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Estimating fractional cover of
saltmarsh vegetation species in
coastal wetlands in the Yellow
River Delta, China using
ensemble learning model

Zhanpeng Wang1,2, Yinghai Ke1*, Dan Lu2, Zhaojun Zhuo1,
Qingqing Zhou1, Yue Han1, Peiyu Sun1, Zhaoning Gong1

and Demin Zhou1

1College of Resource Environment and Tourism, Capital Normal University, Beijing, China, 2School
of Resource and Environmental Sciences, Wuhan University, Wuhan, China
Saltmarshes in coastal wetlands provide important ecosystem services. Satellite

remote sensing has been widely used for mapping and classification of

saltmarsh vegetation, however, medium-spatial-resolution satellite datasets

such as Landsat-series imagery may induce mixed pixel problems over

saltmarsh landscapes which are spatially heterogeneous. Sub-pixel fractional

cover estimation of saltmarsh vegetation at species level are required to better

understand the distribution and canopy structure of saltmarsh vegetation. In

this study, we presented an approach framework for estimating and mapping

the fractional cover of major saltmarsh species in the Yellow River Delta, China

based on time series Landsat 8 Operational Land Imager data. To solve the

problem that the coastal area is frequently covered by clouds, we adopted the

recently developed virtual image-based cloud removal (VICR) algorithm to

reconstruct missing image values under the cloud/cloud shadows over the

time series Landsat imagery. Then, we developed an ensemble learning model

(ELM), which incorporates Random Forest Regression (RFR), K-Nearest

Neighbor Regression (KNNR) and Gradient Boosted Regression Tree (GBRT)

based on temporal-spectral features derived from the time-series cloudless

images to estimate the fractional cover of major vegetation types, i.e.,

Phragmites australis, Suaeda salsa and the invasive species, Spartina

alterniflora. High spatial resolution imagery acquired by the Unmanned Aerial

Vehicle and Gaofen-6 satellites were used for reference sample collections.

The results showed that our approach successfully estimated the fractional

cover of each saltmarsh species (average of R-square:0.891, RMSE: 7.48%).

Through four scenarios of experiments, we found that the ELM is advantageous

over each individual model. When the images during key months were absent,

cloud removal for the Landsat images considerably improved the estimation

accuracies. In the study area, Spartina alterniflora covers the largest area
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.1077907/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1077907/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1077907/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1077907/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.1077907/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.1077907&domain=pdf&date_stamp=2022-12-21
mailto:yke@cnu.edu.cn
https://doi.org/10.3389/fmars.2022.1077907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.1077907
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2022.1077907

Frontiers in Marine Science
(5753.97 ha), followed by Phragmites australis with spatial extent area of

4208.4 ha and Suaeda salsa of 1984.41 ha. The average fractional cover of

S. alterniflora was 58.45%, that of P. australis was 51.64% and that of S.salsa

was 51.64%.
KEYWORDS

saltmarsh, fractional vegetation cover, ensemble learning, cloud removal, spartina
alterniflora, yellow River Delta (YRD)
1 Introduction

Saltmarshes in coastal wetlands provide significant ecosystem

services such as flood protection, erosion control, biodiversity

maintenance, carbon sequestration and climate change mitigation

(Mojica Vélez et al., 2018; Wang et al., 2021a; Wang et al., 2021b).

During the past decades, saltmarshes in many coastal areas have

been suffering from degradation and ecosystem function loss (Hao

et al., 2020; Zhang et al., 2020; Ding et al., 2021). Monitoring the

spatial extent, growth status and canopy structure of saltmarshes

is essential for assessing the process of ecological degradation and

restoration. With the development of remote sensing technology,

an increasing number of studies have been focusing on the

mapping of saltmarsh vegetation in coastal wetlands (Chen

et al., 2020; Wang et al., 2020b; Zhang et al., 2020; Wang et al.,

2021a). For example, our previous study conducted annual

mapping for the coastal wetlands in the Yellow River Delta

(YRD) based on Landsat time series imagery, and analyzed the

expansion of the Spartina Alterniflora, an invasive saltmarsh

species in coastal China (Wang et al., 2021b). These studies

basically adopted the strategy of “hard classification”, assuming

that one pixel corresponds to a single classification category (Zhou

et al., 2018; Zhang et al., 2020; Wang et al., 2021b). For medium to

coarse resolution imagery over coastal wetlands, a pixel may have

multiple classes because of the strong landscape heterogeneity

(Chen et al., 2020; Yang et al., 2020). Hard classification based on

medium-resolution remote sensing images such as those acquired

by Landsat series satellites tends to produce significant mixed pixel

effect. To reduce these effects, researchers have paid attention to

the fractional cover estimation of each land cover type at sub-pixel

scale. At present, fractional cover estimation has been mostly

applied in urban areas, forests, shrubland, etc., and it is relatively

less applied in coastal salt marsh wetlands (Mu et al., 2018; Yang

et al., 2020). For vegetation cover estimation, many studies

considered different vegetation species as a single category, or

estimated the coverage at the community level (Jia et al., 2016;

Zhou et al., 2018; Song et al., 2022), and the studies on the

vegetation coverage estimation at the species level are limited.

The methods for fractional cover estimation can be

categorized into spectral mixture analysis models (Shanmugam
02
et al., 2006; Gao et al., 2020), geometric optical models based on

multi-angle observations (Mu et al., 2018), and supervised

regression models (Xu et al., 2005; Jia et al., 2016; Yang et al.,

2020). Spectral mixture analysis involves physically-based

models assuming that the spectrum in a pixel is a linear or

non-linear combination of the spectra of all components within

the pixel. In the multispectral image, the existence of

endmember spectral variability largely affects modeling

accuracies. In particular, different vegetation species in coastal

wetlands may have very similar spectra, which brings more

challenges to the spectral mixture analysis. Geometric optical

models require multi-angle observations, which are only

applicable to a few satellite sensors like MODIS (Chopping

et al., 2012; Mu et al., 2018). Supervised regression methods,

particularly machine learning models have the characteristics of

flexibility, stability and ease of use. The basic idea of this method

is to derive the fractional cover of each land cover by modeling

the internal relationship between remote sensing image features

and the land cover fractions. At present, machine learning

models have been widely used to estimate vegetation cover of

forest and cropland (Jia et al., 2016; Wang et al., 2018; Song et al.,

2022), while studies have reported that individual machine

learning models tend to have different performances at

different locations across the study area (Di et al., 2019),

although the overall performance can be very similar. Other

research fields have applied ensemble learning models (ELMs)

currently, and verified the advantages of ensemble learning over

a single model (Di et al., 2019; Requia et al., 2020).

