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perspectives as outlined by the
LIFE Nat.Sal.Mo. project on
Mediterranean brown trout
(Molise region – Italy)

Michele Di Iorio1, Giusy Rusco1, Stefano Esposito2,
Mariasilvia D’Andrea1, Alessandra Roncarati3

and Nicolaia Iaffaldano1*

1Department of Agricultural, Environmental and Food Sciences, University of Molise,
Campobasso, Italy, 2Mediterranean Trout Research Group, Ventasso, Italy, 3School of Biosciences
and Veterinary Medicine, University of Camerino, Matelica, Italy
The Mediterranean brown trout is one of the most endangered freshwater

species. A complicated network of climate and human influences has severely

harmed its biodiversity. The introduction of alien trout is one of the most

serious threats to native populations’ intraspecific diversity. In Molise region

(south-Italy) an important conservation program (LIFE Nat.Sal.Mo project) has

recently been proposed to preserve the genetic integrity of native

Mediterranean trout. This project, alongside safeguarding and re-establishing

the habitats’ usefulness aims to restore the genetic integrity of the

autochthonous population. This is one of the major goals, and it is

accomplished by employing frozen wild breeder semen in conjunction with

proper fertilization techniques to carry out artificial reproduction to enhance

genetic diversity in the progeny and maintain fitness within self-sustaining

populations. In this regard, the implementation of the first European semen

cryobank has played a strategic role for conserving extant genomic diversity of

native population. The goal of this review is to outline the procedures

developed and guidelines established for the creation of a Mediterranean

trout sperm cryobank. Here, we specifically provide an overview of some of

the main challenges associated with the implementation of semen cryobank,

the results achieved, the prospects for restoring genetic integrity in native

populations, and lastly, future views for hatchery management to preserve the

wild biodiversity of native salmonid species. During the project timeframe 1,683

semen doses, from 150 native breeders were stored inside the cryobank. Our
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results clearly showed the efficiency of the freezing procedure used, both in

vitro and in vivo. In fact, we recorded satisfactory values of post-thaw sperm

motility and viability that ranged from 40% to 80%, and excellent fertilization

rate in vivo, which ranged from 64% to 81%.
KEYWORDS

Mediterranean brown trout, semen cryobank, safeguarding biodiversity, hatcheries’
management, genetic conservation
1 Introduction

The Mediterranean brown trout is a significant freshwater

fish with economic value for fishery management and

conservation biology. It is a widely distributed species found in

Eurasia and North Africa, showing a significant morphological,

ecological, and genetic variation among its populations (Larios-

López et al., 2015). In the Italian distribution range, the

Mediterranean trout is referred to as Salmo cettii syn. Salmo

macrostigma (Querci et al., 2013; Lorenzoni et al., 2019;

Splendiani et al., 2019; Carosi et al., 2020). However,

according to recent genetic findings the Italian peninsular

Mediterranean brown trout belongs to a different taxon known

as S. ghigii, therefore limiting the name S. cettii to Sicilian trout

(Lorenzoni et al., 2019; D’Agaro et al., 2022; Polgar et al., 2022).

Although, we agree with this recent evidence, we still use the

name S. cettii, because Mediterranean brown trout populations

are still protected by the Habitat Directive and subsequent

conservation status updates under this taxon.

Over the past decades, it has become one of the mostly

threatened freshwater fish on the verge of extinction (Marzano

et al., 2003; Lorenzoni et al., 2019; Rossi et al., 2019). In Italy, the

populations of native Mediterranean brown trout are in constant

and rapid decline and the loss of biodiversity appears to be

troubling and unavoidable if appropriate recovery and safeguard

action are not implemented.

The decrease of these native populations is the result of a

series of anthropogenic activities, such as the river pollution,

habitat deterioration, water withdrawals, largely unregulated

fishing activities and the introduction of alien species

(Iaffaldano et al., 2016a; Iaffaldano et al., 2016b; Lorenzoni

et al., 2019; Carosi et al., 2020). In Italian freshwaters,

including Biferno and Volturno rivers (Molise region), the

introgressive hybridization with the alien trout species is the

most important threat to the native species survival (Lorenzoni

et al., 2019; Carosi et al., 2020). In such contest Mediterranean

brown trout is currently classified in the Italian IUCN Red List as

‘critically endangered’ and its population is declining (www.iucn.

it, accessed on: 28 July 2022). This situation has prompted the

development of many conservation projects aiming at restoring
02
the genetic integrity of Mediterranean trout populations in Italy

(Sabatini et al., 2018; Lorenzoni et al., 2019; Splendiani et al.,

2019; Rossi et al., 2022), including Molise region (Rusco et al.,

2019; Rusco et al., 2020), where, in 2018 the “LIFE” Nat.Sal.Mo

project was born.

