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Sea level rise is increasing the frequency of high tide flooding in coastal

communities across the United States. Although the occurrence and severity

of high-tide flooding will continue to increase, skillful prediction of high tide

flooding on monthly-to-annual time horizons is lacking in most regions. Here,

we present an approach to predict the daily likelihood of high tide flooding at

coastal locations throughout the U.S. using a novel probabilistic modeling

approach that relies on relative sea-level rise, tide predictions, and

climatological non-tidal residuals as measured by NOAA tide gauges. A

retrospective skill assessment using the climatological sea level information

indicates that this approach is skillful at 61 out of 92 NOAA tide gauges where at

least 10 high tide flood days occurred from 1997–2019. In this case, a flood day

occurswhen the observedwater level exceeds the gauge-specific high tide flood

threshold. For these 61 gauges, on average 35% of all floods are accurately

predicted using this model, with over half of the floods accurately predicted at

18 gauges. The corresponding False-Alarm-Rate is less than 10% for all 61 gauges.

Including mean sea level anomaly persistence at leads of 1 and 3 months further

improvesmodel skill inmany locations, especially theU.S. Pacific Islands andWest

Coast. Model skill is shown to increase substantially with increasing sea level at

nearly all locations as high tides more frequently exceed the high tide flooding

threshold. Assuming an intermediate amount of relative sea level rise, the model

will likelybeskillful at93outof the94gaugesprojected tohave regularfloodingby

2040. These results demonstrate that this approach is viable to be incorporated

into NOAA decision-support products to provide guidance on likely high tide

flooding days. Further, the structure of themodel will enable future incorporation

of mean sea level anomaly predictions from numerical, statistical, andmachine

learning forecast systems.

KEYWORDS

high tide flooding, coastal flooding, seasonal prediction, tide gauge, statistical
prediction, sea level
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Introduction

Tidal flooding is an increasingly common occurrence for

coastal communities across the U.S. Levels of inundation that 50

years ago would only occur with major coastal storms, now often

occur during high tides and fair weather. This type of coastal

flooding, often referred to as ‘high tide flooding’, is usually minor,

with impacts such as flooded streets and sidewalks (Jacobs et al.,

2018), backed-up storm drainage (Obeysekera et al., 2011),

saltwater intrusion (Sukop et al., 2018), or degradation of

wastewater treatment facilities (Hummel et al., 2018). However,

as relative sea levels (RSL) continue to rise acrossmost of the coastal

U.S., the number of occurrences of high tide flood days per year is

rapidly increasing and even accelerating over time at many

locations (Dahl et al., 2017; Burgos et al., 2018; Sweet et al., 2018;

Thompson et al., 2021). Coastal nuisances caused by the high tide

flooding are also becoming more common, such as transportation

and commercial disruptions (Moftakhari et al., 2017a; Hino

et al., 2019).

Many studies project the increasing occurrence of high tide

flood days this century (Sweet and Park, 2014; Vandenberg-

Rodes et al., 2016; Buchanan et al., 2017; Dahl et al., 2017; Sweet

et al., 2018; Ghanbari et al., 2019; Thompson et al., 2019;

Thompson et al., 2021). These approaches are typically

focused on applying statistical methods to sea level rise (SLR)

projections associated with future greenhouse warming

scenarios (Kopp et al., 2014; Sweet et al., 2017; Sweet et al.,

2022). To refine the spatial extent of impacts, there have also

been more localized approaches relying on hydrodynamic

models that include additional contributors to flooding such as

waves and freshwater input from rainfall or rivers (Barnard

et al., 2019). Results of all of the studies suggest a similar

conclusion: that high tide flooding will become a major

environmental challenge for the vast majority of coastal

communities in the U.S. by mid-century, unless the impacts

are successfully mitigated.

High tide flooding is defined as the overflow or excess

accumulation of ocean water at high tide covering low-lying

land, that is increasing in frequency and severity due to sea level

rise (American Meteorological Society, 2022). High tide flooding

is occurring more frequently across the coastal U.S. (Sweet et al.,

2021), and the increase in flood occurrence has negatively

influenced some coastal communities (Kopp et al., 2019).

There is evidence that homes and properties with higher

exposure to coastal flooding have decreased in value relative to

homes with less exposure (Keenan et al., 2018; McAlpine and

Porter, 2018), and more coastal properties than ever before have

increased exposure (Tedesco et al., 2020). Roadways along the

East Coast already see more than 100 million vehicle-hours of

coastal-flood-induced delay on an annual basis (Jacobs et al.,

2018). Flooded infrastructure and reduced commercial access in

some cities are causing a reduction in economic activity

(Hino et al., 2019), and there is evidence suggesting the
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cumulative costs of minor flooding can exceed those of major

events (Moftakhari et al., 2017b).

Coastal communities increasingly need decision-support

information regarding the likelihood of high tide flooding

occurrence, which can aid adaptation and perhaps also help

mitigate future flood impacts. Contrary to the substantial

advances in the study of long-term sea level rise projections,

there has been relatively little effort to provide coastal decision

makers with guidance about seasonal-to-annual sea level

changes . The Nat iona l Oceanic and Atmospher ic

Administration (NOAA) provides annual outlooks on the

likely number of flood days at 98 coastal tide gauges for the

following year (e.g. Sweet et al., 2020; Sweet et al., 2021). This

method relies on trend fits of flood-days-per-year over several

decades to provide a range of likely flood days for the next

meteorological year, but does not provide guidance on when

these floods are likely to occur. Part of the reason for this lack of

forecasting information, beyond the tidal prediction determined

by astronomical cycles and perhaps some climate variability

parameters, are limitations using current-generation global

climate models to skillfully predict the sea level conditions in

many U.S. coastal regions (Long et al., 2021). Although climate

models do show skill predicting seasonal sea level anomalies in

some places (Miles et al., 2014; McIntosh et al., 2015; Widlansky

et al., 2017; Fraser et al., 2019; Sheridan et al., 2019; Shin and

Newman, 2021; Frederikse et al., 2022), the real-time application

of these models for coastal sea level information has been thus-

far limited to the tropical Pacific Islands (e.g., https://uhslc.soest.

hawaii.edu/sea-level-forecasts/).

