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Large yellow croaker Larimichthys crocea (Richardson) is an important

member in family Sciaenidae, and one of most productive mariculture fishes

in China. Fluorescence in situ hybridization is a useful tool for cytogenetics and

genomics research. Here, we demonstrated that bacterial artificial

chromosome (BAC) clones could be used to identify individual

chromosomes in large yellow croaker, and also to study chromosome

evolution in the related species. By using BAC paired-end sequencing and

sequence a l ignment , 435 BAC c lones were anchored to 24

pseudochromosomes of large yellow croaker genome. Among them, 72 BAC

clones with low repeat content were selected and passed PCR test, and then

grouped by chromosome for FISH test. As a results, there were 67 BAC clones,

2 to 3 BAC clones per chromosome, generated specific and stable signal at

expected position. Then, a dual-color FISH probe cocktail composed of 48 of

these BAC clones was formulated and used to hybridize metaphase

chromosome spreads, resulting in distinct signal patterns on each

chromosome pair, which help to distinguish all chromosomes in the

metaphase spreads of large yellow croaker. The chromosome-specific BAC-

FISH probes were also applied to a close relative of large yellow croaker,

Collichthys lucidus, demonstrating that its Y chromosome originated from the

fusion of Chr.1 and Chr.7. Thus, our study provides the first set of

chromosome-specific FISH probes in family Sciaenidae, which will play an

important role in cytogenetics and genomics research in the family.

KEYWORDS

Larimichthys crocea, chromosome identification, fluorescence in situ hybridization
(FISH), bacterial artificial chromosome (BAC), sex chromosome
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1 Introduction

Sciaenidae, the largest family in the order Perciformes,

includes approximately 283 species in 67 genera worldwide

(Nelson et al., 2016). Sciaenid fishes often represent and

important commercial fishery resource and aquaculture

species. So far, cytogenetic data of Sciaenid fishes have been

reported for approximately 40 species, in which only 7 species

have been analyzed by Fluorescence in situ hybridization (FISH)

with repetitive sequences (Arai, 2011; Zheng et al., 2016; Liao

et al., 2017; Xu et al., 2017). The karyotypes of Sciaenid fishes

showed outstanding stability, for most of them have a karyotype

composing of 48 acrocentric chromosomes (Accioly and

Molina., 2008; Arai, 2011). By contrast, high variation in the

number and the location of 5S rDNA loci were revealed by FISH

(Liao et al., 2017; Xu et al., 2017). In addition, a special

karyotype, 2n=48 = 48a for females and 2n=47 = 46a+1m for

male, was found in spinyhead croaker Collichthys lucidus,

suggesting a multiple sex chromosome system (♀X1X1X2X2/

♂X1X2Y), in which the Y chromosome derived from a fusion

of two chromosomes (Zhang et al., 2018). Thus, it can be

expected that more chromosomal variation could be identified

in Sciaenid fishes by using more cytogenetic makers in the

context of karyotypic stability.

FISH with chromosome-specific probes can provide

abundant and reliable markers for cytogenetic researches

(Stein et al., 2001; Yang et al., 2019), including cytogenetic

map (Pinkel et al., 1986; Phillips et al., 2006b), chromosome

identification (Stein et al., 2001; Yang et al., 2019), chromosome

rearrangement (Phillips et al., 2003; Phillips et al., 2013; Bielski

et al., 2020), and chromosome evolution across species (Phillips

et al., 2001; Ross et al., 2009; do Vale Martins et al., 2021).

Chromosome-specific FISH probes have been developed by

several methods, such as DOP-PCR after microdissection or

flow sorting (Telenius et al., 1992; Vandewoestyne et al., 2009),

and screening BACs corresponding to specific linkage groups

from a constructed library (Wang et al., 2007). In recent years,

assembled genome-based methods have greatly improved the

efficiency of developing chromosome-specific FISH probes

deve lopment , bo th fo r BAC sc reen ing and bu lk

oligonucleotide synthesis (Han et al., 2015; Dong et al., 2018).