Our project beyond protecting and re-establishing the

functionality of habitats aims to ensure the native population

genetic integrity. This is one of the main goals, and it is attained

by using frozen wild breeder semen associated with appropriate

fertilization schemes to carry out artificial reproduction to

maximize genetic diversity in the progeny and maintain fitness

within self-sustaining populations. In this regard, the

implementation of the first European semen cryobank has

played a strategic role in conserving extant genomic diversity

of native population.

Cryopreserving gametes is an effective method for

preserving the genetic profile of native populations with a

particular genotype in threatened aquatic species. (Robles

et al., 2003). Studies on fish germplasm cryobanking have been

carried out on different cell types, mainly on sperm (Martıńez-

Páramo et al., 2017; Diwan et al., 2020), oocytes and embryos

(Zhang et al., 2003; Diwan et al., 2020) and less on

spermatogonia and primordial germ cells (Labbè et al., 2013;

Comizzoli and Holt, 2014; Robles et al., 2017).

Studies done so far on the freezing of fish oocytes have

shown that early-stage ovarian follicles, primarily stage I and

stage II follicles, can yield some promising outcomes. (Martıńez-

Páramo et al., 2017). However, the efforts to cryopreserve fish

embryos have frequently failed, therefore, cryopreservation of

fish embryo remains elusive (Diwan et al., 2020). Accordingly,

the sperm cells are the main type of cell used for cryobanking

purposes in aquatic species (Martıńez-Páramo et al., 2017). In

fact, thanks to their small size and relatively high resistance to

chilling, sperm cryopreservation is a more feasible method

compared to the ones performed on other cell types.

The purpose of the present report is to describe the activities

developed and the rules adopted for the realization of a sperm

cryobank of autochthonous Mediterranean trout and its

practical use in artificial fertilization schemes. In particular,

here we give an overview of 1) the efforts incurred to obtain
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an effective semen freezing protocol, which has been essential for

the realization of a semen cryobank, 2) the results achieved over

four years using the frozen semen, 3) the opportunities provided

in the restoration of genetic integrity in native populations and

finally 4) the future perspectives supporting the hatcheries’

management in order to maintain the wild biodiversity of

native salmonids species.
1.1 Identification of the semen
cryopreservation protocol

The main challenge for the implementation of a sperm

cryobank is the development of a successful semen freezing

protocol. The cryopreservation procedure results as highly

stressful for sperm cells (Cabrita et al., 2010), in fact, the

subcellular compartments of fish spermatozoa, including

nucleus (head), cytosol, plasma membrane, midpiece and

flagellum (Cabrita et al., 2010), are susceptible to cryodamage

with consequent compromises of cell function and structure,

DNA alteration (Gwo and Arnold, 1992; Zilli et al., 2003), loss of

motility (Linhart et al., 2000), plasma membrane disruption

(Lahnsteiner et al., 1996) and impaired fertilization ability

(Nynca et al., 2014; (Bozkurt and Yavas ̧, 2021).
Under this regard, it should be remembered that the

salmonids semen is among the most complicated to

cryopreserve because of its distinctive traits (reduced

adenosine triphosphate production, short duration of motility,

high sensitivity to osmotic stress and large number of sperm cells

needed to fertilize a single egg), which render them more

susceptible to the freezing procedure (Martıńez-Páramo et al.,

2009; Bozkurt et al., 2019; Bozkurt et al., 2021). As a result, cell

survival and its functionality entirely depend on the adopted

cryopreservation protocol (Bozkurt and Yavaş, 2021).

Therefore, in order to identify a reference cryopreservation

procedure, during the timeframe of the project, our research

group has focused its efforts on the key factors involved in sperm

cryosurvival, by designing several experiments on basic

extenders, dilution rates, cryoprotectants (CPAs) and their

concentration, freezing and thawing rates (Iaffaldano et al.,

2016a; Di Iorio et al., 2019; Rusco et al., 2019; Rusco et al.,

2020; Giametta et al., 2021).

