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Tropical cyclone size estimation
based on deep learning
using infrared and microwave
satellite data
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Huizan Wang2 and Junxing Zhu2

1College of Oceanography and Space Informatics, China University of Petroleum (East China),
Qingdao, China, 2College of Meteorology and Oceanography, National University of Defense
Technology, Changsha, China
Tropical cyclone (TC) size is an important parameter for estimating TC risks

such as wind damage, rainfall distribution, and storm surge. Satellite

observation data are the primary data used to estimate TC size. Traditional

methods of TC size estimation rely on a priori knowledge of themeteorological

domain and emerging deep learning-based methods do not consider the

considerable blurring and background noise in TC cloud systems and the

application of multisource observation data. In this paper, we propose TC-

Resnet, a deep learning-based model that estimates 34-kt wind radii (R34,

commonly used as a measure of TC size) objectively by combining infrared and

microwave satellite data. We regarded the resnet-50 model as the basic

framework and embedded a convolution layer with a 5 × 5 convolution

kernel on the shortcut branch in its residual block for downsampling to avoid

the information loss problem of the original model. We also introduced a

combined channel-spatial dual attention mechanism to suppress the

background noise of TC cloud systems. In an R34 estimation experiment

based on a global TC dataset containing 2003–2017 data, TC-Resnet

outperformed existing methods of TC size estimation, obtaining a mean

absolute error of 11.287 nmi and a Pearson correlation coefficient of 0.907.

KEYWORDS

tropical cyclone, deep learning, attention mechanism, infrared satellite data,
microwave satellite data, R34
1 Introduction

Tropical cyclones (TCs), also known as typhoons, hurricanes, or cyclones are severe

weather systems that form and develop over warm tropical oceans. TC landfall can pose a

significant threat to life and property (Chen et al., 2018; Chen et al., 2020). Global TC

warning centers routinely estimate the maximum radial extents of 34, 50, and 64 kt winds
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(R34, R50, and R64, respectively, where 1 kt = 0.514 m/s) for TC

advisory and warning (Knaff et al., 2016; Kim et al., 2022). These

estimates are often collectively called wind radii in describing TC

sizes; of these wind radii, R34 is the most frequently analyzed

and probably the best observed for measuring TC sizes (Knaff

and Sampson, 2015; Sampson et al., 2018). The size of a TC is

directly related to the extent of its damage area (Kim et al., 2022).

Real-time wind radius estimates help initialize numerical

weather prediction (NWP) models (Kurihara et al., 1993;

Tallapragada and Coauthors, 2016). They are also utilized as

inputs to many operations, such as the calculation of wind speed

probabilities by the National Hurricane Center (NHC) (DeMaria

et al., 2013), modeling of potential infrastructure damage

(Quiring et al., 2014), and storm surge forecasts (NHC, 2016).

However, despite the importance of TC wind radii in business

prediction, studies on TC wind radii are rare compared with

studies on TC trajectories and intensities (Chavas et al., 2015).

This is because TC wind radius estimates are often generated

subjectively by the institutions concerned, which affects data

accuracy and consistency (Landsea and Franklin, 2013; Knaff

et al., 2017; Cha et al., 2020; Kim et al., 2022).

Wind radii are usually provided by three NWP models,

namely, the Global Forecast System, Hurricane Weather

Research and Forecasting, and Geophysical Fluid Dynamics

Laboratory Hurricane models (Sampson et al., 2017). In

addition to NWP models, some statistical-based methods use

various TC-related parameters to estimate TC sizes. Demuth

et al. (2006) developed a statistical model based on linear

regression that uses 24 estimated parameters, including 18

parameters obtained from the Advanced Microwave Sounding

Unit (AMSU), for objective, almost-real-time TC size

estimation; their model was introduced to NHC/Tropical

Prediction Center (NHC/TPC) operation in 2005. Kossin et al.

(2007) presented a statistics-based method for estimating TC

surface wind structures without aircraft reconnaissance and this

method uses the regression relationships of current storm

intensity, storm location, storm age, and principal components

retrieved from infrared imagery to obtain wind radius estimates.