Large yellow croaker, Larimichthys crocea Richardson, is a

member of the family Sciaenidae distributing along the coast of

East Asia. The croaker is one of most important mariculture fish

species with the highest farmed production in China, and has

received intensive studies (Chen et al., 2018). Currently, genetic

maps and chromosome-level reference genomes of large yellow

croaker are available, and have been applied to support the

researches on population genetics and genetic improvement of

economic traits (Ning et al., 2007; Wu et al., 2014; Mu et al.,

2018; Kong et al., 2019). The karyotype of large yellow croaker

was revealed as 2n = 48a with variation in some population (Liao
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et al., 2017; Xu et al., 2017). Banding and rDNA-FISH were

carried out to provide markers for identifying individual

chromosomes of large yellow croaker (Liao et al., 2017).

However, there is still no way to identify all individual

chromosomes in the large yellow croaker. Therefore, the

objectives of this study were: (i) to develop a set of

chromosome-specific BACs covering all chromosomes in the

large yellow croaker; (ii) to develop a dual-color FISH probe

cocktail to assist chromosome identification and paring; and (iii)

to preliminary test the cross-species applicability of these

cytogenetic probes, and to explore the origin of the Y

chromosome in spinyhead croaker.
2 Materials and methods

2.1 Sample collection and metaphase
chromosome preparations

Samples of large yellow croaker for BAC library construction

and somatic chromosome preparation were collected from the

breeding section of Jimei university in Ningde, Fujian, China.

Spinyhead croaker for somatic chromosome preparation were

previously collected from the Sansha Bay (26°42′33″N, 119°46′
49″E), Ningde city, Fujian province, China (Zhang et al., 2018).

The information of the samples was shown in Supplementary

Table 1. Metaphase chromosomes were prepared by using head

kidneys according to the methods described previously (Gold

et al., 1990). In addition, part of the fin from each fish was fixed

in absolute ethyl alcohol to extract genomic DNA.
2.2 BAC library construction and
quality evaluation

The BAC library of large yellow croaker was constructed

following the methods previously published (Luo and Wing,

2003; Luo et al., 2006). The main steps of the procedure included:

i) extracting high molecular weight genomic DNA from a pooled

sample of brain tissue from 2 male individuals; ii) partial digesting

DNA with restriction enzyme HindIII (0.8 U/mL) (Fermentas); iii)

recovering DNA fragments with 110 kb - 220 kb and 220 kb - 300

kb from gel after being separated with pulsed-field gel

electrophoresis (PFGE) with a CHEF Mapper (Bio-Rad) for two

times; iv) ligating the size-selected DNA fragments with HindIII-

digested pHZAUBAC1 vector (Eight Star Bio-tech Co., Ltd.,

Wuhan, China); v) transforming the ligation products into

Escherichia coli strain DH10B T1 Phage-Resistant (Invitrogen); vi)

cultivating the transformants on LB plates with appropriate

chloramphenicol, X-gal, and IPTG; vii) picking clones and

arraying them into 384-well plates containing LB media; viii)

incubating the clones in plates for 16 h and freezing them at -80°C.
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Eighty clones were randomly selected, and the BAC plasmids

were extracted by conventional alkaline lysis method and

digested with I-Sce I enzyme (Fermentas) as described

previously (Shi et al., 2011). The size of the inserted fragments

and the nulling rate were examined by pulsed-field gel

electrophoresis. The genome coverage of the BAC library was

estimated based on the size of the genome, the number of clones

in the library, the average insert size and the null rate.
2.3 Identification of candidate
chromosome-specific BAC clones

Totally, 590 BAC clones were selected randomly from the

BAC library, and paired end sequenced by Sanger sequencing

with Applied Biosystems 3730 DNA Analyzer. The quality of

BAC end sequences (BESs) was evaluated with Phred (http://

www.phrap.org/) after removing the vector sequence by

Seqclean (https://sourceforge.net/projects/seqclean). The

resulted high-quality BESs were aligned to the reference

genome of large yellow croaker (GenBank assembly accession:

GCA_003711585.2) by Blast (Altschul et al., 1997), with an E-

value threshold of 1 × 10−5. The high-quality BESs were also

aligned to the assembled genome of spinyhead croaker

[SCMI00000000.1 (Cai et al., 2019)]. The results of in silico

mapping were visualized with Mapchart v2.30.