To provide at least some guidance about the likelihood of high-

tide-flood days, NOAA is already issuing seasonal “High Tide

Bulletins” for the U.S. Coast (https://oceanservice.noaa.gov/news/

high-tide-bulletin/). This product utilizes the tidal prediction,

combined with information about the historical response of sea

levels to seasonal variations in the ocean and atmosphere (e.g.,

thermal expansion, ocean circulation) to provide qualitative

information about which days are most likely to experience

flooding. This calendar-type approach to predicting high tide

flooding using historical information is similar to what has been

done in New Zealand and the tropical Pacific Islands (Stephens

et al., 2014).WhileNOAA’s simple approach is helping identify the

dates when high tide flooding ismost likely for broad regions of the

U.S. Coast, the product does not provide robust probabilistic

guidance or the spatial resolution necessary to make locally-

informed decisions. Furthermore, there is additional sea level

information that is readily available and capable of improving

high tide flooding outlooks.

Here, we demonstrate a new probabilistic approach to

predicting the daily likelihood of high tide flooding (HTF) at

98 NOAA tide gauges on the U.S. Coast including the Pacific

Islands and Caribbean. Our method relies on combining tide

predictions with relative sea level rise estimates and the

climatology of non-tidal residuals (defined as the hourly
frontiersin.org
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difference between the observed water level and the astronomical

tide) to predict the likelihood of exceeding the location-specific

high tide flood threshold. The calculation of probabilities for

specific days differentiates this approach from other HTF

predictive methods which seek to predict monthly or annual

frequencies (e.g. Thompson et al., 2021; Sweet et al., 2021).We

assess the retrospective skill of this approach, and also show that

the HTF prediction skill improves when including information

about the historical persistence of the local mean sea level (MSL)

anomaly. Further, we demonstrate that at nearly all gauge

locations model skill will continue to improve as sea levels rise

over the next several decades.

Inclusion of historical information about the non-tidal

residuals and also persistence of MSL anomalies are the

foundational parts of our new approach to providing HTF

outlooks. This model framework is also adaptable to include

seasonal predictions of coastal sea level anomalies from other

models, such as global climate forecasting systems, which

potentially may lead to further improvements in HTF

prediction skill. The approach developed here will be utilized

to create a probabilistic high tide flooding seasonal bulletin,

which will improve upon existing qualitative guidance by

quantifying the daily flooding probabilities for specific tide

gauge locations. We also expect that this approach will help

guide future research especially concerning the development of

monthly-to-annual predictions of coastal sea level anomalies.
Methods

Water level data

This study relies on hourly water level observations from 98

NOAA tide gauges across the coastal U.S. (Figure 1; Table S1). The
Frontiers in Marine Science 03
gauges were utilized if they had relatively continuous hourly data

since1997, theyearbywhichmost stationshadstartedcollection, and

had defined high tide flood thresholds as detailed in Sweet et al.

(2018). All hourly data undergoes both automated and manual

quality control and assurance by NOAA to remove outliers and

bad data points, and to fill short data gaps as described in Gill and

Schultz (2000). We present the water level data, including tide

predictions, as relative to the local Mean Higher High Water

(MHHW) of the current national tidal datum epoch (1983-2001;

Gill and Schultz, 2000). This excludes stations withmodified epochs

includingPagoPago,American Samoa (2011-2016modified epoch),

Grand Isle, LA (2012-2016 modified epoch) and Rockport, TX

(2002-2006 modified epoch) which have more recent modified

epochs due to rapid vertical land motion (Gill et al., 2014).

Hourly tide predictions from1997 – 2019were calculated from

NOAA stored and manually quality-assured tidal constituents (as

described in Parker, 2007). Up to 37 standard tidal constituents are

utilized, depending on which are statistically significant at each

location. The tide predictions include both the SSA (solar semi-

annual) and SA (solar annual) constituents, which typically resolve

most of the seasonality at each gauge, however the long-term trend

from sea level rise is not included. TheNOAA tidal constituents are

typically based on5 years of observationswithnodal factors applied

utilizing an astronomical formula as described in Parker (2007),

and were used in this study to maintain consistency with NOAA

operational products.

NOAA tide predictions are standardized by referencing

them to MHHW of the current tidal datum epoch (e.g. 1983 –

2001), regardless of what observational time period the

constituents are calculated from. Thus, any relative sea level

rise occurring since the center point of that epoch (usually

1992.5; Table S1) will not be accounted for in the tide

predictions. To account for the long-term trend in relative sea

level at each station, the linear trend in mean sea level (MSL)
FIGURE 1

Map showing the 98 NOAA tide gauge locations used in the study color-coded by region used in the analysis (see legend). The location of four
tide gauges used in detailed examples are indicated with labels and red lines.
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observed over the most recent 40 year period (1980-2019) was

calculated (as in Zervas, 2009) and applied hourly to the tide

predictions with an MSL of 0 at 1992.5, or the center point of the

epoch. This method applies linear regression to the monthly

mean MSL values with the seasonal MSL cycle removes

to calculate the linear trend and corresponding 95%

confidence limits.

A high tide flooding (HTF) occurrence equates to when the

hourly observed water level exceeds the HTF threshold (Table

S1), as described in Sweet et al. (2018). These thresholds were

derived from National Weather Service minor flood thresholds,

which were established at many NOAA tide gauges from years of

flood-impact-monitoring. A linear fit between the empirical

flood thresholds and tidal range at each NOAA tide gauge

enabled calculating minor or HTF thresholds for all 98 gauges

used in this study. The flooding thresholds typically range from

0.5 to 0.7 m above MHHW, except for in the tropical Pacific

Islands including Hawaii where the thresholds are closer to

0.3 m above MHHW. Feedback from users and practitioners in

the Pacific Islands have suggested that the nationally derived

HTF thresholds are too high for Pacific Islands gauges.