These investigations helped us to identify an effective

freezing protocol for in vitro processing of trout semen, to be

adopted for the realization of a cryobank. Specifically, this

protocol involved the use of a glucose–methanol extender and

the dilution of semen to reach a standardized concentration

before freezing (i. e. 3 × 109/mL) (Rusco et al., 2020). This

freezing procedure was found to have a positive impact on post-

thawing sperm total motility, with values exceeding 70%. These

findings were noticeably superior to previous findings, which

ranged between 33% and 52% (Iaffaldano et al., 2016a; Di Iorio

et al., 2019; Rusco et al., 2019).
Frontiers in Marine Science 03
2 General methodology employed

2.1 Breeders sampling

As reported in the project proposal, the native breeders

(males and females) were caught during upstream spawning

migration in specific capture stations, with fixed traps located on

Biferno river (loc. Bojano; latitude 41°28’52.4”N, longitude 14°

28’51.4”E) and a Volturno river tributary (loc. Rio Caprionero;

latitude 41°31’18.2”N, longitude 14°08’27.1”E) in easily

reachable sites to facilitate both installation and daily

maintenance. The cages were installed at the beginning of each

breeding season in December, and they were monitored from

January to March every day, twice a day (morning and evening).

The traps were used also as an unusual eradication system

because due to the ineffectiveness of classic electrofishing

eradication in the main waterways of the project area, non-

native breeders were removed from the controlled

spawning sites.

Moreover, in support of the fixed traps, electrofishing was

also used to capture native specimens in other spawning spots.

The location of fixed traps and other sampling sites in

Volturno and Biferno rivers are shown in Figure 1. We

identified 3 sites in Biferno (1 fixed trap + 2 electrofishing

sites) and 3 in Volturno (1 fixed trap + 2 electrofishing sites).
2.2 Autochthonous individuals’
identification

In order to select only native specimens, all sampled

individuals were marked by passive transponders (PIT-TAG)

and/or T-anchor tags, for subsequent recaptures and a portion of

adipose fin tissue was taken from live animals that had

previously been given a clove powder anesthetic. Fin tissue

fragments preserved in ethanol allowed the isolation of

individual genomic DNA, which was genotyped in accordance

with Palombo et al. (2021). More in detail, since the beginning of

the project, N=672 individuals were genotyped through the 57 K

rainbow trout Axiom SNP array. The genetic ancestry was

estimated using ADMIXTURE software v.1.3.0 with K = 2

population cluster, roughly corresponding to “native” and

“alien” trout population inhabiting Molise rivers (Palombo

et al., 2021; Salvatore et al., 2022). SNP’s analysis was

combined withPCR-RFLP analysis of mitochondrial (16s

rDNA; McMeel et al., 2001) and nuclear (LDH-C1*; Chiesa

et al., 2016) markers, which provide an extensive genetic

characterization of Mediterranean brown trout population in

many studies (Penserini et al., 2006; Splendiani et al., 2006; Rossi

et al., 2019; Lorenzoni et al., 2019; Salvatore et al., 2022), For

gametes collection we prioritized tagged individuals genotyped

by the combination of SNP array and PCR-RFLP analysis.
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2.3 Gametes collection

Semen was collected from each native male using the

abdominal massage technique; drying urogenital papilla before

stripping, special care was needed to prevent the contamination

of semen with blood cells, urine, and river water. Semen samples

were directly collected in 10 mL graduated tubes and stored in a

cooler containing crushed ice, subsequently the samples were

transferred to the laboratory within a variable interval time

(from 30 minutes to 4 hours) depending on the river and the

sampling site, in our previous research we found that the

Mediterranean brown trout semen can be frozen even up to

6 h post-collection without losing its freezability and fertilizing

ability (Rusco et al., 2021).

Eggs were gathered by stripping the females in a dry metal

bowl, prior to collection, it was determined that each female had

mature eggs by hand inspection of the abdomen. After

collecting, the eggs were visually inspected to ensure that the

ones used in the fertilization practice were well-rounded and

transparent. The mature eggs were yellow to orange with a

diameter ranging from 3 to 4 mm.
2.4 In vitro semen quality

In the laboratory, firstly the sperm motility for each semen

sample was checked by using a Computer-Assisted Sperm

Analysis (CASA) system connected to a phase contrast

microscope (Nikon model Ci-L) employing the Sperm Class

Analyzer (SCA) software (VET Edition, Barcelona, Spain).

Before analysis, spermatozoa were activated in a specific

solution containing 1 mM CaCl2, 20 mM Tris, 30 mM glycine

and 125 mM NaCl, at pH 9.0 and supplemented with 0.5%
Frontiers in Marine Science 04
bovine albumin, using a dilution rate 1:300 or 1:30 for fresh or

frozen semen, respectively (Judycka et al., 2018). An aliquot (0.7

μL) of this solution was immediately placed into a well (diameter

5 mm) of a 12-well multitest glass slide (TEKDON Inc., Florida,

USA) and a coverslip was applied. The sperm motility

parameters considered were: motile spermatozoa (MOT, (%)),

curvilinear velocity (VCL, (mm/s)), straight-line velocity (VSL,

(mm/s)), average path velocity (VAP, (mm/s)).