The insert sequences of mapped BAC clones were deduced

from the genomic sequences between the paired BESs, and

subjected to estimate the size and the repetitive sequence

content. The repetitive sequences were found by using

Repeatmasker (http://www.repeatmasker.org/RepeatMasker/).

For each chromosome, 3 candidate chromosome-specific BAC

clones were selected for further validation according to the

following criteria: 1) with insert size around the estimated

average; 2) containing as few repetitive sequences as possible.
2.4 Validation of candidate
chromosome-specific BAC clones

The correspondence between the selected BAC clones

and pseudochromosomes was verified by amplifying

fragments of the expected insert sequence. A pair of

primers for each BAC clone was designed using Primer

Premier 5 software according to the deduced sequence of

BAC insert. The primers were synthesized by BGI Genomics

Inc. PCR was carried out with a commercial kit (Tiangen

Biotech) according to the manual. The conditions of PCR

amplification were as following: pre-denaturation at 94℃ for

3 min; 40 cycles of denaturation at 94℃ for 30 s, annealing at

Tm for 30 s, and extension at 72 ℃ for 30 s. The number and

the size of PCR amplification products were checked with 1%

agarose gel electrophoresis.
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After PCR validation, the candidate chromosome specific

BAC clones were further tested by FISH. The manipulation of

FISH was essentially the same as previously described (Zhang

et al., 2018). BAC plasmid DNA was extracted from Escherichia

coli using a BAC/PAC DNA extraction kit (Omega). Probes

labeled with biotin-11-dUTP or digoxigenin-11-dUTP were

prepared with the BAC plasmid DNA by using nick

translation kit (Roche). The labeled probe was added into

hybridization solution (50% formamide deionized/2 × SSC)

and denatured. Chromosome preparation slides were

denatured and dehydrated in gradient ethanol solution. The

probe solution hybridized with denatured chromosome on the

slides at 37°C overnight. After stringent wash, biotin-labeled

probes were detected with Avidin-Alexa fluor-488 (Invitrogen),

and digoxigenin-labeled probes were detected with Anti-digoxi-

Rhodamine (Invitrogen). And then, slide was dyed by DAPI

(4’,6-diamidino-2-phenylindole). Metaphase spreads were

observed using an Olympus BX53 epifluorescence microscope.

Gray-scale images were captured for each color channel with a

digital image capture system (Olympus DP 80), and then merged

with Cellsens digital image software (Olympus). Background

subtraction and image feature intensification were conducted by

using the “curve” and “layer overlay” command in Adobe

photoshop CC 2017. Chromosome paring and alignment were

performed by using the “cut and paste” and “rotation”

commands in Adobe photoshop CC 2017.
2.5 Application of chromosome-specific
probes

After PCR and FISH validation, 1 to 3 chromosome-specific

BAC clones for each pseudochromosome were selected to

formulate a probe cocktail. All selected BAC clones were

divided into two groups labeled with biotin-11-dUTP or

digoxigenin-11-dUTP, and then pooled together for dual-color

FISH on metaphase chromosome spreads of large yellow

croaker. The chromosomes were identified according to signal

pattern, length, and morphology the chromosomes.

Chromosome lengths were measured by using “measurement”

tool in Adobe photoshop and used to estimate the

relative lengths.

Spinyhead croaker is a close relative of large yellow croaker

with a fused Y chromosome, which was speculated to originate

from the fusion of Chr. 1 and Chr. 7 by a bioinformatic method

(Xiao et al., 2020). To explore the Y origin of spinyhead croaker

and to test cross-species adaptability of the developed

chromosome-specific BAC-FISH probes of large yellow

croaker, two BAC clones corresponding to Chr.7 and 18S

rDNA corresponding to Chr.1 were labeled with biotin-11-

dUTP and digoxigenin-11-dUTP, respectively; and then

pooled together for a dual-color FISH on metaphase

chromosome spreads of spinyhead croaker.
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3 Results

