11
of navigation safety, and the evaluation results are more

informative, which is conducive to decision-making

and judgment.

Based on the safety assessment of UV navigation, we can

conduct the assistant decision-making for its underwater

activities. The DBN-based assessment model can dynamically

assess the navigation safety according to the changes of the

marine environmental factors. In our experiment, we will

conduct the path planning of the UV based on the dynamic

assessment results of navigation safety updated in real time. The

A* algorithm (Ping et al. 2014) is used to optimally plan the

route from position A to position B. Figure 9 shows the real-time

planning results of the route on the 1st, 3rd, 5th, 7th, 9th and

11th days of the voyage. The navigation safety of the UV

evaluated based on DBN will change with the marine

environmental field, and the route planning will also be

adjusted in real time. Therefore, our proposed assessment

model is able to provide the guidance for UV navigation timely.
5 Conclusion

The navigation safety assessment of underwater vehicles is a

systematic engineering with distinctive characteristics including

multi-factor influence, nonlinear correlation and dynamic

change. The uncertainty of knowledge and the diversification

of information have caused great difficulties to the modeling of
FIGURE 5

Sailing area of the underwater vehicle.
A B

FIGURE 6

Navigation safety assessment on October 4th. [Spatial distriution (A); Level zoning (B)].
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navigation safety assessment. In order to solve these problems,

this paper introduces the DBN, combined with DS evidence

theory and Cloud model, to build a novel assessment model for

the UV navigation safety.

By introducing the DS evidence theory, the structure

construction and parameter learning of DBN can be completed

under the condition of incomplete information, and quantitative

data and qualitative information are fused effectively based on

DBN. The complex relationships among the evaluation indicators

are visually expressed in the form of topology network, and the

influencing mechanism between indicators is quantitatively
Frontiers in Marine Science 12
described with conditional probability distribution. Then the

quantitative evaluation of the navigation safety of UVs is

achieved through network probabilistic reasoning.

Based on probability theory and graph theory, DBN is a

quantitative causal graph model, which can not only deal with the

uncertainty of complicated problems through probability theory,

but also express complex relationships with the help of topology

structure. Most importantly, based on prior probability and

conditional probability, DBN can effectively achieve the fusion

of qualitative knowledge and quantitative data, The proposed

DBN-based evaluation model can conduct the three-dimensional,
A B

FIGURE 7

Navigation safety assessment in different water depths. [75m (A); 150m (B)].
FIGURE 8

Comparison of evaluation results obtained by FCE and DBN.
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FIGURE 9

Real-time route planning results. [Day 1 (A); Day 3 (B); Day 5 (C); Day 7 (D); Day 9 (E); Day 11 (F)].
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daily and dynamic evaluation of UV navigation safety under the

condition of knowledge uncertainty and information

diversification. The experimental results show that the proposed

model has high reliability and good value of application.

But it should be noted that the network structure of DBN is

relatively simple and the construction of causal influence

relationships is subjective. We will use the intelligent

algorithms for structure learning in following-up studies.
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