Existing studies on vegetation cover estimation have mostly

used a single cloudless image (Shanmugam et al., 2006; Zhou

et al., 2018; Song et al., 2022). For example, Zhou et al. (2018)

estimated fractional cover of S. alterniflora in coastal area of

Fujian Province, China based on SPOT imagery during growing

season. However, the spectra of different vegetation species over

an image can be very similar, bringing great challenges for cover

estimation of different species (Wu et al., 2021; Zhang et al.,

2021). Due to the differences in phenology among different

vegetation types, in recent years, studies have proposed using

time series images for vegetation cover estimation (He et al.,

2019; Song et al., 2022). However, for cloudy and rainy coastal
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wetlands, acquiring cloud-free time series imagery are difficult.

Wang et al. (2021b) found that when mapping coastal wetland

vegetations, the absence of images in several key months of plant

growth decreased the classification accuracy significantly. At

present, many scholars have developed cloud removal

algorithms for optical remote sensing images, which can

reconstruct the reflectance of the land surface covered by thick

clouds and cloud shadows (Zhu et al., 2012a; Chen et al., 2017;

Cao et al., 2020). Our previous research found that the existing

algorithms tended to produce poor reconstruction results over

the coastal wetlands because the coastal wetlands are highly

dynamic due to tidal inundation (Wang et al., 2022). Therefore,

we proposed a new cloud removal algorithm, i.e., virtual image-

based cloud removal (VICR) algorithm (Wang et al., 2022),

which improved the cloud removal accuracy over the coastal

wetlands. We expect that the full time-series cloud-removed

images reconstructed by VICR help to enhance the fractional

cover estimation of saltmarsh vegetation at species level at the

coastal wetlands.

The Yellow River Delta (YRD) is one of the youngest and

most extensive coastal wetland systems in the world (Li et al.,

2019; Wang et al., 2021b; Zhang et al., 2021). Due to the invasion

of Spartina alterniflora in recent years, the habitats of native

species Suaeda salsa and Phragmites australis have shrunk,

resulting in the reduction of S.salsa cover and the fragmentation

of the habitats. In this study, we took the YRD wetland as study

area and aimed to (1) present a machine-learning-based ensemble

model for species-level vegetation cover estimation, and (2)

evaluate the role of cloud-removed time-series images in

vegetation cover estimation. We hope that this study will

provide a technical framework for fractional cover estimation of

saltmarsh species, and help to analyze the ecological security of

wetlands, supporting the sustainable development of

coastal wetlands.
2 Study area and dataset

2.1 Study area

The study area is in the Yellow River Delta National Nature

Reserve, which is located in the northeast of Dongying City,

Shandong Province, China (118°32’58’’E-119°20’27’’E, 37°

34’46’’N-38°12’18’’N). It belongs to warm temperate zone and

semi-humid continental monsoon climate, with four distinct

seasons and rainy summers. The annual average temperature is

11.7-12.6°C, the annual average precipitation is 530-630 mm,

and about 70% of the precipitation is concentrated in summer.

The study area covers the intertidal zones of the Yellow River

Estuary (Figure 1), with an area of 923 km2. P.australis, S.salsa,

and S.alterniflora are the primary vegetation species in the study

area (Wang et al., 2021b; Zhang et al., 2021). P.australis generally

grows on both sides of the river bank; in the inner part of tidal
Frontiers in Marine Science 03
flat, it is mixed with Tamarix Chinensis. P. australis starts to

grow in April, flowering from August to September, and start

senescence in October. P.australis near the river generally grows

better with higher density, while P.australis in the area with

higher salinity is relatively short and sparse. S.salsa is an annual

herb with strong salt-tolerance. It is mostly found in mid to high

tide areas and covers a wide range. It blooms red from July to

October. S.alterniflora is a perennial herb native to the Atlantic

coast of North America. It was introduced to the Yellow River

Estuary in the 1990s. Due to its strong reproductive capacity and

environmental adaptability, S.alterniflora has expanded rapidly

in the tidal flat area of Yellow River Delta in recent years,

resulting in degradation of the native S.salsa and seagrass bed,

which has seriously affected the biodiversity in the coastal

wetland. The study area was divided into four zones where

Zone A and B are located in the north bank of the estuary, and

Zone C and D are located in the south bank. Zone B and C are

located near the river mouth.
2.2 Landsat 8 imagery and
pre-processing

Landsat 8 satellite is a multispectral imaging satellite

launched in 2013. Its carries Operational Land Imager (OLI)

sensor with 9 spectral bands from visible to shortwave infrared

wavelengths. We downloaded all available Landsat 8 Level 2 Tier

1 surface reflectance images covering the study area (Row 121,

Path 43) acquired during January 1, 2020 ~ December 31, 2020

from Google Earth Engine (GEE) platform. The quality

assessment (QA) bands of the images were used to identify the

area covered by clouds and cloud shadows. There were 18

images in total, and the average cloud coverage was 29.2%.

Figure 2 illustrates the spatial distribution of the number of valid

observations (no cloud/cloud shadow). The average number of

valid observations is 12.7 per pixel, while the number was 11.5

per pixel over the intertidal area.
2.3 Auxiliary data and preprocessing

Auxiliary datasets include high-spatial-resolution images

taken by DJI Phantom 4 Multispectral (P4M) Unmanned

Aerial Vehicle (UAV) and Gaofen-6 satellite images, which

were primarily used for reference data collection. DJI P4M

UAV carries a RGB camera and a multispectral sensor with 5

spectral bands including blue, green, red, red-edge and near-

infrared (NIR). In September 2020, around 11 UAV flights with

an average coverage of 10.2ha were taken in the study area

(Figure 1). For each flight, the flight height was 50 m, resulting in

2.65 cm spatial resolution. The along path and cross path

overlapping area were over 70%. Within the coverages of UAV

flights, 68 field plots with size 1m × 1m were randomly selected.
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Location of each plot was recorded with handheld GPS RTK

equipment, the vegetation species, density and growth status

were also recorded at the field surveys. For all UAV images, DJI

Terra software was used to generate multispectral orthophoto

images. The ortho-images were then segmented into objects

using multiresolution segmentation algorithm embedded in

eCognition software. Base on the vegetation indexes calculated

for each object, the threshold method was used to classify the

objects into bare flat, S. salsa, S. alterniflora and P. australis. The

classification maps were then upscaled to Landsat 30 m

resolution and the fractional cover of each vegetation type

within 30 m-grids were calculated using area aggregation

approach. The total of 112.3 ha UAV flight coverage resulted

in 826 samples.