Dolling et al. (2016) combined spatial information from

deviation angle variance (DAV) maps with information from

the Cooperative Institute for Research in the Atmosphere’s

extended best-track archive and the Statistical Hurricane

Intensity Prediction Scheme model to create a statistical

regression model of the TC wind radius parameters in the

North Atlantic basin. Lee and Kwon (2015) used four

parameters, namely, center location, maximum sustained

wind, radius of the maximum wind, and relaxation coefficient

for the decreasing rate with TC distances, to construct a

regression model for TC size estimation. Mueller et al. (2006)

used geostationary IR satellite data, radius of the maximum

wind, and maximum sustained wind speeds to derive a statistical

regression model for TC size measurement.
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However, these traditional methods heavily rely on large

amounts of prior meteorological knowledge and complex

manual intervention, which brings the difficulty of obtaining

wind radii. Motivated by the successful application of deep

learning methods to TC intensity research (Chen et al., 2019;

Zhang et al., 2019; Miller et al., 2017; Pradhan et al., 2017; Lee

et al., 2019), researchers have recently proposed the use of deep

learning–based methods to overcome the abovementioned

problem in TC size estimation. Meng et al. (2021) developed a

convolutional neural network (CNN) to estimate R34 based on IR

satellite images, and it obtained a mean absolute error (MAE) of

24.4 nmi. Zhuo and Tan (2021) constructed a multitask model

with a VGGNet backbone for wind radius estimation based on

geostationary IR satellite images. Baek et al. (2022) used a

multitask model with a CNN backbone for wind radius

estimation. These deep learning–based methods overcome the

shortcomings of traditional approaches and achieve good TC size

estimation results. However, TC cloud systems are more complex

than normal animal or vehicle images because they contain more

background noise resembling the target subject. Current deep

learning–based methods have not paid attention to this problem.

The accuracy of TC size estimates is greatly affected by data.

Infrared and microwave satellite data are the main data used in

TC size estimation. Infrared satellite data are widely used in TC

size estimation due to their effective continuous observation of

TC structures. Stark et al. (2019) developed a DAV-based

multiple linear regression wind radius model using IR satellite

imagery for the North Atlantic basin. Dolling et al. (2016)

developed a multiple linear regression model for the TC wind

radius parameters of the North Atlantic basin based on long-

wave IR satellite images; the model was used to estimate 34, 50,

and 64 kt wind radii on a half-hourly time scale, yielding MAEs

of 20.8, 12.5, and 7.3 nmi, respectively. Lee and Kwon (2015)

used COMS IR imagery to estimate TC sizes. Although

microwave satellite data are too rough for TC observation,

they are suitable for TC research (Demuth et al., 2004). The

low-horizontal-resolution microwave data provided by the

AMSU cannot individually estimate clear wind structures, but

they can be used feasibly for R34, R50, and R64 estimation via

statistics-based methods (Bessho et al., 2006). Demuth et al.

(2006) developed a statistical model based on AMSU data for the

Atlantic Ocean (AL) and the eastern Pacific Ocean (EPAC) to

estimate the azimuthal mean of TCs objectively. However,

current deep learning–based methods base on IR satellite data

to estimate R34, ignoring the applicability of microwave data.

Although IR satellite and microwave data come from different

sources, they both describe observed TC structures from their

perspectives. The effect of incorporating microwave satellite data

into deep learning–based methods of TC size estimation should

therefore be explored.

In this paper, we constructed a deep learning–based model

named TC-Resnet, which combines infrared and microwave
frontiersin.org
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data for R34 estimation. The model improves the Conv-block

(the residual block used to downsample the feature map) of the

ResNet-50 model (He et al., 2016) to avoid the loss of detailed

features. A combined channel–spatial dual attention mechanism

(CBAM) was introduced into the model to suppress background

noise and enhance target features. We conducted sensitivity

experiments on various input satellite data. The main

contributions of this study are as follows:
Fron
1. This study proposes a deep learning–based model named

TC-Resnet, which can attenuate the influence of the

unique background noise of TC cloud systems and

obtain accurate, effective features. Experiments on a

large amount of data showed that our deep learning–

based method achieved promising results.