Observations support this assessment as the Sweet et al. (2018)

thresholds have been exceeded rarely, if ever, for most Pacific

Islands, despite numerous local reports of minor flooding. The

thresholds for the 11 Pacific Island tide gauges are adjusted here

by applying a regional fit derived from six of 11 gauges with

existing local minor flood thresholds set by the National

Weather Service (following the national method of

Sweet et al., 2018). This results in regional thresholds about

20 cm lower than the national fit, and more closely aligned with

what the National Weather Service has empirically established

for the six gauges in this region.
Daily likelihood calculation

A prediction of the future daily HTF likelihood is based on

the probability of exceedance occurring on a given day. The

components of the hourly observed water level can be defined as:

hobs = hpred + Dmsl + hres (1)

where hpred is the tide prediction, Dmsl is the observed linear-

trend change in MSL relative to the center of the last tidal epoch,

and hres is the non-tidal residual of observations with the linear-

MSL trend excluded. A high tide flood day occurs when

hobs ≥ hthresh (2)

where hthresh is the HTF threshold for a particular tide gauge

location (see Figure 2A for an example of the hourly observed

water level, tide prediction, and flood threshold). Since hpred and
Dmsl are a known or expected baseline water level, we can

consider the freeboard, or the remaining water level until HTF
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occurs as:

Dfree = hthresh − hpred − Dmsl (3)

To determine the daily likelihood of a tide gauge exceeding

hthresh, we must calculate the probability of hres >= Dfree for some

time t. To do this, we first calculated the hourly values of hres for

each gauge from 1997-2019. These data are then binned by

calendar month and by decile of tide range for each gauge.

Binning by month was done to account for observed seasonality

in the residual. Binning by decile of tide range accounts for the

observed dependence of the residual on tidal elevation, which is

especially the case for many of the locations with larger tidal

ranges (see Figure S1). This binning enables the determination of

a climatological distribution of hourly hres, with a climatological

mean (μclim) and standard deviation (sclim) empirically

calculated (see Figure 2B for an example).

The dependence of the residual on tidal elevation (i.e. for a

specific water depth) is assumed to be independent of the time of

year. If we calculate how μclim and sclim for a particular tidal

elevation decile differ from the μclim and sclim for the entire data

set, we can assume this broader relationship holds regardless of

month. This enables the calculation of a tidal elevation

adjustment factor for both μclim and sclim for a particular tidal

elevation decile for each gauge:

madj ið Þ =  
1
no

n

t=1
 hres −

1
n ið Þo

n ið Þ

t=1
 hres ið Þ (4)

where n is the length of the entire 23-year time series and n

(i) represents the length of each tide elevation decile (i). The

calculation of sadj follows the same convention but with

standard deviation. Using this adjustment factor simplifies the

calculation of μclim and sclim for a particular month and tidal

decile, since it can be applied after the monthly calculations are

made. As such, μclim and sclim are calculated for all 23 years of

each calendar month (mo) and tidal elevation decile (i) as:

mclim mo, ið Þ = 1
n moð Þ o

n moð Þ

t=1
hres −  madj ið Þ (5)

where  hres is the mean hourly residual of a given month

and n(mo) represents the 23 calendar month values for each

month for the entire 23-year analysis period (e.g., the mean

residual from all 23 Januaries are averaged together; see

Figure 2C). The calculation of sclim follows the same convention.

These calculations are made with the assumption that the

residual distribution is normal. Although the extremes of the hres

distribution are not well fit by a normal distribution (Wahl et al.,

2017), in this instance we are interested in the bulk of the

distribution (i.e. 5% to 95% occurrence) where normality is a

reasonable assumption (Ghanbari et al., 2019). A visual

assessment indicates that a normal distribution function

provides a reasonable estimation of the observed distribution

(Figure S2).
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From the climatological μclim and sclim a probability density

function (PDF) f is calculated (as in Sweet and Park, 2014) for

each calendar month (see Figure 2D) and each tide decile such

that:

f h,m,sð Þ = 1

s  
ffiffiffiffiffiffi
2p

p e
h  −   mð Þ2
2s2 (6)

Then, the corresponding cumulative distribution function

(CDF; see Figure 2E) for a normal distribution can be defined as:

F h,m,sð Þ =  
1
2

1 + erf
h − m
s

ffiffiffi
2

p
� �� �

(7)

where erf is the error function. The probability of exceedance

Phourly for a specific hourly freeboard water level Dfree can then be

calculated as:

P hres ≥  Dfree  
� �

= 1 − F Dfree,m,s
� �

(8)

Applying this function throughout the entire time series

results in hourly exceedance probabilities from 1997-2019 (see

Figure 2 for an example of the steps leading to this calculation).

From a practical standpoint, we are most interested in the
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probability of flooding for a particular day. Thus, we calculate

the cumulative probability offlooding for each 24-hour period to

realize a daily prediction. The calculation of the daily cumulative

probability is complicated by the temporal dependence of the

hourly non-tidal residuals. To account for this dependence, we

first calculate the autocorrelation, r, of the hourly hres values, and

the maximum probability for each day (Pmax). The

autocorrelation coefficient is then utilized to assess the

dependence of each of the 23 remaining hourly values some

time t away from the maximum probability for a given day. The

cumulative daily probability Pdaily is then calculated as:

Pdaily   = Pmax +  o
23

t=1
P tð Þhourly 1 − r tð Þð Þ	 


(9)

Further, we assess persistence of the monthly MSL anomaly

by performing an autocorrelation of monthly μ and s anomaly

(where the anomaly with the seasonal cycle removed is

calculated by subtracting monthly μclim or sclim from the

detrended monthly μobs and sobs) for the entire 23-year

period at each of the 98 tide gauges. Persistent positive MSL

anomalies have led to elevated periods of HTF in the past on

both the U.S. East (Goddard et al., 2015) and West Coasts
A

B

C D E

FIGURE 2

An example of the data preparation steps for Charleston, SC. The hourly observed water level (orange), SLR adjusted tide predictions (blue) and
minor flood threshold (black line) relative to MHHW are shown (A). Plot (B) shows the monthly non-tidal residual µ (mean of hourly residuals;
green) and s (standard deviation of hourly residuals; red). Plot (C) shows the monthly average or climatological µclim (green) and sclim (red), and
plots (D, E) show the probability density functions and cumulative distribution functions given those µ and s for each month colored by season.
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(Goodman et al., 2018), and strong persistence of the MSL

anomaly has been shown for up to several seasons, especially in

the tropical Pacific (Widlansky et al., 2017; Long et al., 2021).