3.1 Construction of BAC Library in large
yellow croaker

We constructed a BAC library of large yellow croaker with

genomic DNA extracted from brain tissues. The library

contained a total of 41,472 BAC clones. To evaluate the

quality of library, eighty clones were randomly selected and

examined with pulsed field gel electrophoresis (Supplementary

Figure 1). Among the eighty clones, there was only one empty

clone, indicating an empty load rate of 1.25%. The size of the

insert fragments ranged from 120 kb to 150 kb, with an average

of 133 kb (Supplementary Figure 2). Based on the genome size,

the number of clones in the library, the average size of inserted

fragments, and the rate of empty load, the library was estimated

to cover the genome of large yellow croaker for 8.1 times.
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3.2 Identification of candidate
chromosome-specific BAC clones

A total of 590 BAC clones were randomly selected from the

constructed BAC library for paired end sequencing. After

processing, 1100 high-quality BESs were obtained, covering

0.13% of genome (Table 1). By using BLAST, there were a

total of 435 BAC clones with the paired BESs aligned to the same

pseudochromosome. The genomic positions of the BES were

recorded and used to estimate the expected length of the BAC

insert. A total of 342 BAC clones with putative insert sizes

around the average (133 kb ± 30 kb) were subjected to further

analysis (Supplementary Table 2). Thus, 11 to 32 candidate

chromosome-specific BAC clones were obtained for each

chromosome, with an average of 18 (Figure 1).

The repeat content of BAC insertions was estimated to range

from 4.24% to 93.5%, with an average of 18.8% ± 10.9%
TABLE 1 Overview of the BAC end sequences (BESs) of L. crocea.

Overview of the BESs Number

Sequenced BAC clones 590

BESs 1,180

High quality BESs 1,100

High quality Paired BESs 525

Total length of BESs (bp) 960,629

Percentage of genome 0.13%

GC content 41.51%

Average length of BESs (bp) 870
fro
FIGURE 1

Genomic localization of BAC clones by aligning the end sequences of BACs to the reference genome of L. crocea. The BAC clones with color
letters were selected for further FISH verification, red and greed indicating passed and unpassed, respectively.
ntiersin.org
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(Supplementary Table 2). Three BAC clones for each

pseudochromosome, totally 72 BAC clones, with low content

of repeat sequence were selected for further PCR and FISH

validaton, which were highlight in color in the ideogram of

pseudochromosomes (Figure 1; Supplementary Table 2).
3.3 PCR and FISH verification of
chromosome-specific BAC clones
of L. crocea

For PCR validation, primers were designed according to

putative sequence of the insertions (Supplementary Table 3).
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The PCR results showed that single product with expected

length was amplified with each primer pairs . The

representative results of PCR were shown in Supplementary

Figure 3. Thus, the accuracy of in silico location of 72 selected

BAC clones was preliminarily proved with PCR.

For FISH validation, 72 selected BAC clones were labeled

with biotin or digoxigenin. Probes from the same

pseudochromosome were pooled for dual-color FISH on

metaphase chromosome spreads to examine their location and

specificity (Supplementary Figure 4). Figure 2 summarized the

FISH results for each pseudochromosome. For 19 chromosome,

all 3 selected BAC clones passed FISH validation as they

generated 3 specific FISH signals with similar collinearity to
FIGURE 2

Twenty-four individual chromosomes of large yellow croaker with dual-color FISH signals derived from chromosome-specific BAC clones. The
expected chromosomal locations of BAC clones according to alignment of paired BAC end sequence to the reference genome of large yellow
croaker are shown on the right side. The corresponding metaphases seen in Supplementary Figure 4. Red and green signals correspond to
digoxigenin- and biotin- labeled probes. Scale bar represents 20 Mb for psedochrosome.
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the pseudochromosomes. For the other 5 chromosomes

including Chr.5, Chr.6, Chr.18, Chr.23 and Chr.24, 2 out of 3

selected BAC clones passed FISH validation. Totally, 67 BAC

clones could produce specific signals at the expected positions

(Supplementary Table 4). Thus, all chromosomes of large yellow

croaker could be identified individually with chromosome-

specific FISH probes (Figure 2; Supplementary Figure 4).