2. To our knowledge, this study is the first to combine

infrared and microwave satellite data for R34 estimation.

We found that the combination of the two data types is

significantly better than the use of infrared data alone for

wind radius estimation.
The rest of this paper is structured as follows. The second

section describes the materials and methods. The third section

presents the results and analysis of the experiments, and the

conclusion is the last section.
2 Materials and methods

2.1 Data

In this study, we used the TC image-intensity regression

(TCIR) dataset (Chen et al., 2018), which provides four satellite

channels: CDR-quality infrared window (IR1) channel (near 11

mm), Infrared water vapor (WV) channel (near 6.7 mm), Visible

(VIS) channel (near 0.6 mm), and passive microwave (PMW).
tiers in Marine Science 03
The satellite images and associated timestamps in this work are

from two open sources: GridSat (Knapp et al., 2011) and

CMORPH (Joyce et al., 2004). The dataset contains global TC

images from 2003 to 2017; these images cover six TC-generating

regions: AL, EPAC, western Pacific Ocean (WPAC), central

Pacific Ocean (CPAC), Indian Ocean (IO), and Southern

Hemisphere (SH). As VIS channel data are unavailable at

night, we chose the IR1, WV, and PMW channels for this

study (Figure 1). The spatial resolution of the images is 0.07°

latitude/longitude, and all TCs are in the centers of the images.

The size of all images is 201 × 201 points, and the actual spatial

distance between points is about 7 km. The temporal resolution

of the images is 3 h. The TCIR dataset integrates the best-track

datasets from the Joint Typhoon Warning Center and the

revised Atlantic hurricane database (HURDAT2) to create

labels for R34.

It should be noted that there were a lot of near-dissipating or

immature tropical cyclones in the dataset with size designated as

0, so we selected basin images with TC sizes larger than 0 for this

study. Therefore, our final experimental data contain 44,161

frames with three channels of IR1, WV, and PMW per frame.

In the dataset, there exist some damaged values. There are

two groups of them, one is NAN values, and another is

extremely large values. These damaged values will have a

negative impact on the performance of wind radius estimation,

so we refer to the method of previous researchers (Chen et al.,

2018) to assign the NAN values as 0, and replace the value

greater than 1000 with 0. We scaled the image size to 64 × 64 by

bilinear interpolation to reduce the computational cost. The

dataset was randomly divided into training, validation, and test

sets in the ratio of 80:5:15 (Table 1). The training dataset was

used to learn the intrinsic association of the images with R34,

and the validation dataset was used to find the best super-

parameters in the model to obtain the best-performing CNN

solution. Finally, the best-performing CNN scheme was applied

to the test data for an independent evaluation of its performance.
B CA

FIGURE 1

Examples of three channels from TCIR. They are scaled to the range [0, 256) and presented in grayscale.
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2.2 Problem definitions

Deep learning methods can automatically learn important

features related to the target from large amounts of data and

establish a relationship between the data and the target (Fei et al.,

2022). The proposed deep learning method is designed to

discover the intrinsic relationship between the TC image data

and R34 to provide accurate R34 estimates. Thus, our problem is

a regression problem for image data. Multisource satellite data

are inputted into the deep learning model. After several

nonlinear operations, the regression result of this image (R34)

is outputted (Figure 2).
2.3 Architecture of TC-Resnet model

Considering the good performance of the ResNet-50 model

in image processing tasks (Ray, 2018; Dong et al., 2020;

Walvekar and Shinde, 2020; Torres and Fraternali, 2021;

Oerlemans et al., 2022), we chose it as the basic framework for

TC-Resnet (Figure 3) and improved it: the Conv-block

(Figure 4A) in the standard resnet50 model was replaced with

our proposed improved residual block (Figure 4B), and a

combined channel–spatial dual attention mechanism (Woo

et al., 2018) was applied to our model. TC-Resnet uses three

convolution blocks with different convolution layers and filter

sizes. The first type of convolution block consists of a

convolution layer with a 7 × 7 convolution kernel and a
Frontiers in Marine Science 04
maximum pooling layer. This convolution block acts as the

input layer of the model, and the input contains 12,288 (3 × 64 ×

64) values. The second type of convolution block consists of

three convolution layers with 1 × 1, 3 × 3, and 1 × 1 convolution

kernels. Each convolution layer in this convolution block uses a

unique number offilters. The third type of convolution block has

a two-branch structure that can be used for downsampling

according to the input requirements of the model. Each

branch of this convolution block consists of three convolution

layers; one branch has 1 × 1, 3 × 3, and 1 × 1 convolution kernels,

and the other has 1 × 1, 5 × 5, and 1 × 1 convolution kernels.