The assessment of persistence helps to determine if the MSL

anomaly may be incorporated as an additional predictor in the

model, and at what temporal lead time it might be reasonable to

include persistence in a prediction. We perform such an

assessment by comparing the skill performance for the

persistence model to the baseline climatological model.
Skill assessment

Retrospective skill of HTF likelihoods at predicting when the

HTF threshold, hthresh, is exceeded is assessed by comparing the

daily HTF likelihood to occurrences of daily maximum observed

water level exceeding the threshold for each station from 1997 –

2019. The Brier Score (BS) is commonly used to assess skill of a

probabilistic forecast (Wilks, 2019, Wilks, 2010) and is

calculated as:

BS   =  
1
no

n

t=1
Pt − otð Þ2 (10)

Where n is the time series length, t is the timestep, P is the

HTF likelihood, and o is the observed flood occurrence (i.e., if

hthresh was not exceeded, then o = 0; and, if hthresh was exceeded,
then o = 1). BS is effectively the binary equivalent of mean

squared error. BS is equal to zero if the HTF likelihood perfectly

predicts flood occurrence and BS is equal to 1 if it is completely

incorrect. We also compute the Brier Skill Score (BSS) as:

BSS   =   1  −
BS

BSclim
(11)

which relates the skill of the predicted HTF likelihood (BS)

to the skill of the mean climatology reference prediction (BSclim,

which is a constant value calculated as the observed daily average

HTF likelihood from 1997-2019). The BSS is used to determine

how much of an improvement the HTF prediction is compared

to the climatological mean. Standard error confidence intervals

are calculated for the BSS as in Bradley et al. (2008). This method

utilizes an analytical expression for BSS confidence intervals

derived from sampling theory. Here we use the BSS standard

error to provide a baseline level to determine if HTF predictions

at a particular tide gauge location are skillful. HTF predictions

made at a specific tide gauge location are deemed skillful when

the BSS is greater than the BSS standard error.

A primary use case for these predictions is to warn of days

where HTF is most likely to occur. As such, we designated a 5%

threshold (i.e. Pt >= 0.05) as a potential HTF warning threshold.

We then assess the recall (i.e., the fraction of observed HTF that

were correctly predicted) and false-alarm-rate (FAR; i.e., the

fraction of days without HTF that were incorrectly predicted to
Frontiers in Marine Science 06
occur) for each tide gauge for the scenario of using the 5%

threshold to predict HTF occurrence. The 5% threshold is also

statistically relevant, as we cannot reasonably differentiate

between the probabilities of extremes (i.e. events likely to

occur less than 5% of the time), using a normal distribution of

non-tidal residuals. Furthermore, accurately quantifying the

likelihood of such extreme events is not the goal of our

prediction method.
Assessing future potential flooding and
skill

It is desirable to assess how model skill might change with

future sea-level rise (SLR) given the acceleration of HTF

occurrence even under relatively small rates of SLR. To

accomplish this, we utilized the most recent 19 years of the

data record (2001–2019) to provide representative observations

for a complete tidal epoch, and then linearly detrended to

remove the long-term sea level trend of the 19-year period.

The mean of this 19-year observational period is then adjusted

by the 40-year SLR trend at each station to simulate the sea level

equivalent to both 2000 and 2020, and adjusted by the

intermediate SLR scenario at each station to simulate the sea

level likely by 2040 (Sweet et al., 2022). The intermediate

scenario represents the downscaled, local relative SLR at

specific tide gauge locations given a global MSL projection of

1 m of rise relative to a 2005 baseline. This scenario was chosen

to represent a SLR amount that is likely for most U.S. coastal

gauge locations based off of the regional tracking presented in

Sweet et al. (2022).

Model predictions are made for each decade using the

baseline climatological HTF model applied to the SLR adjusted

19-year observational period. A characteristic BSS is then

calculated for each decade to assess how model skill will

change with increasing SL.
Results

Climatological model

Retrospective predictive skill was assessed for the 92 tide

gauges that observed at least 10 HTF days from 1997–2020

(Figure 3). The four stations in the Caribbean and two in the

Florida Keys were excluded from model skill assessment because

each station exceeded the HTF threshold three days or less. It is

worth noting that this does not necessarily indicate that these

locations do not experience more frequent flooding, rather, it is

possible that flooding may occur when water level observed by

the tide gauge does not exceed the HTF threshold. In these cases,

flooding in regions near the tide gauge may be due to
frontiersin.org
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contributing factors such as waves and rainfall, and thus not well

captured by observed mean water level.

The BSS serves as the primary metric to establish if the

model predictions of HTF have skill when assessing observed

flood days at each tide gauge. For 61 of the 92 gauges with at least

10 HTF days, the model demonstrated at least some skill (BSS >

BSS Standard Error) when predicting observed HTF days, with

the model demonstrating negative or negligible skill at the

remaining 31 gauges (Figure 4A). In this case skillful values of

BSS typically range between 0.01 – 0.5 and BSS Standard Errors

typically range between 0.002 – 0.05. The model performed best

along much of the West Coast, the Northeast Coast, and at

several locations within the Southeast Coast as well as the Pacific

Islands. The model generally performed poorly along the Gulf

Coast, however skill minimally exceeded statistical significance

at six of seven stations along the Texas Coast. Similarly, the

model performance was poor and, in some cases, not skillful at a

number of locations along the Mid-Atlantic Coast. In particular,

the model was minimally skillful at only five of the 11 gauges in

Chesapeake Bay and its tributaries (e.g., Washington, DC;

Wachapreague, VA; and, Sewells Point, VA).