FISH results also showed that the distance between FISH

signals on chromosome was related to its distribution on

pseudochromosome. For example, on Chr.17, 102-K23 and

101-N03 were located in adjacent positions on both

pseudochromosome and metaphase chromosome, while 101-

H16 was distributed at a more distant position (Figure 2).
3.4 Linking metaphase chromosome to
pseudochromosome

On the basis of chromosome specific BACs, we developed a

probe cocktail for dual-color FISH to identify the whole set of

chromosomes in metaphase cells of large yellow croaker. For each

chromosome, 1 to 3 chromosome-specific BACs were selected to

produce probes and mixed into two pools according to the scheme
Frontiers in Marine Science 06
shown in Figure 3A. After FISH with the cocktails, red and green

signals were generated and formed distinct patterns for

each chromosome. Combining FISH signal patterns and

chromosome morphology, chromosomes corresponding to

pseudochromosomes were all identified (Figure 3B).

Relative lengths of chromosome were estimated and compared

them to the lengths of pseudochromosomes (Supplementary

Table 5). The results of correlation analysis showed that they

were only weakly correlated (Supplementary Figure 5).

Karyotyping was performed by arranging chromosomes in

descending order of relative length, linking chromosomes in

classic karyotyping and pseudochromosomes in assembled

genome (Supplementary Figure 6; Supplementary Table 5).
3.5 Identification of sex chromosomes in
spinyhead croaker

By using BLAST, 218 BAC clones were anchored to

pseudochromosomes of spinyhead croaker genome

(Supplementary Table 6; Supplementary Figure 7). Two BAC

clones corresponding to Chr.7 were selected to prepare probes

for a dual-color FISH on metaphase spreads of spinyhead croaker,
BA

FIGURE 3

Correspondence between metaphase chromosomes and pseudochromosomes in large yellow croaker. (A) Pseudochromosomes with BAC
clones showing the putative locations and signal colors. Bar represents 20 Mb for psedochromosomes. (B) Metaphase chromosomes arranged
according to pseudochromsome base on FISH signal pattern. Red and green correspond to digoxigenin- and biotin-labeled probes,
respectively. Bar represents 10 mm for metaphase chromosome.
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along with probes derived from 18S rDNA that corresponds to

Chr.1 (Zhang et al., 2018). In females, Chr.7-specific BAC clones

and 18S rDNA were located on two pairs of chromosomes,

respectively. While in males, they were located on three

chromosomes including a male-specific metacentric

chromosome, where Chr. 7-specific BAC clones and 18S rDNA

were located, respectively (Figure 4). These results provided

cytogenetic evidence that the Y chromosome of spinyhead

croaker originated from the fusion of Chr. 1 and Chr. 7.

4 Discussion

Most marine fishes shared a conservative karyotype (2n=48a)

(Arai, 2011). However, detailed observations on the chromosomes of

marine fish had revealed cryptic chromosome rearrangements (Junior

et al., 2006; Ross and Peichel, 2008; da Motta-Neto et al., 2019). In

Sciaenidae, karyotypes have been reported in about 40 species, most of

which had a conservative formula (2n=48a), but exceptions were also

observed (Liao et al., 2018; Zhang et al., 2018). For instances, amultiple

sex chromosome system (X1X2Y) was uncovered in C. lucidu (Zhang

et al., 2018; Xiao et al., 2020); subtle changes in karyotypes were

observed in both L. crocea and L. polyactis, (Xu et al., 2017). In

addition, the number and position of 5S rDNA variation among of

Sciaenid fishes were revealed by FISH (Liao et al., 2017; Liao et al.,

2018). Hence, chromosome evolution in Sciaenidae may be more

dynamic beyond the previous knowledge.More cytogenetic researches

should be carried out to reveal chromosome rearrangements in

Sciaenidae and even in marine fishes, to explore the reasons and

biological significance for the macro-karyotype stability coupled with

cryptic chromosome rearrangement.
Frontiers in Marine Science 07
Currently, sequence-based methods have become powerful

tools in the studies on chromosome evolution, but cytogenetic

methods still played irreplaceable roles (Deakin et al., 2019;

Gaffaroglu et al., 2020). In addition, more and more attentions

were paid to link DNA sequence and chromosome structure to get

comprehensive understanding in dynamic nature and evolution of

chromosomes (Iannucci et al., 2021). The BAC clones

corresponding to specific chromosomes were the excellent bridges

between DNA and chromosomes (Schubert et al., 2001;Wang et al.,

2007). In previous studies, chromosome specific BAC clones were

developed in other fish species, such as zebrafish, turbot and

Atlantic salmon (Phillips et al., 2006a; Phillips et al., 2009;

Taboada et al., 2014). In these cases, chromosome-specific BACs

were screened out from BAC library by using 3D-PCR according to

DNA markers in linkage or physical maps (Taboada et al., 2014).