Because many areas in the YRD wetlands were difficult to

access, the UAV flight coverages and the reference samples

generated from the UAV images were limited. To supplement

the reference samples, high-spatial resolution imagery acquired

by Gaofen 6 satellite (GF-6) on September 4, 2020 was used to

generate additional reference samples of fractional cover. GF-6 is

a high-spatial-resolution satellite that was launched in 2018 as

one of the series of China High-resolution Earth Observation

System (CHEOS) satellites. It carries a 2-meter resolution

panchromatic camera and an 8-meter multi-spectral imager
Frontiers in Marine Science 04
with blue, green, red, and near-infrared band. We first fused

the panchromatic imagery with the multispectral imagery using

NNDiffuse Pan Sharpening method to obtain 2 meters-

resolution multispectral image. Then, we utilized the dimidiate

pixel model to estimate the fractional vegetation cover for every

2 m pixel (Song et al., 2022). As the dimidiate pixel model cannot

discriminate vegetation species, we only selected those pixels

that contain a single vegetation species as reference pixels.

Expert knowledge and field experiences helped to determine

whether a pixel contain one species. For example, S. alterniflora

at the landward edge is unlikely mixed with other species (Zhang

et al., 2020). As a result, 348 sample points were generated based

on GF-6 images (Figure 1).
3 Methods

In this study, we developed a machine learning-based

ensemble model for fractional cover estimation for different

salt marsh vegetation species based on time series Landsat

imagery (Figure 3). The ELM aimed to enhance the

performance of each individual model and improve the

fractional cover estimation accuracy. Temporal composite

spectral features were generated from time series Landsat
FIGURE 1

Location of the study area. Qingshuigou course was the old river channel before 1996. The study area is divided in Zone (A–D) based on the
distribution of artificial groins and the river channel.
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imagery. As some Landsat images have cloud and cloud

shadow contamination, we conducted cloud removal with the

newly proposed VICR algorithm. In order to compare and

verify the role of cloud removal in vegetation coverage

estimation, we compared the fractional cover estimation

accuracies by using the original time-series Landsat images

and the cloud-removed images. Section 3.1 and Section 3.2

briefly introduces the VICR cloud removal algorithm and

generation of temporal features, respectively. Section 3.3

describes the details of the ELM; Section 3.4 describes the

accuracy assessment approach and the scenarios tested in

our study.
3.1 Cloud removal for Landsat imagery
using VICR algorithm

To date, many cloud removal algorithms have been

developed (Zhu et al., 2012a; Cao et al., 2020; Wang et al.,

2022). These algorithms used one or more cloud-free imagery as

reference images to predict the missing values in the cloud and
Frontiers in Marine Science 05
cloud shadows in the target image (i.e., the cloud image).

However, these algorithms had limited performance when

dealing with landscapes with abrupt changes (Wang et al.,

2022) such as the estuarian wetlands that are frequently

inundated by tidal water.

To solve the above problems, our previous research

proposed VICR, a new cloud removal algorithm based on time

series reference images. VICR implements cloud removal by

filling each cloud region separately. For each cloud region, it

consists of three steps: (1) Virtual image construction by linear

transformation using time series Landsat imagery. In this step,

optimal number of reference images is determined. (2) Similar

neighboring pixel selection with assist of a newly proposed

temporal-weighted spectral distance. (3) Residual image

estimation and cloud image reconstruction by adding residual

image to the virtual image. VICR also proposed a strategy for

time-series cloud image processing. Details of the model can be

found in Wang et al. (2022). Following this strategy, the Landsat

imagery acquired in 2020 over the study area (Table 1) were

sorted in the order of the cloud cover percentage; the image with

the lowest cloud cover was processed first and then the cloud-
FIGURE 2

Landsat 8 OLI good observations in the Yellow River Delta in 2020.
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removed image was used as reference image for images with

larger cloud cover.
3.2 Generation of temporal features

Temporal information is helpful to distinguish different salt

marsh vegetation types and different fractional cover of the same

vegetation type (Song et al., 2022). Our previous research found

that temporal composite of spectral indices as input features help

to discriminate different coastal wetland cover types (Wang

et al., 2021b). We also found that the harmonic regression

features improved the classification accuracies. Harmonic

regression fits the time series spectral indices [such as the

normalized difference vegetation index (NDVI)] using

superposition of periodic curves and can well represent the

phenological pattern of each vegetation species. Following our

previous study, we first calculated seven spectral indexes from

each Landsat 8 OLI images in 2020 (Wang et al., 2021b),

including Normalized Difference Vegetation Index (NDVI),

Enhanced Vegetation Index (EVI), Soil Adjustment Vegetation

Index (SAVI), Green Chlorophyll Vegetation Index (GCVI),

Green Normalized Difference Vegetation index (GNDVI), Land

Surface Water Index (LSWI) and Modified Normalized

Difference Water Index (MNDWI). NDVI is the most

common vegetation index to reflect the vegetation type and

growth status (Tucker, 1979). EVI takes into account the canopy

background and aerosol influences, so it is more sensitive to high

biomass than NDVI (Huete et al., 2002). Compared to NDVI,

SAVI is more suitable for low vegetation cover areas because it

adds soil adjustment coefficient (Huete, 1988). GCVI has a larger

dynamic range than NDVI and is suitable for densely vegetation

areas (Grevstad et al., 2003). GNDVI has significant correlation

with chlorophyll content and leaf area index (Gitelson and

Merzlyak, 1998). LWSI is sensitive to canopy water content

and soil moisture (Xiao et al., 2005), and MNDWI is good at

identifying open water (Xu, 2006). The spectral indices were

calculated using the following functions:
Frontiers in Marine Science 06
NDVI =
rNIR − rred
rNIR + rred