Only sperm samples with a total motility rate greater than

70% and containing at least 6 × 109 spermatozoa/mL were

cryopreserved and stored in the cryobank (see Figure 2).

Sperm volume from each donor was quantified using a

calibrated micropipette. To determine the sperm concentration

the photometric method was used, semen was diluted in 0.9% of

NaCl at a 1:200 (v:v) ratio, and the optical density was measured

at 530 nm using a portable photometer DR 1900 (HACH

company, Loveland, CO, USA). The sperm concentration

value was obtained using a standard curve that had been

developed previously, by relating the optical density with the

sperm concentration expressed as × 109 spermatozoa/mL,

fol lowing the procedure described by Nynca and

Ciereszko (2009).

Sperm viability in fresh and frozen semen was evaluated with

flow cytometry (Muse© Cell Analyser; Luminex corporation, 12212

Technology Blvd Suite 130, Austin, TX 78727, United States) taking

into consideration the manufacturer’s protocol. Firstly, semen was

diluted in PBS to reach a concentration ranging from 1 × 105 to 1 ×

107 spermatozoa/mL. Subsequently, 20 μL was added to 780 μL

(dilution factor 1:40) of Muse Count & Viability Kit© in an

Eppendorf tube and incubated for 5 min in the dark (at room

temperature). Lastly, the sperm suspension was examined, and the

results were displayed in two dot plots: (1) nucleated cells and (2)

viability percentage.
FIGURE 1

Location of the frozen gene bank (University of Molise), hatcheries (Rocchetta a Volturno and Oratino) and fixed traps (Biferno and Volturno rivers).
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2.5 Semen cryopreservation
protocol employed

The semen from native individualmales deemed suitable for the

cryopreservation process (Figure 2), was diluted with a specific

freezing medium to reach a final extender concentration of 0.15 M

glucose and 7.5%methanol. Diluted semen was stuffed into 0.25 mL

plastic straws through the aid of a manual micro-aspirator (IMV-

Technologies) obtaining a final sperm concentration of 3.0 × 109
Frontiers in Marine Science 05
sperm/mL, corresponding to750×106 sperm/straw.The strawswere

then set on a 3 cm-high frame for the equilibration phase (15min on

ice). Following this phase, the strawswere cryopreserved by exposure

to liquid nitrogen vapor at 3 cm above its level for 5 min. They were

then plunged into liquid nitrogen; the straws of each donor were

rapidly collected and transferred into a gobletmarkedwithdonor ID,

whichwerefinally stored in the cryobank. Frozen semenwas thawed

at 40°C for 5 seconds, for in vitro analysis or for its use in artificial

fertilization activities.
FIGURE 2

Flow chart of operations from semen collection to egg fertilization.
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2.6 Database development and
cryobank management

In order to ensure the correct management of semen

cryobank an appropriate system of semen doses traceability

was necessary. Thus, each straw was identified by means of a

code bearing the donor information (serial number).

Simultaneously, to identify each straw a database including

the following information was created:
Fron
- donor identification which coincides with the

identification code of the genetic analysis;

- number of straws for each semen donor;

- straw colour;

- list of alpha-numeric code;

- date of semen collection and freezing;

- fresh semen quality of each donor (including volume,

concentration, motility and viability);

- frozen/thawed semen quality (motility, viability);

- n° of straws used for in vitro analysis and in vivo

fertilization;

- position in the cryogenic tank;

- sampling site (river and position of fixed trap);

- any other useful information.
This database is constantly updated to guarantee proper and

successful cryobank maintenance. The liquid nitrogen tanks

(dewars) were stored in an air-conditioned room with a

controlled temperature of 5°C. In order to ensure an

appropriate level of liquid nitrogen, the storage dewars were

refilled with liquid nitrogen, at regular intervals of one week.
2.7 Practical use of cryobank in artificial
fertilization procedures

The main usefulness of our cryobank is represented by its

practical application in artificial reproduction practices to

maximize the genetic variability. Indeed, using frozen semen

of native males in appropriate fertilization schemes allows an

increase of the genetic variability in the offspring.

The activities were accomplished in the field (e.g.,

riverbank), briefly semen samples were thawed using a

portable water bath, the post-thaw motility and viability of

each donor were previously checked in our laboratory and that

showed at least 50% of motile and viable spermatozoa were

considered suitable.