Poor model performance seems to be most prevalent in

locations such as the Gulf of Mexico and Chesapeake Bay, which

have relatively small tidal contributions to the daily maximum

water level (Figure 4B, E). Although these locations have

frequent floods, the high water-levels are often weather

dominated and thus difficult to accurately predict with this

model. Conversely, the locations with the greatest BSS are

those where the tide accounts for a majority of the daily

maximum water level variance. The skill dependence on tidal

amplitude is expected, as the inherent skill in tide predictions is

one of the primary reasons that this approach is viable. The 31

gauges with no retrospective skill as established by the BSS were

not included in additional skill assessment metrics, since

predictions would not be warranted at these locations.
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The recall and false-alarm-rate applied to a 5% warning

threshold of the model probabilities provides additional insight

into the predictability of HTF events. The recall metric largely

follows the same geographic patterns as the BSS, as a relatively

high fraction of HTF days are correctly predicted at many

locations in the West Coast, Northeast, parts of the Southeast,

and several Pacific Islands (Figure 4C). For the 61 gauges

demonstrating skill, on average 35% of all HTF days are

accurately predicted using this model, with over half of HTF

days accurately predicted at 18 gauges. Some of the best

performing locations are discussed below.

In the Northeast, Bar Harbor, ME, Portland, ME and Boston,

MA all experienced over 140 HTF days over the 23-year period,

and the model impressively predicts more than 70% of HTF days

accurately for Portland (71%), Boston (75%), and Bar Harbor

(90%). Large numbers of HTF days also occurred along the

northern West Coast, such as at Toke Point, WA and South

Beach, OR (289 and 178 respectively) and there is similar good

performance in flood prediction (78% and 74% accuracy rates,

respectively). In southern California, San Diego and Santa

Monica experienced a moderate number of flood days (74 and

45 respectively), with the model predictions accurately

predicting 72% and 62% of HTF days for each location.

Notable examples in the Southeast include Fort Pulaski, GA

where the model predicted 62% of the 79 HTF days correctly and

Charleston, SC which experienced 64 flood days and the model

predicted 38% correctly. The model performed well at the Pacific

Island stations at Kwajalein, Marshal Islands and Hilo, HI, where

the model correctly predicted 87% of the more than 900 flood

days at Kwajalein (note that the threshold may be leading to an

overestimate of flood days at this location) and 47% of the 141

flood days at Hilo. Eagle Point, TX is the lone station in the Gulf

with notable skill. Eagle Point experienced 273 flood days with

many of these occurring over the past few years due to rapid

regional land subsidence (Sweet et al., 2020). The model predicts
FIGURE 3

The total number of HTF days from 1997-2019 at each of the 98 NOAA tide gauges. Note that the days at some stations exceed 200.
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49% of these HTF days, despite the strong influence of weather

along the Gulf of Mexico mentioned above. Importantly, the

false-alarm-rate with this warning threshold was at 10% or less

for nearly every tide gauge location that we considered.

We next examine more closely the example locations of

Boston, MA, Charleston, SC, San Diego, CA and Eagle Point,

TX. Reliability diagrams better express how the model performs

relative to the observations over a range of probabilities

(Figure 5). There is a clear imbalance of the distributions of

probabilities. In each location, over 90% of predicted likelihoods

are between 0 and 0.10. This is due in part to the fact that HTF

days remain relatively infrequent, but also because in most

locations, floods are unlikely unless the high tide is at least

somewhat close to the flood threshold. Despite this imbalance,

all four stations demonstrate fairly robust reliability across the

entire range of predicted probabilities.

The imbalanced distribution of predicted HTF likelihood is

further evident in the model predictions for each of the four

example stations during a sample year (e.g., 2017; Figure 6). The

vast majority of days for all four gauges have a near-zero flood

likelihood. However, there are several days with HTF likelihoods

near 1 in these examples, especially for Boston and San Diego.
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Often, there are observed floods in such cases. This behavior

demonstrates why a 5% HTF warning threshold is so robust—

there are many days where flooding is improbable unless there is

an extreme event—which by definition occurs infrequently. It is

worth noting that model performance could be optimized by

selecting a gauge-dependent warning threshold that may be less

or greater than 5%, however the communication benefits and

clarity of a uniform threshold likely outweighs those gains.

The accuracy and potential value of using the climatological

model to predict HTF events is clearly evident in the example year

and locations. Using the 5% warning threshold during 2017, at

Boston 14 of the 15 floods are predicted correctly, at San Diego 8 of

9 are predicted correctly, at Eagle Point 18 of 29 floods are predicted

correctly, and at Charleston 2 of 3 are predicted correctly. The false-

alarm rates were also relatively low (0.6% in San Diego, 4% in

Charleston, 8% in Boston and 26% in Eagle Point).
Persistence model

Here, we investigate how the climatological model can be

improved by including the damped persistence of the monthly
FIGURE 4

The Brier Skill Score (BSS) for each tide gauge (A). The fraction of the daily maximum observed water level variance explained by tides (B). The
fraction of HTF days predicted when using a 5% warning threshold (C) and the false-alarm-rate when using that same 5% threshold (D). A
scatter showing the relationship between BSS and the fraction of the daily max water level explained by tides is shown (E). In the maps, blue
dots indicate insignificant skill (BSS< BSS Conf.), while small black dots (Caribbean and Florida Keys) indicate less than 10 HTF days occurred
over the 1997 – 2019 period.
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MSL anomaly (μobs- μclim) as an additional predictor in our

approach to predicting HTF events. First, we examine the

autocorrelation of the monthly MSL anomaly (with the SL

long-term trend removed) at each gauge. We consider the sea-

level autocorrelations that exceed the positive 95% confidence

limit of autocorrelations associated with a random process (i.e.,

white-noise) as being statistically significant (Figure 7A).

We find that all gauges have statistically significant

autocorrelation at one-month lead, and most (91/98) have

statistically significant autocorrelation at three-months lead.

With the exception of the Pacific and Caribbean Islands, the

autocorrelation falls off precipitously after this. Given this

observation, and the fact that NOAA produces HTF guidance

on seasonal time scales (i.e. three-months lead), including

damped persistence at one- and three-month lead predictions

were assessed for skill compared to the climatological-based

model. Damped persistence was selected over simple persistence

to account for the relatively rapid reduction in correlation

between leads of 1 and 3 months at many stations and helps
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to reduce error at longer lead times. In our case, damped

persistence is calculated simply as:

f 0 t + Dtð Þ = r Dtð Þf 0 tð Þ (12)

Where Dt is the lead time for the prediction (in this case 1 or

3 months), r is the normalized autocorrelation and f’(t) is the

monthly MSL anomaly.