(1)

EVI =
2:5 rNIR − rredð Þ

rNIR + 6rred − 7:5rblue + 1
(2)

SAVI =
1:5 rNIR − rredð Þ
rNIR + rred + 0:5

(3)

GCVI =
rNIR
rgreen

− 1 (4)

GNDVI =
rNIR − rgreen
rNIR + rgreen

(5)

LSWI =
rNIR − rSWIR

rNIR + rSWIR
(6)

MNDWI =
rgreen − rSWIR1

rgreen + rSWIR1
(7)

where rblue rgreen, rred, rNIR and rSWIR1 are the surface

reflectance in blue, green, red, near infrared and short-wave

infrared 1 bands in Landsat 8 OLI images.

The annual maximum, minimum, mean, median and

standard deviation of the six spectral bands (blue, green, red,

NIR, SWIR1 and SWIR2) and the seven spectral indexes were

calculated for each pixel based on all Landsat imagery in

2020. Therefore, a total of 39 temporal composite images

were generated.

In addition, the Harmonic ANalysis of Time Series

(HANTS) method was used for all spectral indexes with

obvious periodicity except for MNDWI. This method is

beneficial to identify plant phenology, which helps to

distinguish different plants (Zhou et al., 2015). The

mathematical expression of HANTS used in this study is as

follows:

f tð Þ = A sin 2p t + jð Þ +   a0 (8)
TABLE 1 Landsat 8 OLI images acquired in 2020 over the study area.

Date Cloud cover (%) Date Cloud cover (%)

Jan-10 21 Jul-20 1.4

Feb-11 82.8 Aug-21 38.2

Mar-14 0.2 Sep-06 27

Mar-30 0 Sep-22 64.2

Apr-15 40 Oct-08 72.5

May-01 0.4 Oct-24 0.4

May-17 0.8 Nov-25 34.9

Jun-02 51.4 Dec-11 16.3

Jul-04 53.3 Dec-27 21.7
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where A is the amplitude of the harmonic wave, which

represents the fluctuation range of the spectral index time series

curve; the value can reflect the difference in productivity of

different vegetation types in the whole cycle. Phase j represents

the peak time of spectral index, i.e., the peak time of vegetation

growth. a0 is the remainder value of the curve, representing the

annual average value of the spectral index. In this study, the

amplitude, phase and remainder of six spectral indexes

constituted a total of 18 harmonic regression features.
3.3 Ensemble learning model

The ELM combined Random Forest Regression (RFR), K-

Nearest Neighbor Regression (KNNR) and Gradient Boosted

Regression Tree (GBRT). RFR is composed of multiple regression

trees based on the bagging algorithm. There is no association with

each decision tree in the forest, and the final output of the model is

jointly determined by each decision tree. The selection of samples

and features in RFR is random, which can effectively reduce the

occurrence of over fitting. In addition, RFR can evaluate the

importance of different features, has strong processing ability for

high-dimensional data, and has a certain anti-noise ability, which

makes this method widely used in remote sensing data (Ge et al.,

2020; Yang et al., 2020). KNNR is an instance-based machine

learning regression model which assumes that similar samples are

more proximity in the feature space (Ge et al., 2020). In the process

of regression prediction, the value of k neighbors is used as the

prediction result. KNNR needs to normalize all features first, and

then choose a distance measurement method to calculate the

similarity between pixels. In this paper, Euclidean distance was

used to calculate the similarity. GBRT is also a regression-tree-based

machine learning model. Different from RFR where each regression

tree is independent, GBRT connects each tree (weak learner) in a

linear combination to continuously reduce the residual errors by the

loss function. (Di et al., 2019; Yu et al., 2021). In the training process

of GBRT, weak learners are generated through multiple iterations,

and each learner is trained according to the residuals of the previous

learner. Through iterative improvement of each weak learner, the

GBRT model is finally obtained.

The ELM developed in this study integrated three models by

using GBRT model. This is because that GBRT model has the

following advantages: (1) strong prediction ability for low

dimensional data; (2) strong processing ability for nonlinear

data; and (3) strong flexibility in handling various continuous

values, discrete values, and other types of data. Specifically, the

predicted values from each of the RFR, KNNR and GBRT were

used as temporal-spectral features, and the same training

samples for each individual model were used to train the

GBRT model, which was then used to predict the fractional

cover of salt marsh vegetation species. Different machine

learning models all used the grid search method to determine

the optimal parameters.
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3.4 Experimental scenarios and accuracy
assessments

We aimed to investigate whether the cloud-removed

imagery help to enhance the fractional cover estimation of

different salt marsh species, and whether the ensemble

learning regression algorithm helped to improve the

accuracies. For this purpose, we designed four experimental

scenarios as follows.
Scenario 1: All 57 temporal features (temporal composite

features and harmonic regression features) were

generated based on the original Landsat imagery

(cloud and cloud shadows were masked out) and the

cloud-removed Landsat imagery, respectively; Using

these temporal features as input features, the ensemble

learning regression model, as well as each individual

model was used as fractional cover estimation model.

Scenario 2: A total of 39 composite features (i.e., the

harmonic regression features were removed) were

generated based on the original Landsat imagery

(cloud and cloud shadows were masked out) and the

cloud-removed Landsat imagery, respectively; Using

these temporal features as input features, the ensemble

learning regression model, as well as each individual

model was used as fractional cover estimation model.

Scenario 3: same as Scenario 1 unless that Landsat images

acquired in March, July and October were eliminated

from the original image sets.

Scenario 4: same as Scenario 2 unless that Landsat images

acquired in March, July and October were eliminated

from the original image sets.
For each scenario, we can compare the estimation accuracies

from the original imagery with those from the cloud-removed

imagery; we can also compare the accuracies from each of the

individual models and that from the ELM. By comparing

scenario 1 with scenario 3 and by comparing scenario 2 with

scenario 4, we can evaluate whether cloud removal can

compensate the unavailability of observations during critical

months. By comparing scenario 1 with scenario 2 and by

comparing scenario 3 with scenario 4, we can evaluate the role

of harmonic regression. Note that harmonic regression is

essentially a gap filling algorithm which can build full time

series observations, although its purpose is not recovering

missing values obscured by cloud/cloud shadow.