The eggs from each native female were splitted into equal

aliquots (3-5) containing around 1000 eggs and each of them

were fertilized with different male according to the cross-

fertilization matrix scheme (Figure 3). The sperm was
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introduced into eggs and gently mixed for 10 s, subsequently

roughly 20 mL of river water was added. After 2 min, the eggs

were rinsed with river water and moved to the hatcheries, the

eggs from Volturno and Biferno river were incubated at two

hatcheries close to the Rocchetta a Volturno and the Oratino

municipalities, respectively.

The eggs from each specific cross-fertilization were placed in

a frame with running water at about 9-10°C, until the eye stage

(after ~25–30 days from fertilization) (Rusco et al., 2020; Rusco

et al., 2021). Dead and unfertilized eggs were monitored and

removed twice a week. The fertilization rate was calculated with

the formula below:

Fertilization   rate   %ð Þ = n °   of   eyed   eggs
n °   of   fertiliezed   eggs  

� 100

In order to avoid the domestication of wild stock, the

restocking of the suitable areas was carried out using eyed eggs

with the “artificial nesting” method. The technique assured a

more successful approach by avoiding the exposure of larvae and

early life stages to an artificial environment.

Briefly, this technique consists in recreating an artificial nest

in the river gravel, with the aid of a tube, to a depth of about 20-

30 cm, subsequently the eyed eggs were deposited inside it and

were covered with gravel and other natural material.
2.8 Statistical analysis

Independent t-test was used to investigate the effect of river

populations (Biferno and Volturno) in regard of semen volume

and sperm concentration.

Other sperm traits (total motility, VCL, VSL, VAP and

viability) were measured across fresh or frozen semen and

were compared by analysis of variance (ANOVA) followed by

Scheffe’s comparison test. Lastly, a generalized linear model

(GLM) was used to establish the fixed effects of treatment

(implied as fresh or frozen semen) and river. The level of

significance was set at p < 0.05 and all statistical analysis were

carried out using the commercial software SPSS (SPSS 15.0 for

Windows, 2006; SPSS, Chicago, IL, USA).
3 Main results obtained within
project framework

The consistency of cryobank is reported in Table 1, in total

about 1,700 semen doses were obtained during three spawning

seasons. Specifically, almost 1,000 straws from 85 native males

from Volturno river and 700 doses from 65 native donors from

Biferno river were stored in the cryobank.

The results of artificial fertilization achieved with frozen

semen are summarized in Table 2, the total number of fertilized

and eyed eggs were quite similar in both watercourses in each
frontiersin.org
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spawning season. Fertilization rate ranged from 64 to 81% in the

Volturno river and from 66 to 80% in the Biferno river.

The semen quality parameters recorded in fresh semen of

native males captured in the two rivers are shown in Table 3,

mean ejaculate volumes and concentrations were similar across

the two populations, while sperm motility and viability values

were slightly higher in the males of the Volturno, however, no

significant differences for each sperm trait were found.

In line with our previous research, the cryopreservation of

sperm resulted in a significant decrease in post-thaw sperm

motility and viability (Rusco et al., 2019; Rusco et al., 2020),

however, no significant differences were found for kinetic

parameters considered, except for VSL, as a significantly

higher value of this parameter was obtained in frozen semen

of Biferno river compared with frozen semen of Volturno.
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The GLM analysis indicated a significant effect for semen

treatment (fresh or frozen semen) on total sperm motility and

viability, and significant effect for river on VSL.

The average values in terms of sperm motility and viability

obtained turned out to be satisfactory as reported in table 3. We

achieved a recovery rate (value in frozen semen/value in fresh

semen × 100) of about 65% for motility and 80% for

spermatozoa viability in both rivers.
4 Discussion

During the last decades the cryopreservation offish spermatozoa

has evolved due to the growing number of potential applications,

including its application in aquaculture, enhancing hatchery
TABLE 1 Semen doses stored within the semen cryobank of Mediterranean brown trout during the project timeframe.

Spawning season River N° donators N° doses

Dec 2019 - Feb 2020 (I°)
Volturno 27 343

Biferno 30 476

Dec 2020 - Feb 2021
(II°)

Volturno 32 405

Biferno 13 86

Dec 2021 - Feb 2022
(III°)

Volturno 26 239

Biferno 22 365

Total 150 1683

The total values are written in bold.
fro
FIGURE 3

Schematic representation of fertilization schemes in artificial fertilization practices.
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broodstock management, conserving the genetically selected strains

generated from genetic improvement programs (Asturiano et al.,

2017; Judycka et al., 2019).

Recently, the use of cryopreserved semen is finding wide use for

the safeguard of biodiversity in endangered species for preserving the

genetic material of native population with a specific genotype and

through the creation of semen cryobanks (Martıńez-Páramo et al.,

2017; Judycka et al., 2019; Bøe et al., 2021). Currently, in fish, the

semen cryopreservation represents the only acceptable and valid

technology to establish ex situ conservation programmes because the

freezing procedures of oocytes and embryos results as

still unsatisfactory.