These convolution blocks are stacked in a certain number of

repetitions to form the main structure of TC-Resnet for

extracting features. The output feature maps are then

successively inputted into a channel attention mechanism and

a spatial attention mechanism to suppress irrelevant features and

enhance the target regions. The computed feature maps are

compressed into 2,048 1 × 1 feature maps by applying a global

average pooling operation after the attention mechanism. These

feature maps are flattened and then fed into the fully connected

(FC) layer for wind radius computation.

Padding is applied to all convolution layers to avoid

removing features from the outer regions of the TC. “1 × 1,

Conv, 64, s = 2” in Figure 3 indicates a convolution operation

with a step size of 2 that uses 64 filters with a 1 × 1 convolution

kernel. “3 × 3, Pool, 64, s = 2” indicates a maximum pooling

operation with a range of 3 × 3 and a step size of 2 for the feature

maps. The other expressions follow this naming convention. The

dashed sections, namely, X3, X3, X5, and X2, indicate that the

corresponding residual structures are repeated 3, 3, 5, and 2

times, respectively. “Avg pool” denotes the average pool, and

“Flatten” denotes the conversion of a multidimensional feature

to a one-dimensional feature so that it can be fed to the FC layer.
2.3.1 Improvement of residual blocks
If the input and output feature maps of the residual unit are

not the same size, then the shortcut branch cannot be directly
TABLE 1 Sample data used in the study.

Dataset Simple size

Training set 35,329

Validation set 2,208

Test set 6,624

Total 44,161
FIGURE 2

Problem definition framework.
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added to the trunk branch. The Conv-block of the standard

ResNet-50 network uses a 1 × 1 convolution kernel with a step

size of 2 in the shortcut branch for downsampling to make both

feature maps the same size (He et al., 2016) (Figure 4A).

Since the convolution kernel width (kernel = 1) is smaller

than the step size (s = 2), it cannot traverse all the feature
Frontiers in Marine Science 05
information in the feature map. Only the information in the red

boxed part of Figure 5A can be passed to the next layer. None of

the information in the nonboxed part is involved in the

convolution calculation; thus, 3/4 of the information is

missing, and some fine features in the data are not captured.

For neighboring time-node cloud systems with small feature
BA

FIGURE 4

(A) Conv-block of standard resnet-50 and (B) improved residual block. “⊕” denotes add, which is the element-by-element addition of the
values. “s” is the acronym for Stride, which indicates the step size when the convolution kernel traverses the feature map.
FIGURE 3

Overall structure of TC-Resnet.
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differences, such missing information prevents the model from

extracting deeper spatial pixel information, thereby reducing

recognition accuracy. The 1 × 1 convolution kernel of the

shortcut branch can reduce dimensionality by linearly

combining information from different channels but cannot

extract feature information, thus decreasing the utilization of

the shortcut branch. Therefore, we improved the convolution

block by adding one 1 × 1, stride = 1 convolution layer to the

shortcut branch for up-dimensioning and a 5 × 5, stride = 2

convolution layer for spatial and channel feature extraction

(Figure 4B). The original downsampling process of the

shortcut branch was transferred to the new 5 × 5 convolution

layer, and the large convolution kernel can traverse all the
Frontiers in Marine Science 06
information of the feature map, hence solving the information

loss issue of the original model (Figure 5B). The ReLu activation

function was then introduced to enhance nonlinear fitting.