For each scenario, ten-fold cross validation was used to

evaluate the model performance. Specifically, the model was

trained for ten times, at each time the model is fitted by a

training data set consisting of randomly selected 90% of the total

reference data, and the remaining 10% was used for validation.

The accuracy assessment metrics include determination
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coefficient (R-square), Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE), and the formula are as follows:

R2 = 1 −o
n
i=1 yi − byið Þ2

on
i=1 yi − yið Þ2 (9)

RMSE  =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − byiÞ2
n

s
(10)

MAE  =
1
no

n

i=1
yi − byij j (11)

where yi represents the reference fractional cover measured

by UAV or high-spatial-resolution imagery, yi represents the

mean value of reference fractional cover, and ŷi represents the
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predicted fractional cover. R-square represents the reliability of

the regression model. Larger R-square indicates higher fitting

accuracy. MAE can measure the average absolute difference

between the fractional cover estimation and the reference

values. RMSE is similar to MAE, but it can amplify larger errors.
4 Results

4.1 Comparison of fractional cover
estimation accuracies from original and
cloud-removed imagery

Figures 4-7 showed the fractional cover estimation

accuracies of the four scenarios using RFR, KNNR, GBRT and
A B C

FIGURE 4

(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using
Random Forest Regression model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario
4 based on the cloud-removed Landsat imagery.
FIGURE 3

Flowchart of the study.
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ELM, respectively. For all three vegetation species, the fractional

cover estimation accuracies using the cloud-removed imagery

were higher (greater R-square, lower RMSE and MAE) than

those using the original imagery regardless of the scenarios and

the machine learning models (expect for S.salsa in Scenario 2).

Although the fractional cover estimation accuracies were

different, all three independent models showed similar patterns

as the ELM. The improvements were especially noticeable in

Scenario 3 and Scenario 4 when assuming the images in March,

July and October were unavailable. For example, for ELM, in

Scenario 3 the average R-square increased from 0.859 to 0.922

(RMSE decreased from 8.4% to 6.2%), and in Scenario 4 the

average R-square increased from 0.818 to 0.902 (RMSE

decreased from 10.1% to 7.2%) when cloud removal was

performed (Figure 7). However, when all the original Landsat

images were used, good accuracies could be achieved even

without cloud removal as long as harmonic regression

parameters were added as input features, and the

improvement resulted from cloud removal was minimal. For

example, for ELM, in Scenario 1 the average R-square was 0.881

when the original Landsat images were used, and the average R-

square was 0.891 when all cloud-removed imagery were used
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(Figure 7A). When the harmonic regression parameters were not

involved in the fractional cover estimation model (Scenario 2),

the accuracies considerably decreased, with R-square of only

0.839 with the original imagery and 0.849 with the cloud-

removed imagery. This indicates that the harmonic regression

features were more important than removing clouds from the

images in discriminating saltmarsh species as well as in

discriminating the vegetation cover differences if the time

series images were sufficient. When the images in March, July

and October were not involved, the fractional cover estimation

accuracies decreased significantly even when the harmonic

regression features were used, especially for S.salsa and the

average accuracies (Scenario 3 vs. Scenario 1 without cloud

removal). For the ELM, the R-square of the estimated S.salsa

fractional cover declined from 0.854 to 0.794 when images

acquired during the three months were not used. In this case,

cloud removal for the remaining images improved the accuracies

substantially. And the R-square of the estimated S. salsa

fractional cover was 0.889 (S3-CR in Figure 7), even higher

than Scenario 1 (S1-CR in Figure 7A). In general, cloud removal

is helpful to improve the accuracy of fractional cover estimation,

especially when there are few good observations.
A B C

FIGURE 5

(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using K-
Nearest Neighbor Regression model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~
Scenario 4 based on the cloud-removed Landsat imagery.
A B C

FIGURE 6

(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using
Gradient Boosting Regression Tree model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~
Scenario 4 based on the cloud-removed Landsat imagery.
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4.2 Comparison of fractional cover
estimation accuracies from different
machine learning models

From Figures 4-7, the ELM generally achieved the best

accuracies for all scenarios regardless of using the original

imagery or using the cloud-removed imagery. Tables 2–4

respectively list the R-squares, RMSEs and MAEs of the

estimated fractional cover derived from RFR, KNNR, GBRT

and the ELM in Scenario 1 based on the cloud-removed

images. The average R-square of the ELM estimation was

0.891, the average RMSE was 7.5% and the average MAE was

2.6%, which was higher than each individual model. Among

the three individual models, RFR yielded the highest

accuracies , s l ight ly lower than those of the ELM.

Compared to KNNR and GBRT, the accuracy was

significantly improved when the models were integrated

through GBRT, indicating that the GBRT can learn the

residuals of each individual model through the integration

process and effectively improve the estimation accuracy. For

example, the average RMSE of the three-sub models is

8.03%, while the RMSE of the ELM is 7.48% (Table 4).

Especially for P.australis, the RMSE of the three sub-models

is 2.87%, while the RMSE of the ELM is 8.96%, and the

RMSE decreases by an average of 9.97%, which indicating

that ELM significantly improved the estimation accuracy of

fractional cover of P.australis. Table 2 showed the accuracy

of vegetation coverage estimation of P.australis is the
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highest, followed by S.alterniflora, and finally S.salsa. The

average R-square values of their sub-models are 0.905,

0.891, and 0.812 respectively. And for the ELM, the R-

square for P.australis, S.alterniflora and S.salsa were 0.924,

0.890 and 0.859 respectively. For S. alterniflora, although the

R-square of the ELM was very close to the average R-square

of the three models, the ELM has obvious improvement in

MAE. This also shows that the integration process can help

improve the estimation accuracy.