The semen cryobank realised within our project represents an

important tool to safeguard the genetic integrity and biodiversity of

Mediterranean brown trout that populate the rivers in Molise. Its

mainpurposewas topreserve thenatural geneticvariationasmuchas

possible by creating a repository of genetic material from

representative populations of Mediterranean brown trout

inhabiting Biferno and Volturno rivers (Molise - Italy). During the
Frontiers in Marine Science 08
project timeframeapproximately 1,700 semendoses, from150native

breeders were stored inside the cryobank representing a very

important “tank” of genetic variability, as it includes a large

number of native donors captured in the Molise rivers during the

spawning seasons: 2019- 20; 2020-2021 and 2021-2022. The semen

cryobankwithin the project assured themaximumgenetic variability

during the artificial supportive breeding.

The results obtained during the project were very satisfactory

because 264,000 eggs from 68 native females were fertilized with 298

semen doses from 150 native males for a total of 298 unique male ×

female crosses to increase the genetical variability (see fertilization

schemes). The fertilized eggs incubated at two hatcheries, one for

each basin produced with fertility rates averaging at 75% therefore

resulting in about 200,000 eyed eggs that were planted using nesting

techniques in suitable sites for the restocking programofnative trout.

The nesting techniques assure a more successful approach because

decreasing thenon-adaptive selective pressure asmuchaspossible by

plantingeyedeggsavoids theexposureof larvaeandearly life stages to

an artificial environment.
TABLE 3 Quality of fresh and frozen semen (means ± SEM) in brown trout population inhabiting Biferno and Volturno river (Molise region, Italy).

Treatment River Volume
µL

Sperm concentration × 109/
mL

Total Motility
%

VCL
(µm/s)

VAP
(µm/s)

VSL
(µm/s)

Viability
%

Fresh Volturno 0.8 ± 0.1a 18.3 ± 0.5a 90.2 ± 1.5a 102.9 ±
4.1a

83.1 ±
3.4a

48.1 ±
2.2ab

96.1 ± 0.5a

Biferno 1.1 ± 0.1a 17.8 ± 0.7a 87.8 ± 1.1a 98.4 ±
5.5a

81.01 ±
5.3a

53.6 ±
3.4ab

94.9 ± 0.8a

Frozen Volturno – – 57.6 ± 3.1b 91.0 ±
4.6a

73.9 ±
3.3a

45.3 ±
2.0b

77.8 ± 2.7b

Biferno – – 54.2 ± 2.8b 105.3 ±
4.4a

88.6 ±
3.9a

59.7 ±
3.2a

74.4 ± 3.4b

Treatment effect p = 0.000 p = 0.605 p = 0.853 p = 0.550 p = 0.000

River effect p = 0.186 p = 0.309 p = 0.124 p = 0.000 p = 0.144

a–bDifferent superscript letters within the same column indicate a significant difference (p < 0.05).
VCL, curvilinear velocity (mm/s); VSL, straight-line velocity (mm/s); VAP, average path velocity (mm/s).
fr
TABLE 2 Number of fertilized and eyed eggs and fertilization ability recorded with frozen semen, along the spawning seasons.

Spawning season River Female (N°) Fertilized eggs (N°) Eyed eggs (N°) Fertilization rate (%)

Dec 2019 - Feb 2020 (I°)
Volturno 14 53,000 40,000 75

Biferno 13 44,000 31,000 70

Dec 2020 - Feb 2021 (II°)
Volturno 8 45,000 29,000 64

Biferno 10 45,000 30,000 66

Dec 2021 - Feb 2022 (III°)
Volturno 6 27,000 22,000 81

Biferno 17 50,000 40,000 80

Total 68 264,000 192,000

Mean 73

The total values are written in bold.
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Accordingly, to our project, the main goals of conservation

programs are the maintenance of low inbreeding degree and high

levels of genetic variation (Machado-Schiaffino et al., 2007); under

this view, genetic variability is among the most important requisite

for endangered populations to deal with any upcoming

environmental changes by ensuring a long-term reply to natural

and artificial selection, as well as for economic and cultural interests

(Fernández et al., 2005; Frankham, 2008). It is to be noted that the

introgression/inbreeding grade should be kept as low as possible to

prevent harmful effects on fitness-related features, which might

jeopardize the survival of the populations (Fernández et al., 2005).