Autocorrelation at 1 month was greatest for the Pacific and

Caribbean Islands and along parts of the West Coast (Figure 7,

Figure 8A). The locations with greater autocorrelation generally

see the largest improvements in skill, with fairly substantial BSS

improvements at most Pacific Island gauges and also in the

southern West Coast (Figures 7B, 8C, D). Eight of the 11 Pacific

Island stations had a 1-month BSS increase of greater than 0.1

when compared to the climatological model. This improvement

is also reflected in the recall (Figurse 8E, F), as these same

stations had at least a 30% improvement in predicting positive

HTF days. The Pago Pago, AS gauge saw the greatest

improvement across the entire network, with BSS increasing
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FIGURE 5

Reliability diagrams for Boston, MA, Charleston, SC, San Diego, CA, and Eagle Point, TX for retrospective daily HTF predictions from 1997 –
2019. Plots (A–D) show reliability relative to each predicted probability bin, where the x-axis location of each point is equal to the average of a
particular probability bin. Plots (E–H) show the fraction of days predicted in each bin. Note that when no points are shown in a reliability
diagram for a particular bin, this indicates 0 predicted probabilities in that bin, while all bins greater than 0.3 generally have too few observations
to be visible in the bar plots.
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by 0.45 and recall improving by a dramatic 84%. The 1-month

persistence prediction in San Diego, CA improved upon the

climatological model by a BSS of 0.20 (largest improvement in

the continental U.S.) and by a recall of 15%, while gauges at La

Jolla, Los Angeles and Santa Monica, CA all saw 1-month BSS

improvements of at least 0.08 and recall improvements of at least

14%. Outside of these regions, improvements in BSS and recall at

1-month lead are much subtler or even negligible. Only 29 of the

98 gauges saw a statistically significant improvement in BSS at

the 1-month lead, and only 16 of the 84 gauges not on the Pacific

or Caribbean Islands. For these 16 gauges on the Continental

U.S. Coast, except for those in Southern California where the

autocorrelations are relatively high, recall improvements were

generally only a few percent.

The autocorrelation at lead 3 months was obviously less (Figure

8B), but similarly greatest in the Pacific and Caribbean Islands and

Southern California, with generally minimal correlation elsewhere.

Improvements in BSS at 3-month lead were quite a bit lower in

most cases (Figure 8D), but still significant, with improvements in

the Pacific Islands ranging from 0.01 to 0.15 BSS (recall

improvements of 0 to 57%). On the West Coast, improvements

were mostly negligible (i.e., not statistically significant) except for

San Diego, where the BSS improved by 0.09 and the recall by 8%.

Overall, and besides the tide gauges in the Pacific and Caribbean

Islands, including the sea level autocorrelation information at lead 3

months was associated with mostly negligible skill improvements
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(only six locations in the Continental U.S. had statistically

significant increases in BSS).
Model skill improvements due to relative
sea level rise

The implications of sea level rise on model performance can

be assessed by applying the climatological model to a detrended

19-year (2001 – 2019) representative time series with adjusted

mean sea level (MSL). Here, MSL is adjusted by the 40-year

station specific SL trend to simulate sea levels in 2000 and 2020

and adjusted by the decadal Intermediate SLR scenarios to

simulate sea levels likely in 2040 (Sweet et al., 2022). For most

gauges, BSS increases with increasing SLR from 2000 to 2040

(Figure 9), with the exception of the Caribbean stations, which

do not have a sufficient number offloods to assess skill, even with

SLR. For relative sea levels typical in 2000, only 42/92 gauges

(outside of the Caribbean and Florida Keys) have skillful HTF

predictions. For sea levels typical in 2020, 68/92 gauges

demonstrate skill and by 2040, projections suggest that skillful

HTF predictions can be made at 93/94 gauges (which now

includes the two Florida Key gauges).

This improvement occurs due to SLR reducing the amount

of non-tidal residual necessary to exceed the HTF threshold on

any given day. The increase in MSL results in a substantially
BA
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FIGURE 6

Time series examples of daily maximum observed (blue) and predicted (orange) water levels (A–D) and the daily HTF likelihood (green; E–H) for
Boston, MA, Charleston, SC, San Diego, CA, and Eagle Point, TX for 2017. Red dots show days when HTF occurred and the horizontal yellow line
shows the minor flood threshold (A–D) and 5% warning threshold (E–H).
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greater number of days with at least some chance of flooding, as

the median number of days per year exceeding the 5% warning

threshold across all gauges goes from 0 in 2000, to 7.5 in 2020 to

78.5 in 2040. Since the increase in likely flood days by 2040 is so

large, using a warning threshold larger than 5% in the future may

be beneficial to reduce false alarms and excessive warning of

possible flood events. Further, the number of days per year when

flooding will occur without any non-tidal residual contribution

goes from amedian of 0 in 2000 and 2020 (i.e. most stations have

no flooding due to tides alone) to a median of 7 in 2040. These

results indicate that model skill will increase as flooding becomes

increasingly less dependent on weather and climate driven

variability; and, instead, tidal variability becomes an even more

important predictor of flooding.

The impact of these changes in flood likelihood with

increasing SLR on a warning product is evident in Figure 10.

Using the same four example stations as previously considered,

elevated flooding likelihood goes from a very infrequent

occurrence in 2000, to high likelihood floods several days per

month in 2040. In the case of Eagle Point, flooding will be likely

in 2040 nearly every day according to the HTF threshold that

we used.
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Discussion

We demonstrated that a new HTF predictive model has

retrospective skill at many U.S. coastal locations. The innovation

is combining astronomical tide predictions, either climatological

non-tidal residuals or persisting SL anomalies, and long-term

MSL changes to produce the HTF predictions. The climatology-

based model demonstrates at least some skill for 61 of the 92 tide

gauges where at least 10 HTF days were observed from 1997 –

2019. Including observed characteristics about the persistence of

SL anomalies further improves the skill at many locations for

producing near-term predictions (i.e., leads of 1 – 3 months).