Figure 8 presents the fractional cover maps of the three salt

marsh vegetation types estimated by each individual model and

ELM respectively. All four models show generally similar spatial

patterns of dense patches of S.alterniflora and P.australis: dense

coverage (fractional cover over 0.5) of S.alterniflora was mainly

distributed near the river mouth, while dense coverage of

P.autralis was distributed along the river bank. However,

considerable differences existed in terms of the distributions of

low coverage of different vegetation types. From the KNNR

model, low density S. alterniflora (fractional cover between 0.1

and 0.4) was widely distributed in the supra tidal zone (Zone D),

where S. alterniflora growth is impossible due to high frequency

of inundation. Compared to the GBRT model, wide area of

P.australis with low density was distributed in the supratidal

zone in Zone D, which was also inconsistent with the reality. In

addition, a small patch of high-density P.australis (fractional

cover over 0.8) was found through GBRT model in the sand bar

at the river mouth (Zone C), which is also unlikely to occur. In

contrast, the spatial extent estimated by RFR and GBRT was
A B C

FIGURE 7

(A) R-square, (B) RMSE and (C) MAE of the fractional cover estimation of different salt marsh vegetation species from four scenarios using
Ensemble Learning model. S1~S4: Scenario 1 ~ Scenario 4 based on the original Landsat imagery; S1-CR ~ S4-CR: Scenario 1 ~ Scenario 4
based on the cloud-removed Landsat imagery.
TABLE 2 R-square of the estimated fractional cover based on cloud-removed images in Scenario 1.

RFR KNNR GBRT Average of the three models ELM

P.australis 0.919 0.899 0.896 0.905 0.924

S.salsa 0.857 0.762 0.818 0.812 0.859

S.alterniflora 0.893 0.884 0.897 0.891 0.890

Average 0.889 0.849 0.870 0.869 0.891
frontiers
RFR, Random Forest Regression; KNNR, K-Nearest Neighbor Regression; GBRT, Gradient Boosted Regression Tree; ELM, Ensemble Learning Model.
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similar, but there were considerable differences in the fractional

cover estimations for each vegetation type. For example, the

spatial extent of S.alterniflora estimated by RFR model is much

smaller than that estimated by GBRT in the south coast. But it is

obvious that S.alterniflora should not grow on the sea, and there

are some errors in both models. On the tidal flat of the south

bank, the spatial extent of P.australis estimated by RFR model is

less than that estimated by GBRT, while the estimations for

S.salsa by two models are obviously opposite.

Although there are some obvious errors in the fractional

cover estimated by each individual models, the estimation

accuracy was significantly improved by integrating the

estimation results with the GBRT. For example, the over-

estimation of S.alterniflora coverage along the south coast was

significantly reduced, and the newly formed S.alterniflora

patches can still be discovered. The estimated fractional

cover of P.australis was also more reasonable. In the

middle-low intertidal area with high soil salinity, the over-

estimation of P.australis coverage is significantly reduced.

Compared to the other two vegetation types, the final

estimated fractional cover of S.salsa was low (ranging from

0.05 to 0.3) and the spatial extents of S.salsa was smaller than

that estimated from the other models, which was consistent

with field investigations and our previous reports (Han et al.,

2022b). S.salsa is vulnerable to the tidal influence and the

plants are generally sparse, therefore the estimation for

S.salsa coverage is relatively difficult. By combining the

three models, the fractional cover estimation for S.salsa was

more robust. In general, the integration of the three

individual models helps to improve the fractional cover

estimation accuracy, and the spatial distribution of the

estimated fractional cover of the saltmarsh vegetation

species by the ELM is more reasonable.
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4.3 Fractional cover of saltmarsh
vegetation species across YRD

The results from ELM showed that the three species, S.

alterniflora, P. australis and S. salsa, covered 5753.97 ha,

4208.4 ha and 1984.41 ha, respectively; and the average

fractional cover was 58.45%, 51.64% and 51.64%, respectively.

The fractional vegetation cover maps (Figure 8D) showed that

P.australis was mainly distributed along the river banks and

along the Qingshuigou course, the old river channel before 1996

(Figure 1). According to the zonal statistics (Figure 9A), the

average fractional cover of P.australis was the highest in Zone B,

which is 58.26%. The average fractional cover of P.australis in

Zone D and in Zone C were 48.93% and 48.47%, respectively.

Zone C demonstrated large spatial variation in P.australis

coverage (Figure 9A). The coverage showed decreasing trend

from the river banks to the tidal flats. This is consistent with the

existing field-based studies (Xie et al., 2021), which reported that

the biomass and coverage of P.australis decreased with

increasing soil salinity and decreasing freshwater supply in the

tidal flat. The coverage along the old Qingshuigou course is

lower than that along the current river course, which is probably

due to the insufficient water supply (Wu, 2022). With the

expansion of S.alterniflora, the habitat of P.australis was

invaded. As a result, the spatial extent area of P.australis was

much lower than that of S.alterniflora in Zone C (1152.2 ha vs.

2604.6 ha, Figure 9E). In Zone D, the area of P.australis was

significantly larger than that of S.alterniflora (948.1 ha

vs. 664.5 ha).

S.salsa had the smallest spatial extent and lowest fractional

cover among the three vegetation types (Figures 9B, E). S.salsa

was mainly distributed in the mid-high intertidal area, and the

average fractional cover was around 12.6%. The dams and groins
TABLE 3 MAE (%) of the estimated fractional cover based on cloud-removed images in Scenario 1.

RFR KNNR GBRT Average of the three models ELM

P.australis 3.62 3.44 4.31 3.79 3.06

S.salsa 1.49 1.78 1.8 1.69 1.3

S.alterniflora 4.12 3.85 4.25 4.07 3.48

Average 3.08 3.02 3.45 3.18 2.61
frontiers
RFR, Random Forest Regression; KNNR, K-Nearest Neighbor Regression; GBRT, Gradient Boosted Regression Tree; ELM, Ensemble Learning Model.
TABLE 4 RMSE (%) of the estimated fractional cover based on cloud-removed images in Scenario 1. RFR, Random Forest Regression; KNNR,
K-Nearest Neighbor Regression; GBRT, Gradient Boosted Regression Tree; ELM, Ensemble Learning Model.