2.3.2 Integration of attention mechanism
The complex atmospheric factors during typhoon formation

make features within the cloud spiral radius obscure (Zhou et al.,

2020), which makes wind radius estimation difficult. We

introduced CBAM into TC-Resnet, so that the model could

actively learn to focus on the contours of the target wind radius

in an image while suppressing irrelevant background regions for

excellent wind radius estimation. The CBAM attention module

combines the spatial and channel dimensions (Figure 6).
B

A

FIGURE 5

(A) Feature information traversal before improvement and (B) feature information traversal after improvement.
FIGURE 6

Structure of the CBAM. The left part represents the channel attention module and the right part represents the spatial attention module. The
feature map passes first through the left part and then through the right part.
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Compared with SENet, CBAM can achieve better results because

the latter uses an attention mechanism that focuses on the

channel only (Hu et al., 2018; Chen et al., 2021).

CBAM is implementated as follows.

The first step is to generate the channel attention map.

Global maximum pooling and global average pooling are

performed on the input feature map F in the HW direction

respectively, and the information in the HW direction is

aggregated into two C × 1 × 1 vectors, which are then passed

to a multilayer perceptron MLP for calculation respectively.

Both share the weight values of the MLP, and the results of

the two calculations are summed to regenerate a C × 1 × 1 vector.

The sigmoid function is applied to this regenerated vector to

generate the channel attention map. This process is expressed as

follows:

C Fð Þ =   Sigmoid MLP Maxpool Fð Þð Þ +MLP Avgpool Fð Þð Þð Þ
Next, the spatial attention map is generated. F first performs

global maximum pooling and global average pooling in the

direction of channel C to generate two 1 × H × W feature maps.

The two feature maps are spliced in the channel dimension to

obtain a 2 × H × W feature map, which is then convolved to

generate a 1 × H × W feature map. Finally, the sigmoid function

is applied to generate the spatial attention map. This process is

expressed as follows:

S Fð Þ = Sigmoid Conv Concat Maxpool Fð Þ,Avgpool Fð Þð Þð Þð Þ
where Conv represents the convolution operation applied to the

feature map and Concat represents that two feature maps are

concatenated together in the channel direction.

The overall operation process of CBAM can be expressed as

follows:

F0 = C Fð Þ⊗ F

F00 = S F0ð Þ⊗ F0

(

where ⊗ represents the Hadamard product, F′ is the

intermediate variable of the feature map F passing through the

channel attention module, and F″ represents the output passing

through the spatial attention module.

CBAM combines channel and spatial attention mechanisms

sequentially, thereby effectively improving the extraction of key

features from the feature maps and suppressing unnecessary

features. The channel attention mechanism automatically

calculates the weight of each channel feature map so that the

model learns to focus on the key information channels that

contain considerable weight. The spatial attention mechanism

can calculate the importance of each region of the image. Thus,

the model learns to filter out unimportant background noise

information and enhance the feature regions of the target to

obtain critical features. The application of CBAM to wind radius

estimation can enhance the model’s ability to extract key features
Frontiers in Marine Science 07
from TC cloud maps and improve its wind radius

estimation performance.
2.4 Model validation and optimization

We use the Pearson correlation coefficient (R) and Mean

absolute error (MAE) to evaluate model performance.

MAE: the average of the distance between the model-

prediction (R34 estimation) and the sample’s true value (Best-

track R34). MAE can be defined as:

MAE =
1
no

n

i=1

byi − yið Þj j

where n is the number of samples, ŷi is the R34 estimation, and yi
is the true value (Best-track R34).

R: the quotient of the covariance and standard deviation

between two variables (R34 estimation and Best-track R34). R

can be defined as:

R =
on

i=1 yi − yið Þ byi − byi� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 yi − yið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1 byi − byi� �2

r
where n is the number of samples, ŷi is the R34 estimation, and yi
is the Best-track R34.

For the optimizer, adaptive moment estimation (Adam) is

used because this optimizer is commonly adopted and properly

considers the direction and learning rate to find the optimal loss

(Nair and Hinton, 2010; Kingma and Ba, 2014).

Comparison of model performance: We compare several

deep learning models commonly used in image processing,

namely, ResNet-18 (He et al., 2016), ResNet-50 (He et al.,

2016), VGGNet (Simonyan and Zisserman, 2014), and

GoogLeNet (Szegedy et al., 2015), on the same dataset to

evaluate the performance of our model.