Currently, about 30% of the semen doses stored in the cryobank

were used for fertilization purposes and in vitro analysis. The

remaining part of the cryobank’s consistency represents a valuable

repository of genetic material for future use, to preserve this native

species in conservation and management programs even after the

end of the project.

Sperm cryopreservation includes many advantages for

biodiversity conservation, this technique could also reduce

inbreeding and reduce domestication selection. This is just the case

with theNat.Sal.Mo project, the semen stripping fromnativemale to

be frozen for the fertilization with cryopreserved semen were

performed on the river. This allowed us to avoid transferring wild

fish into an artificial environment, that frequently causes significant

loss by stress ordomestication and in themeantime the frozen semen

associated to the fertilization schemes assured the genetic variability

of the native population.

In light of these good practices developed in the project, the

advantages of using frozen sperm in a gene bank namely the

transport of genetic material over time as well as space (Bøe et al.,

2021) must be highlighted. Cryopreserved semen can be stored

almost indefinitely without undergoing substantial changes on cell

motility and viability (Bøe et al., 2021). Thismeans that frozen sperm

can be used over different generations and places, in this regard we

successfully used semen frozen during the first breeding season

(2019-2020) to fertilize eggs obtained in subsequent spawning

seasons (2020-2021 and 2021-2022), allowing us to keep the

evolutionary potential of the natural population (Charlesworth,

2009; Witzenberger and Hochkirch, 2011; Bøe et al., 2021).

Cryopreservation approach can help manage species having

trouble reproducting, such as those where the production of both

sexes’ gametes is not synchronized (Anguilla anguilla; Asturiano

et al., 2004); in species characterized by low sperm production (i.e.,

Solea senegalensis; Cabrita et al., 2006);when capture of females and

males at the same time is not possible (i.e., European sturgeon

(Acipenser sturio; Williot et al., 2011); or to allow time for the

genetic analysis of a specific individual to establish its use in a

conservation program (Horvath et al., 2012).

Hence, variations in male or female maturity timing results in

uneven sex-ratios during spawning season, or, in the worst-case

circumstance an increased male mortality could occur. Because

unequal sex ratios result in imbalanced reproductive contribution

among individuals, using cryopreserved sperm can reduce the risk of
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unwanted selection as a result of certain males contributing more

than others (Bøe et al., 2021). Within the project we just guaranteed

that the eggs from each native female were fertilized by frozen semen

ofdifferentnativemales (at least3)using fertilizationmatrix schemes,

ensuring a wider genetic variability of the offspring.

Sperm cryobanking has significant advantages compared to

breeding in captivity considering labour, costs, and security; since a

large number (hundreds/thousands) of samples from different

generations can be preserved in relatively small spaces, without the

threat of damage from disease or genetic drift over time (Martıńez-

Páramo et al., 2009). Since, the genes within individual frozen

spermatozoa remain largely unchanged, genetic variation is not lost

from the sample and no directional changes in allele frequencies can

occur (O’Reilly andDoyle, 2007).Furthermore, according toWedekind

et al. (2007), depending on the fertilization procedures, sperm

competition caused by hatchery practices may also result in artificial

selection and in increasing the loss of genetic diversity. Therefore, it’s

crucial to reduce the genetic risks associated with in vitro fertilization.

However, the loss ofmaternal genetic information and the risk of

epigenetic hereditary changes due to cryopreservation are still to be

looked into. At the moment, cryopreservation of semen remains the

most feasible compared to oocytes, embryos and primordial cells. In

addition, advanced cryopreservation techniques must not only

maintain high sperm motility and viability after freezing-thawing

process, but also guard against potentially harmful changes of the

genome and epigenome (Zhang et al., 2022). In fact, there is an

increasing concern about the epigenetic implications of

cryopreservation process on the sperm DNA methylation and

offspring performances (Pérez-Cerezales et al., 2010; Labbé et al.,

2017).During the freezing process, the cryoprotectant could induce a

possible harmful epigenetic modification (Zhang et al., 2022).

Specifically, cryoprotectant-induced abnormal methylation changes

in cryopreserved semen, involving both hypomethylation and

hypermethylation mechanisms (Kawai et al., 2010; Zhang et al.,

2022). However, encouraging results were obtained through the use

of methanol as a cryoprotectant in the semen freezing protocols on

DNAmethylation in the European eel (Anguilla anguilla) (Herranz-

Jusdado et al., 2019), in zebrafish (Depincé et al., 2020), and in

rainbow trout (El Kamouh et al., 2022).

Hence, these results are inspiring because methanol as a

cryoprotectant would avoid possible harmful epigenetic

modification, further studies are intended to further deepen

information on this.