However, the traditional method was very inefficient and tedious

(Trifonov et al., 2009).

In present study, bioinformatics methods were used to screen

the chromosome specific BACs based on the assembled genome in

large yellow croaker. Totally, 435 candidate chromosome specific

BAC clones were identified, in which 67 out of 72 selected BAC

clone passed PCR and FISH validation, covering all chromosomes

of large yellow croaker. In recent years, chromosome-level genomes

had been assembled in about 870 fish species (https://www.ncbi.

nlm.nih.gov/genome/browse/#!/overview/fish), and BAC libraries

were also constructed in many fish species to support the research

on genome and genes (Matsuda et al., 2001; Watanabe et al., 2003;

Shao et al., 2010; Li et al., 2011). In this context, the bioinformatics

method would be a promising way to screen chromosome-specific

BACs for chromosome painting.
B

A

FIGURE 4

Sex chromosome fusion in spinyhead croaker. (A) Metaphase spreads with FISH signal. (B) The sex chromosomes. The red signals were derived
from BAC 101-J21 and BAC 101-K12 corresponding to Chr.7, and the green signals were derived from 18S rDNA corresponding to Chr.1. F
indicates female. M indicates male. Bar represents 5 mm.
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Teleost fish represent one of the most diverse animal groups in

terms of sex determination and differentiation besides outstanding

species diversity (Sember et al., 2021; Gong et al., 2022). Fish sex

chromosomes include standard constitutions (♀XX/♂XY; ♂ZZ/
♀ZW), Y or W chromosome loss-derived systems (♀XX/♂X0,
♂ZZ/♀Z0), and multiple sex chromosome systems (♀X1X1X2X2/

♂X1X2Y, ♀XX/♂XY1Y2, ♀X1X1X2X2/♂X1Y1X2Y2, ♂ZZ/♀ZW1W2,

♂Z1Z1Z2Z2/♀Z1W1Z2W2) (Iturra et al., 1997; Kikuchi and

Hamaguchi, 2013; Sember et al., 2021). In the Sciaenid fishes,

heteromorphic sex chromosomes were found only in spinyhead

croaker, which has a multiple sex chromosome system ♀X1X1X2X2/

♂X1X2Y (Zhang et al., 2018). One of the two X chromosomes was

proved to be Chr.1 corresponding to 18S rDNAby FISHwith probes

of repetitive sequence (Zhang et al., 2018). That the other X

chromosome was Chr.7 was confirmed by BAC-FISH in this

study, which was presumed according to sex-dimorphic SNP

distribution in our previous study (Xiao et al., 2020). The genome-

wide distribution of the sex-dimorphic SNPs also preliminarily

revealed the variation of multiple chromosomes among

populations of spinyhead croaer (Chen et al., 2022). The studies

on population genetics revealed that northern and southern group of

spinyhead croaker had a strong differentiation (Cheng et al., 2012;

Song et al., 2014). It can be expected that further detailed researches

on the sex chromosome of spinyhead croaker will help to

understand genetic differentiation among populations, and also

provide evidences for understanding the mechanism of sex

chromosome fusion.
5 Conclusion

In this study, a set of chromosome-specific BAC-FISH probes

covering all chromosomes were developed in large yellow croaker.

A dual-color FISH cocktail consisting of 48 chromosome-specific

BAC-FISH probes greatly improved chromosome identification in

metaphase spreads, allowing to link metaphase chromosomes to

pseudochromosomes of the assembled genome. Partial cross-

species applicability of the developed chromosome-specific BAC-

FISH probes in spinyhead croaker was demonstrated, and

cytogenetic evidence that its Y chromosome originates from the

fusion of Chr.1 and Chr.7 was provided. Thus, the first set

chromosome-specific BAC-FISH probes of Sciaenidae were

successfully developed, which would enhance the ability to

perform cytological studies for Sciaenid fishes, and then would

provide new insight into genome structure and evolution

in Sciaenidae.
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