The size of the convolution kernel in each layer is sensitive to the

characteristics of the input data. The smaller the convolution kernel,

the better themodel can capture the local features of the input image.

Large convolution kernels are suitable for acquiring the general

pattern of the input image (Li et al., 2017). Therefore, the optimal

convolution kernel size suitable for the characteristics of satellite TC

images should be determined. Therefore, we experimented with the

size of the convolution kernel of the downsampled convolution layer

in the modified residual block to select the size (from 3 to 9, with

increments of 2) that best fits TC image characteristics.
3 Results and discussion

The model was trained using the CUDA-enabled PyTorch

framework (Python). After testing different learning rates, we
frontiersin.org
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finally determined the learning rate to be 0.0001. For epoch

selection, we used the early stop strategy, which is a method of

informing when to stop running the iterative algorithm during

training to improve the overall performance of the CNN model

by reducing model overfitting (Raskutti et al., 2014). The

validation loss is the model error of the validation data from a

specified loss function, which tells the CNN model when to stop

training. In the training process of this study, we set the iteration

period to 20 epochs, and the model training process was stopped

when the validation loss stopped decreasing within a certain

period (Figure 7).
3.1 Test on independent datasets

We used 2,208 (validation) and 6,624 (test) satellite images

to analyze the performance of TC-Resnet. The optimal-

parameter-based TC-Resnet model configuration on the

validation set yields MAE and R values of 10.958 nmi and

0.918, respectively, in R34 estimation (Figure 8A). MAE and R

values of 11.287 nmi and 0.907, respectively, are obtained from

the model application to the test dataset (Figure 8B). The

scatterplots in Figure 8 suggest that our results fit well; the

R34 estimates obtained from our model are highly correlated

with the Best-track R34, although there are some outliers. Both

the validation and test sets contain peculiar outliers (in the red

boxes in Figure 8); this anomalous part shows that the model

gives estimates of around 210 nmi regardless of the true wind

radius. This is because some of the images in our dataset had

large numbers of missing values and unusually large values; in

some cases, the entire image was empty. To investigate the

robustness of our model to large quantities of missing values and
Frontiers in Marine Science 08
outliers, we did not remove them. Instead, we simply set them to

0. After this method, TC images with a small number of

damaged values can still get good R34 estimates by the

calculation of our model, and these weakened images also

make the model enhanced to handle low-quality images. It is

worth noting that some images with a large number of damaged

values have considerable similarity after such processing, so the

model can easily mistake them for the same type of TC images

and predict very close R34 values (about 210 nmi) for them.

These close R34 values depend on the distribution of anomalous

data in the satellite data and vary with the data, so we did not set

a specific threshold in the model to attenuate the side effects of

the damaged data because this threshold is difficult to determine.

This type of anomalous image is a very low percentage of the

dataset, only about 1%, so we allowed it to exist. The fact that the

test set had more data than the validation set (red boxes) is the

reason the test set has weaker results than the validation set.