An obvious but crucial aspect for the successful implementation

of sperm cryobanks, for hatchery practices or for conservation

program purposes, requires that the biological material stored is of

an acceptable quality in terms of motility/viability and even of a

suitable quantity (Judycka et al., 2019). In order to produce the

number of eggs needed for population restoration or the creation of

new broodstock generations, an acceptable quantity of viable and

motile spermcellsmust be available (Bøe et al., 2021). Several factors,

such as collection methods, handling techniques, and transport

circumstances before preservation, might have an impact on the
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post-quality of cryopreserved sperm (Kommisrud et al., 2020; Rusco

et al., 2021), as well as the freezing procedure used (Cabrita et al.,

2010; Nynca et al., 2014; Nynca et al., 2017; Judycka et al., 2018;

Bozkurt et al., 2019; Bozkurt et al., 2021). Cryopreservation may

generate damages in spermatozoa, which impair different cell

compartments, such as mitochondria, plasma membrane, and

chromatin structure resulting in a negative impact on fertilization

success (Cabrita et al., 2010; Figueroa et al., 2016; Mayer, 2019).

Our results clearly showed the effectiveness of the freezing

protocol adopted, both in vitro but chiefly in vivo. In fact, we

recorded satisfactory values of post-thaw sperm quality that ranged

from40% to80% for totalmotility and from50% to 85% for viability.

Remarkably, the validity of freezing procedure can be demonstrated

by the fertilization rate achieved in vivo, which, according to the

breeding season, ranged from 64% to 81%.

Furthermore, the semen cryobank realized within our

project opens new opportunities such as supporting the

hatchery management practices. The implementation of a

native broodstock park (live gene bank) is expected shortly in

order to restock the waterways of our Molise region (south of

Italy) with only autochthonous materials. However, the

impoverishment of genetic variability and the loss of

“rusticity” are among the main negative effects caused by the

broodstock breeding in captivity that are transmitted and

amplified to future generations. Breeding in captivity could

lead to a dilution of “wild” genetic characters, in the course of

generations dangerously exposing the populations at risk of

extinction. According to different authors (O’Reilly and Doyle,

2007; Fraser, 2008), cryopreservation methodologies have the

potential to minimize the losses offitness and genetic diversity in

long-term live-gene banking applications.

The eggs of future generations could be fertilized using the doses

of cryopreserved sperm produced by males in the founder

generations (Sonesson et al., 2002; Fraser, 2008). The frozen semen

can maintain the genes within sperm fully unchanged for extended

periods of time, however the sperm in frozen semen state has several

benefits for biodiversity conservation. Primarily, because founder

female alleles would be present in the sperm of the first male

generation, it could aid in the preservation of a significant portion

of the genetic variation in the original generation (up to 50%)

(Sonesson et al., 2002; Fraser, 2008). Secondly, the method could

keep inbreeding toaminimumandreducedomestication selection in

captivity because half of the gametes used to create subsequent

generations would come from individuals who were originally

from the wild (O’Reilly and Doyle, 2007; Fraser, 2008).

Summarized, in order to develop an effective conservation

program in salmonids the frozen semen in gene bank in

combination with the live gene bank 1) would allow the

fertilization of the eggs for the restoration of the lost or near

extinct populations, 2) would increase the capacity of a live gene

bank by replacing older males with frozen sperm doses; 3) would

maintain the high ratio males to females that must be in favour

of the male, reducing the number of males in captivity breeding.
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The establishment of thefirst sperm cryobank for populations of

native Mediterranean trout is a priceless tool for the protection and

conservation of this species’ biodiversity. The effectiveness and

usefulness of our semen cryobank is demonstrated by the excellent

results obtained, either in terms of fertilization rates achieved with

frozen semen that confirm the efficient sperm protocol used and in

the terms of genetic conservation, as suggested by our preliminary

data about the monitoring activities (unpublished data).

The remaining genetic material of the semen cryobank could be

useful even after the end of the project forMolise River basins as well

as for other Italian basins where the native populations of S. cettii are

threatenedandnear to extinction risk.Aside frombeingahelpful tool

in ensuring the project’s long-term viability, our cryobank represents

a powerful multiplier effect that will affect other neighbouring areas

on a national scale as well as other European river basins. Our

approach couldovercome the limits of the artificial reproduction and

supportive breeding programs, potentially affected by domestication

and undesired artificial selection. Our results suggest that semen

cryobanks could represent an effective tool to support the hatchery

management of all endangered salmonids species, in order to

maintain the wild diversity of native populations.
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et al. (2019). Comparison of European eel sperm cryopreservation protocols with
standardization as a target. Aquaculture 498, 539–544. doi: 10.1016/
j.aquaculture.2018.09.006
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