Ongoing SLR will increasingly dominate the determination of

HTF occurrence, and hence continue to increase the prediction

skill (skillful at 93/94 stations with regular flooding by 2040), if

the assumption is made that flood thresholds are not increased

due to successful mitigation measures.

At many locations along the U.S. West Coast (e.g., San

Diego) and Northeast Coast (e.g., Boston), the HTF prediction

model was successful even when relying on the climatological

non-tidal residual. Prediction skill in these regions is in part due

to the importance of high tides to cause flooding, versus weather

forcing and other drivers of SL anomalies (Figure 4 see also
A

B

FIGURE 7

Autocorrelation of monthly MSL anomaly (A) for the 1997 – 2019 period for each of the 98 tide gauges (gray lines). The mean autocorrelation
for each region (thick colored lines) and the positive 95% confidence limit of a white-noise autocorrelation (horizontal dashed line) are shown.
Panel (B) shows the improvement in the BSS when using the 1-month damped persistence prediction compared to the climatological prediction
(y-axis) as a function of the 1-month autocorrelation of monthly MSL anomaly (x-axis). Colors represent the same regions as in panel (A).
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Sweet et al., 2018). At many locations along the West and

Northeast Coasts, tidal predictions already resolve much of the

observed water level (much of the variability is related to the sea

level annual cycle; e.g., Widlansky et al., 2020). Hence, it follows

that an HTF prediction informed primarily by tide predictions

that includes the annual cycle will perform well for

these locations.

Conversely, tidal contributions to HTF are relatively small

for some other locations such as along the Gulf of Mexico and in

the Mid-Atlantic (e.g., Chesapeake Bay). In such locations, water

level variability is much more dependent on weather events and

climate variability (Figure 4; see also Sweet et al., 2018). As such,

the HTF prediction model lacks skill at many locations along the

Gulf of Mexico and in the Mid-Atlantic. However, with

continuing SLR, high tides alone will more frequently

approach or exceed the current HTF threshold. As weather-

forced water level variability becomes relatively less important to

causing HTF exceedance, this method will begin to be skillful

across most, if not all of the U.S. coastline (Figure 9).

Considering locations experiencing land subsidence and

associated relative SLR provides a contemporary example for

how the HTF prediction model may be useful, even for regions

that are less tidally driven, such as along the Gulf of Mexico and

Chesapeake Bay. During 2018 and 2019, the tide gauge at Eagle
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Point, TX observed the greatest number of HTF days (85) at any

location on the Gulf Coast. The recent HTF events are primarily

due to localized subsidence in the vicinity of the gauge leading to

rapid relative SLR of about 1.4 cm/year over the last 26 years

(Sweet et al., 2020). In fact, there is already a nearly constant

threat of daily flooding in the months of September and October

at Eagle Point, TX (Figure 6). The rapid rate of SLR there is

somewhat of a preview for how flooding at other locations may

respond to SLR later this century.

Including MSL persistence significantly improves skill for 1-

month lead at 29 tide gauge locations, including in most of the

Pacific Island gauges. The locations with the greatest

improvement in skill are, not surprisingly, those with high

autocorrelation in the monthly MSL anomaly (Figure 7). An

additional benefit of applying the persistence forecast is that it

enables accounting for errors in the long-term MSL trend or

contemporary deviations in MSL away from the historic fit. An

example of a changing sea level trend is occurring at the Pago

Pago, AS, where acceleration in rising relative MSL due to land

subsidence occurred following a major earthquake in 2009

(Han et al., 2019). Including persistence helps to better

account for this recent change in the MSL trend and resulted

in a 0.45 improvement in BSS compared to the climatological

model, which was the largest improvement across all 98 gauges.
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FIGURE 8

Shown are the autocorrelation of monthly MSL anomalies at both 1 and 3 months of lead (A, B) and the change in BSS (C, D) or recall (E, F)
when using the monthly MSL anomaly for the prediction of HTF days at either one- or three-months lead. Small black dots in the BSS and
Recall plots (Caribbean and Florida Keys) indicate less than 10 HTF days occurred over the 1997 – 2019 period.
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FIGURE 9

Brier Skill Scores for HTF predictions made assuming mean sea level (MSL) is equivalent to the detrended mean at about 2000 (A) and 2020 (B)
and for the intermediate SLR projection for 2040 (C). Blue dots indicate insignificant skill (BSS< BSS Conf.), while small black dots (e.g. Caribbean
and Florida Keys) indicate less than 10 HTF days occurred over the MSL adjusted 19-year period. The estimated SLR since 2000 is shown for
2020 (D) and the intermediate SLR projection for 2040 is shown (E).
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FIGURE 10

Examples of HTF prediction at Boston, MA (A), Charleston, SC (B), San Diego, CA (C) and Eagle Point, TX (D) for one year assuming MSL at levels
observed in 2000 (blue), 2020 (green) and projected with the Intermediate Scenario for 2040 (orange).
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It is possible that errors in the MSL trend or deviations from the

long-term linear MSL trend could be further mitigated by

utilizing shorter-term MSL fits, or also applying confidence

bounds to MSL values, which are approaches that should be

explored in future work.

The HTF prediction model capabilities will improve the

approaches NOAA utilizes to provide guidance regarding

potential future HTF days. For the annual outlooks NOAA

already regularly produces, the climatological modeling

approach can be used to identify specific dates where HTF is

most likely, which is information not presently available from

the existing trend-based method. For the NOAA seasonal High

Tide Bulletins (https://oceanservice.noaa.gov/news/high-tide-

bulletin/), this new HTF prediction model will enable

quantifying daily HTF likelihood for specific tide gauge

locations. This information would substantially improve

existing capabilities, which only provide qualitative guidance

of likely flooding days for broad regions of the coast (e.g.

suggesting days HTF is most likely for the Northeast U.S.