As shown in Figure 9, we examined 60 predictions randomly

selected from the test set, whose MAE and R were 8.675 nmi and

0.923, respectively, which were similar to the evaluation

indicators of the whole independent test set. The predicted

values fit well with the actual values for most points, which

indicates that our deep learning model performs well on the

independent dataset.
3.2 Sensitivity experiment of data
sources

Researchers mainly use infrared satellite data in TC size

studies because their high resolution reveals substantial

observational information. Nonetheless, despite the low

resolution of microwave satellite data, they can penetrate most

clouds beyond the top layer, which is a beneficial feature when a

central dense overcast exists (Demuth et al., 2004) and play a

crucial role in revealing convective organization and eyewall

structure (Xiang et al., 2019; Hawkins et al., 2001; Wimmers and

Velden, 2010). Therefore, we investigated the effect of data

sources on wind radius estimates. The experimental results are

shown in Figure 10. In wind radius estimation, the MAE values

of the R34 estimation errors based on IR1, WV, and PMW

channel data are 15.266 nmi, 13.751 nmi, and 17.882 nmi,

respectively, when only single-channel data are considered,

which shows that the infrared data perform significantly better

than the microwave data. When considering the dual-channel

data for wind radius estimation, the performance of the WV and

PMW dual-channel data (MAE=11.684 nmi) is significantly

better than that of the IR1 and WV dual-channel data

(MAE=12.357 nmi) and the IR1 and PMW dual-channel data

(MAE=13.254 nmi). We found that the WV channel and PMW

channel each seem to have more complementary information

about the wind radius features. Wind radius estimation was

further improved by adding IR1 channel data to the combined
FIGURE 7

Plot of the decreasing loss values of the model on the training
and validation sets. An epoch indicates that all training samples
are computed in the model once in full and MSE indicates mean
squared error.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1077901
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2022.1077901

Frontiers in Marine Science 09
WV and PMW channel data. Findings show that the combined

use of infrared and microwave data provides more valid features

about wind radii than single-channel infrared data and single-

channel microwave data in wind radius estimation. The wind

radius estimation results obtained from the use of multisource

data (combined infrared and microwave data) are better by

about 26% than those from the use of infrared data alone, which

is the common practice.
3.3 Determination of optimal
model parameters

In improving the convolution block, we configured the

appropriate convolution kernel size for the downsampling

layer to avoid information loss and optimize the model. As

shown in Figure 11, the configuration of different convolution

kernel sizes significantly affects the wind radius estimation

performance of the model. In the validation dataset, the

improved model does not totally outperform the standard

ResNet-50; only the 3 × 3 and 5 × 5 convolution kernel

configurations perform better, indicating that the model is

sensitive to the convolution kernel size. When the convolution

kernel size is 5 × 5, the model obtains MAE and R values of

11.375 nmi and 0.907, respectively. The wind radius estimation

performance is better compared with that under the three other

convolution kernel sizes. This may be because a smaller

convolution kernel loses some important information due to

the step size (s = 2), whereas a larger convolution kernel does not

capture local features well.

To explore whether reducing the background noise of the

TC cloud system by the attention mechanism can improve the
FIGURE 9

Comparison of predicted results and labeled values for 60
randomly selected test sets.
FIGURE 10

Performance of different channels of satellite data and their
combinations.
BA

FIGURE 8

Scatter plot of model results on the (A) validation and (B) test sets.
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D E

A

FIGURE 11

Scatterplot of different parameter settings on validation set. (A) Unimproved residual blocks, (B) with added 3 × 3 convolution kernel, (C) with
added 5 × 5 convolution kernel, (D) with added 7 × 7 convolution kernel, and (E) with added 9 × 9 convolution kernel. In each figure, the
horizontal axis is the R34 estimation of the model output, the vertical axis is the corresponding label, and the bottom-right corner shows the N,
R, and MAE values.
B C

D E

A

FIGURE 12

Scatterplot of results obtained after incorporation of attention mechanism (CBAM) based on Figure 11. (A) Unimproved residual blocks, (B) with
added 3 × 3 convolution kernel, (C) with added 5 × 5 convolution kernel, (D) with added 7 × 7 convolution kernel, and (E) with added 9 × 9
convolution kernel. In each figure, the horizontal axis is the R34 estimation of the model output, the vertical axis is the corresponding label, and
the bottom-right corner shows the N, R, and MAE values. .
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wind radius estimation results, we added CBAM behind the last

convolution layer. And we tested the model with different

configurations after introducing the attention mechanism and

made the scatterplot in Figure 12. By comparing Figure 11, 12, it

can be found that after reducing the background noise of the TC

cloud system, the performance of the Resnet-50 model, the 5×5

convolution kernel configuration, the 7×7 convolution kernel

configuration, and the 9×9 convolution kernel configuration

show 2.46%, 3.66%, 3.74%, and 2.31% improvement in the R34

estimation task, respectively, and only the performance of the

model with the 3×3 convolution kernel configuration decreases

by 0.83%. Accordingly, we believe that not every model can

effectively reduce the background noise of the TC cloud system

and thus optimize the R34 estimation with the help of the

attention mechanism. However, the attention mechanism can

suppress the image background noise well in most cases to

achieve better operational performance. Based on the test results,

we chose a model with a 5×5 convolutional kernel configuration

embedded with an attention mechanism as our final operational

model. This model is able to fully capture the important detailed

features of the TC cloud system as well as reduce the background

noise of the TC cloud system to achieve better performance.
3.4 Comparison with other deep learning
models and previous studies