RFR KNNR GBRT Average of the three models ELM

P.australis 8.34 9.16 9.39 8.96 8.07

S.salsa 4.13 5.28 4.63 4.68 4.09

S.alterniflora 10.27 10.98 10.18 10.48 10.28

Average 7.58 8.47 8.06 8.04 7.48
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in Zone A and D blocked the tide waves (Xie et al., 2018), which

affected the salinity and moisture content of the intertidal zone.

Figures 9E shows the average coverages of S.salsa in zone A and
Frontiers in Marine Science 12
D (13.07% and 10.91%, respectively) were slightly lower than

those in zone B and C (14.27% and 13.44%, respectively). In the

west part of Zone A, S.salsa was mixed with S.alterniflora, in the
A

B

D

C

FIGURE 8

The fractional cover of three salt marsh vegetation species based on different machine learning model. (A) based on RFR; (B) based on KNNR;
(C) based on GBRT and (D) based on ELM.
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landward front of S. alterniflora invasion. In Zone B and Zone C,

S. salsa was mixed with P.australis around the river banks.

S.alterniflora generally has the widest spatial extent and

densest fractional cover among the three vegetation types. The

average fractional cover of S. alterniflora is higher in Zone B and

Zone C near the river mouth than those in other zones

(Figure 9C). Although the area of S.alterniflora in zone C is

larger than that in zone B (2604.6 ha vs. 1672.5 ha, Figure 9E),

the average fractional cover of zone B is higher (59.72% in Zone

C vs. 70.82% in Zone B). S.alterniflora is also widely distributed

along the coast of zone A, and the fractional cover in its west is

higher than that in its east, which is associated with less tidal

inundation due to higher elevation in Zone A. On the whole, the

zonal difference of S.alterniflora coverage is associated with the

invasion ages. S.alterniflora was first found in Zone B in 2008,

then expanded to Zone A and Zone C, and finally expanded to

Zone D in 2017 (Wang et al., 2021b). In addition, it has been

reported that the live stem density of S.alterniflora is related to

the invasion ages (Han et al., 2022a). Therefore, we calculated

the statistics of fractional cover of S.alterniflora with different

invasion ages (Figure 9D). Figure 9D shows that the coverage of

S.alterniflora gradually increased during the first five years of the

invasion (average values from 55.04% with 1 year of invasion to
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75.42% with 5 years of invasion), and then kept high (around

70%). It is worth mentioning that in other studies (Wang et al.,

2021b; Han et al., 2022a), they are also reported that the first five

years of invasion is the key period for the expansion

of S.alterniflora.
5 Discussion

5.1 Necessities of cloud removal in
fractional cover estimation for
saltmarsh species

Cloud contamination is inevitable in optical remote sensing,

especially for the optical imagery acquired over the cloudy

coastal area. To date, many algorithms, such as mNSPI,

GNSPI, WLR, ARCC, have been developed for removing

clouds/cloud shadows and reconstructing missing images (Zhu

et al., 2012a; Zhu et al., 2012b; Zeng et al., 2013; Cao et al., 2020).

Compared to the number of algorithms that have been

developed, the number of applications are limited. A few

studies in recent years have applied cloud removal as

preprocessing step for phenological metrics derivation (Tian
A B
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C

FIGURE 9

Zonal statistics of salt marsh vegetation. Box and whiskers plots of the fractional cover of (A) P.australis, (B) S.salsa, (C) S.alterniflora within
different zones. (D) The box and whiskers plots of the fractional cover of S.alterniflora with different invasion years. And (E) The spatial extent
area of different salt marsh vegetations within different zones. The whiskers boundaries are 25th and 75th percentile, and the blue and red lines
represent the median and mean values, respectively.
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et al., 2020; Zhu et al., 2021), paddy rice mapping (Zhao et al.,

2021) or vegetation cover estimation (Wang et al., 2020). Zhu

et al. (2021) built time-series cloud-free Landsat imagery by

reconstructing cloud-contaminated imagery using NSPI

algorithm and then derived dry-season phenology in tropical

forest. Their study found that cloud removal could help better

characterize the phenological features. Zhao et al. (2021) applied

mNSPI to remove cloud from Landsat imagery, and then

extracted phenological features from the time series imagery

for paddy rice mapping. They mentioned that the mNSPI could

not accurately restore the small and continuous boundaries on

the image under the clouds. Wang et al. (2020a) is probably the

only study that applied cloud removal algorithm (GNSPI

algorithm) to build cloud-free Landsat imagery for green

vegetation cover estimation. However, their study did not

estimate vegetation cover at species level.

Most of the existing studies applied the cloud removal for

constructing time-series imagery, based on which phenological

features can be derived. However, cloud removal may not be the

necessary step for phenological features retrieval, although few

studies have discussed this issue. Time-series vegetation indices

can also be reconstructed by fitting and filtering methods, such as

harmonic regression (Yan and Roy, 2020) or Savitzky-Golay

filtering method (Chen et al., 2021). For example, the harmonic

regression utilized in our study produced a simplified continuous

time-series curve that can fill the data gaps. Interestingly, our

results showed that cloud removal is not necessary in all cases.

When the number of Landsat imagery were sufficient and

temporal features based on harmonic regression were used,

cloud removal did not significantly improve the fractional cover

estimation accuracy (Scenario 1) (Figures 4A–C). In this case, it

seemed that harmonic regression played more important roles

than cloud removal in fractional cover estimation, as the

accuracies decreased significantly without the temporal features

derived by harmonic regression. However, when the Landsat

observations during the critical months were not incorporated,

cloud removal for the remained imagery was very important

(Scenario 3), while harmonic regression did not help to improve

the accuracy. Different from green vegetation cover estimation,

the fractional cover estimation at species level not only needs to

build the relationship between the temporal features and the

fractional cover, but also needs to discriminate among

the species. Our previous research showed that the imagery in

the key months was critical to represent the phenological patterns

of each species and to ensure the discrimination accuracy (Wang

et al., 2021b). P. autstralis starts to grow in April, reaches the

maximum greenness during July and August, and enters

senescence in September. S.alterniflora starts to grow in late

May and early June, reaches the maximum greenness during

August and September, and then enters senescence in late October
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to early November (Han et al., 2022a). S. salsa presents red-purple

color and the abundance reached the maximum during October.