Coast). The persistence model can also be applied with a one-

to three-month lead time to provide more accurate seasonal
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predictions for many locations. This information could be

conveyed to the public using an enhanced tidal calendar (e.g.,

as pictured in Figure 11). Such an HTF calendar outlook, would

better convey when and where coastlines are likely to be

impacted by the combined occurrence of high tides, above-

normal sea levels, and long-term SLR. A similar HTF calendar

approach has been developed for many tropical Pacific Islands

(Widlansky et al., 2017), but does not yet exist elsewhere.

Part of the motivation for this work is to provide a baseline

level of HTF prediction skill for future numerical, statistical or

machine learning (ML) model development. To this end, any

future MSL anomaly prediction efforts must be able to improve

upon the persistence predictions utilized here. Modeled MSL

anomaly has been demonstrated to improve upon persistence for

most of the tropical Pacific Islands, especially at leads of one-to-

two seasons (Miles et al., 2013; McIntosh et al., 2015; Widlansky

et al., 2017; Jacox et al., 2020). Utilizing multi-model ensembles

has been demonstrated to result in skillful MSL anomaly

predictions at many global locations (Long et al., 2021),

including in the Pacific Islands, throughout the Caribbean Sea,

as well as parts of the U.S. West Coast. Initial research utilizing
FIGURE 11

An example visualization product of the HTF likelihood for Charleston, SC during 2018. Color shading indicates days that exceed the 5% warning
threshold (yellow, near 5%; red, near 100%) with the HTF likelihood listed.
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an ML approach to predict MSL anomalies along the continental

U.S. demonstrated some retrospective skill, especially along the

West Coast (Sheridan et al., 2019). The capability for skillful

anomaly predictions along the U.S. East and Gulf Coasts is so far

less evident, however recent model advancements show that

some skill is possible for lead times up to a few months (Shin and

Newman, 2021; Frederikse et al., 2022). Further examination of

these approaches, especially as applied to the prediction of HTF

days, is essential to assess the potential value to NOAA HTF

decision-support products. The method presented here provides

the product infrastructure necessary to make these

determinations about future forecasting advancements. We

anticipate that modeled-based MSL anomalies will be

“plugged-in” to this method and then compared to the skill of

the climatological and persistence approaches, to determine the

best-available sea level outlook at a particular location.

It is important to note that the assessment of HTF flooding

occurrence as presented here is dependent on relating tide gauge

point observations to empirically derived flood thresholds

(Sweet et al., 2018). Spatial variations in coastal water level

variability is in some places significant, especially in enclosed

bays and estuaries (Aretxabaleta et al., 2019), and thus flooding

even a short distance away from the tide gauge may not be

accurately reflected by these observations. The position of the

tide gauge also may not well capture freshwater contributions

(i.e., associated with precipitation, runoff, and flow from rivers

or canals). Hydrologic forcing can lead to flooding on its own or

contribute to existing tidal flooding (Wdowinski et al., 2016;

Sukop et al., 2018). In addition, existing flood thresholds may

not best reflect similar levels of impact everywhere. For instance,

a threshold exceedance in Maine may result in substantially

different impacts than one in South Florida due to differences in

coastal topography and exposed infrastructure. Lastly, this

assessment is based on hourly sub-sampled six-minute mean

water level values, and thus will only account for time-averaged

wave contributions to water level, and not higher frequency

time-varying contributions. Wave contributions to flooding (e.g.

wave runup) are known to be important, especially along the

U.S. West Coast and Pacific Islands (Serafin et al., 2017; Barnard

et al., 2019). These limitations can be overcome, although

advancement will require additional observations and

numerical modeling to better assess spatial variations in

coastal flooding and resultant impacts.

Lastly, it is important to recognize the limitations with the

approach utilized to assess the influence of SLR on the skill of

this model. We chose a simple mean shift of existing

observations to provide a first-order assessment of the

contributions of SLR to model skill. This approach does not

account for future flood mitigation efforts, which would

hopefully raise the HTF thresholds. It also does not account

for potential changes sea level variability due to future warming

or atmospheric changes (Widlansky et al., 2020), nor future

changes in the tides due to either SLR or alterations of the local
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bathymetry or topography (Devlin et al., 2017; Talke and Jay,

2020). These contributions, coupled with deviations of RSL rise

from the Intermediate Scenario estimate utilized here, as well as

intra-decadal astronomical tidal variability (Thompson et al.,

2021), could alter the projected future HTF frequency

and likelihood.
Conclusions

In this paper, we found that a simple model including tide

predictions, relative SLR, and climatological monthly non-tidal

residuals has retrospective skill in predicting HTF likelihood. We

demonstrated skill of this approach at 61 out of 92 NOAA tide

gauges where at least 10 HTF days occurred during 1997 – 2019.

With the realization of RSL rise over the next several decades, the

same approach is likely to be skillful at 93 out of 94 gauges with

regular flooding assuming unchanging HTF thresholds in the

future. Further, if the observed persistence of SL anomalies is

included, model skill can be significantly improved at many

locations, especially in the Pacific Islands and U.S. West Coast.

These results demonstrate that this approach has value to

provide many coastal communities with decision-support

information right now.

This approach also has the flexibility to be enhanced as

research improves our ability to predict coastal water level

anomalies. For instance, the statistical model that we developed

has the benefit of being agnostic to the method for estimating the

MSL anomaly used to generate the HTF predictions. Thus, any

modeling infrastructure developed to run this model operationally

will be well positioned to include MSL anomaly output from

future numerical, statistical, or ML models. Further, it would be

simple to regionalize this approach and use variable input

depending on location (e.g., the West Coast may use an MSL

anomaly prediction from a numerical model, whereas the Gulf

Coast may rely solely on persistence). This flexibility will ensure

that efforts to operationalize the baseline HTF predictive approach

will both provide immediate near-term benefits, while well

positioning NOAA products like the High Tide Bulletin for

future improvements to model skill from advancements in our

ability to accurately model MSL anomalies along more of the U.S.

Coast (e.g., Frederikse et al., 2022). Additionally, the use of model

analyses or satellite observations could enable HTF predictions to

be extended away from tide gauge locations and be provided

continuously along coastlines, thus further enhancing the utility of

predictions for coastal communities.
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