We evaluated several widely used deep learning models on the

same dataset and compared the performance of TC-Resnet with

previous research results (Table 2). Among these commonly used

deep learning models, the ResNet-50 model performs the best, with

MAE and R values of 12.788 nmi and 0.892, respectively. However,

the performance of TC-Resnet, with MAE and R values of 11.287
Frontiers in Marine Science 11
nmi and 0.907, respectively, is better by 11.73% compared with that

of ResNet-50. Our model also performs excellently compared with

previous models. However, a direct quantitative comparison with

previous research results was difficult because of the studies’

differences in study periods and regions. Nonetheless, we used TC

data with the longest period (2003–2017) and the most

comprehensive spatial coverage (global), yet our R34 estimation

performance is better compared with that of the other operational

products. Therefore, the proposed method should be an effective

tool for TC size estimation.
4 Conclusions

This study proposes TC-Resnet, a deep CNN model that

automatically estimates wind radii based on combined infrared

and microwave satellite data. In light of the considerable

blurring and background noise in TC cloud systems, we

introduced CBAM to suppress such background noise while

enhancing target features and improved the traditional residual

structure to enhance the model’s ability to capture detailed

features. We trained, validated, and independently tested TC-

Resnet, and the results show that our method, which does not

require specialized domain knowledge or manual operation, is

easy to operate and outperforms traditional methods. Our

method also performs better than widely used deep learning–

based methods. Thus, TC-Resnet can obtain vital information

about wind radius features.

To our knowledge, this study is the first to estimate R34 using

a deep learning model that combines infrared and microwave

satellite data. In previous studies, although microwave data were

considered suitable for investigating TC structures, their low

spatial resolution limited their application. Current deep
TABLE 2 Comparison of TC size estimation models in terms of correlation and MAE. WNP: western north Pacific; ENP: eastern north Pacific; NAL:
north Atlantic.

Method Region Period covered CorrelationR MAE(nmi)

Traditional methods

Sampson et al. (2017) WNP 2014–2015 – 32

Sampson et al. (2017) AL, ENP 1999–2004 0.89 16.9

Kossin et al. (2007) NAL 1995–2004 – 24.2

Dolling et al. (2016) NAL 2004–2010 – 20.8

Deep learning-based models

Meng et al. (2021) WNP, ENP, AL, 2003–2016 – 24.4

Zhuo and Tan (2021) Global 2005–2019 – 17.0

Resnet-18 Global 2003–2017 0.889 15.131

Resnet-50 Global 2003–2017 0.892 12.788

VGGNet Global 2003–2017 0.846 17.283

GoogLeNet Global 2003–2017 0.880 17.961

TC-Resnet Global 2003–2017 0.907 11.287
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learning–based methods of R34 estimation focus only on infrared

satellite data; they ignore the applicability of microwave data to

wind radius estimation. According to the results of the current

study, in R34 estimation, the use of combined infrared and

microwave satellite data outperforms the use of microwave or

infrared satellite data alone. The use of such combined data

produces a performance improvement of about 26% compared

with the use of infrared data alone. Therefore, this new method

can be a powerful tool for TC size estimation.

In this study, infrared and microwave satellite data were used

to estimate wind radii. Although satisfactory results were

obtained, the possibility of optimizing the model by adding

other environmental data, such as wind field data, needs further

study. In addition, according to JTWC data, tropical cyclones

usually have asymmetric wind fields. Lu et al. (2011) found that

larger radii are usually found in the northeast quadrant, followed

by the southeast and southwest quadrants. However, this study

only used the average of 34kt wind radii in the four quadrants

and did not consider the asymmetric situation of tropical

cyclones due to low-level environments, such as enhanced

cross equatorial flow and low/mid-level relative humidity

(Mohapatra and Sharma, 2015). The study of tropical cyclone

asymmetries is important for more accurate predictions of TC-

related hazardous areas, which is a priority for future research.
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