When the images during the critical months are absent, harmonic

regression cannot represent the correct phenological patterns. In

this case, the remaining cloud-removed images provides

important supplementary information. Surprisingly, we found

that the utilization of all available cloud-removed imagery

produced even slightly lower accuracies than that excluding the

critical months. Detailed examination showed that the

reconstructed imagery in October had poor visual effects

because the cloud covered almost the entire the saltmarsh extent

in the estuary (Figure S1), which is quite challenging for all cloud-

removal algorithms. This also indicates that when applying cloud

removal as preprocessing step, cloud coverage and cloud-removal

accuracies need to be considered.
5.2 Advantages of ELM in fractional
cover estimation for saltmarsh species

Previous studies have confirmed that machine learning

algorithms have great potential in green vegetation cover

estimation. For example, Wang et al. (2018) reported high

accuracy (RMSE=8.5%) of RFR for green vegetation cover

estimation based on Sentinel-2 imagery. Yang et al. (2020)

used RF soft classification method to estimate fractional

abundance of halophytic species based on high-spatial

resolution WorldView-2 imagery over Venice lagoon, Italy,

and also achieved high accuracy (RMSE ranging from 0.06 to

0.19). However, the integration of multiple machine learning

models into one ensemble model has not been introduced into

vegetation cover estimation, especially at species level. Our

results showed that the performance of the model can be

ranked as the following order: ELM > RFR > GBRT > KNNR.

However, it was also found that the accuracy improvement of

the ELM, which was measured by R-square and RMSE seemed

not considerable compared to RFR. For example, the increase in

the average R-square was only 0.002. Note that the accuracy

assessment metrics were calculated based on reference samples,

whose spatial locations might influence the evaluation. And when

we looked at the spatial distribution of high to low coverage of

each salt marsh species, the ELM apparently yielded more

reasonable results. Some examples are shown in Figure 10,

illustrating the results in zoomed-in area in Figure 8. Compared

to ELM, RFR overestimated the spatial extent of S. alterniflora in

the bare tidal flat close to the sea, and some S. alterniflora even

appeared in the seawater (first column in Figure 10). In addition, it

was unlikely that S. salsa grew on the sand bar near the river

mouth (third column in Figure 10). Although both RFR and ELM

over-estimated S. salsa cover in this area, ELM generally produced
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lower error than RFR. Previous research in other fields also

reported that similar RMSEs or R-squares from different

methods does not necessarily mean similar performance in

every location (Di et al., 2019; Requia et al., 2020). Di et al.

(2019) applied the ELM to estimation PM2.5 concentration across

the contiguous United States. They found that each individual
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model did not perform equally well in every location or at all

PM2.5 concentration levels although the overall R-squares are

similar; however, the ensemble model complemented each other

and produced more spatially balanced results. By integrating

individual models in a non-linear manner, the model that

performs better at some locations contribute more to the
A
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C

FIGURE 10

Fractional cover of S. alterniflora (left column), P.australis (middle column), and S.salsa (right column) from (A) RFR; (B) KNNR; (C) GBRT and
(D) ELM in the three sub-areas shown in Figure 8D (black squares).
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ensemble model, which improves the overall performance of

the ELM.
5.3 Uncertainties and implications for
future work

The performance of the ensemble-learning-based fractional

cover estimation depends on at least three factors: (1) whether

the reference samples can represent the reality of fractional cover

(2) whether the predictor indicators (temporal composite

features used in our study) can be associated with the

variability of response variable (fractional cover in our study),

and (3) whether the model can capture the relationship between

predictor indicators and the fractional cover of each vegetation

species. Our study attempts to improve (2) and (3) by using

time-series cloud-removed imagery and by developing ELM,

respectively. As field surveys in coastal wetlands are difficult, in

this study we relied on UAV images and GF-6 high-spatial-

resolution imagery to create reference samples (Di et al., 2019;

Yang et al., 2020; Song et al., 2022). Although high-spatial-

resolution imagery has been widely used for reference sample

collection for fractional cover estimation model, uncertainties

still existed. First, the spatial coverage of each UAV flight was

very small compared to the whole study area, and there might be

little difference in the vegetation fractional cover over each UAV

image. We need to conduct many UAV flights to generate

enough reference samples, which is time and labor consuming.

Second, using GF-6 and other high spatial resolution satellites

would still have a certain mixed pixel effect. In the future, more

efforts need to be taken to overcome the problem of sample

selection. Future research will explore deep learning models for

sample augmentation for the fractional cover estimation. In

addition, in YRD several wetland restoration projects are being

implemented in recent years. Continued monitoring of the

fractional cover change in the coastal wetlands are necessary

for better evaluating the effectiveness of the restoration.
6 Conclusion

In this study, we mapped the fractional cover of three major

saltmarsh species, i.e., P. australis, S. salsa and S. alterniflora in

the Yellow River Delta. We developed an approach framework

for fractional cover estimation by utilizing the ELM based on

time-series Landsat imagery which were preprocessed by VICR

cloud removal. By validating with reference data collected by

UAV and high-spatial-resolution GF-6 images, our results

showed that the framework yielded high accuracy in fractional
Frontiers in Marine Science 16
cover estimation, with the average R-square of 0.891, and RMSE

of 7.48%.

Through experiments in four scenarios, we analyzed the role

of cloud removal in fractional cover estimation and explored the

advantages of ensemble model over individual models. Results

showed that cloud removal as a preprocessing step can effectively

improve the accuracy of vegetation coverage estimation

especially when the images of key months for vegetation

phenology observation (March, July and October) are missing.

ELM that integrates three machine learning algorithms also

helped to improve the estimation accuracy and effectively

reduced the error of each individual method. The fractional

cover maps revealed the spatial distribution characteristics of the

three saltmarsh species, and the variations in the fractional cover

are associated with invasion ages (for S. alterniflora), soil salinity

and water contents. S.alterniflora covers the largest area

(5753.97 ha) in the Yellow River Delta, followed by P.australis

with spatial extent area of 4208.4 ha and S. salsa of 1984.41 ha.

The results of this study verify the application potential of cloud

removal technology and the advantages of ELM, and provide a

technical framework and data support for the monitoring of

native and invasive saltmarsh species in the wetlands of YRD.
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