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Can IMTA provide added
ecosystem value services in the
fish farms of Greece?
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and Ioannis Karakassis2
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Ecology Laboratory, University of Crete, Heraklion, Greece, 3Institute of Oceanography, Hellenic
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In addition to food supply, there is a growing recognition of the wider

ecosystem benefits of Integrated Multitrophic Aquaculture (IMTA) systems in

coastal waters, including regulating services such as carbon sequestration and

nutrient remediation. The water trophic status and the co-cultured species

combinations affect IMTA productivity. In this study, we examined the ability of

different combinations of IMTA organisms to remediate nutrients and the

economic/environmental gain for reducing the environmental footprint in

potential IMTA systems of the eastern Mediterranean. The results showed

that the co-cultivation of organisms can reduce the negative effects on the

marine environment of a fish farm both on the water column and the sediment.

Meso- and eutrophic water states do not show a high variation in terms of foot

print mitigation, with all three of the co-cultivated organisms to perform well.

In oligotrophic waters, the obligatory absence of mussels reduces the

effectiveness of the IMTA system. As expected, larger-sized IMTA systems

have higher production rates and as a result higher percentage of nutrient

removal. Finally, bivalve harvesting helps to remove the carbon that is trapped

in their shells, contributing to the mitigation of processes related to climate

change, such as the acidification of the oceans.

KEYWORDS

IMTA, finfish-farming, carbon sequestration, nutrient removal, footprint mitigation
Introduction

Aquaculture is one of the fastest growing food production sectors in recent years and

plays a significant role in securing nutritious diets, contributing to 52% of the world

supply of aquatic animal-source foods (FAO, 2000) and is expected to cover the food

deficit for the human population in this century (Duarte et al., 2009). However, the
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expansion of aquaculture has caused several environmental and

socio-economic issues that influence the sustainability of the

sector and could compromise its further development (Massa

et al., 2017). The most documented impact of aquaculture on the

environment is organic enrichment of the water and sediment.

The release of dissolved nutrients (i.e. branchial and urinary

losses) and particulate organic matter i.e. uneaten feed and feces

to the marine environment can cause adverse biological and

geochemical changes and affect the ecosystem services (Kalantzi

and Karakassis, 2006; Pitta et al., 2009; Papageorgiou et al.,

2010). To this end, integrated management practices (FAO,

2016) are required to mitigate environmental impacts in order

to secure sustainable development for the aquaculture industry.

Sustainable aquaculture is a dynamic concept integrating three

main principles: i.e. it must be economically profitable,

environmentally friendly, and socially equitable (FAO, 2017).

The concept of IMTA has been proposed to help mitigating the

environmental impact of marine fish farming and promote

sustainability (Chopin et al., 1999; Neori et al., 2004; Troell

et al., 2009).

In IMTA systems extractive (non-fed) aquaculture species

(e.g. autotrophs, filter and deposit feeders) are integrated with

fed species, so that the wastes of fed species become a nutrient

source for extractive ones (Troell et al., 2009; Chopin et al.,

2012). In addition to the recycling of waste nutrients there is a

harvestable biomass generated that increase the overall

productivity of the system and the profit of the farmers

(Chopin et al., 2012; Wartenberg et al., 2017). IMTA approach

fits well within the global ambition for a reduced “ecological

footprint” and circularity in food production and is in agreement

with the EU directions for Blue Growth and Blue Economy.

IMTA systems can be complex, diverse and affected by multiple

drivers. Trophic status of the water column is an important

variable for IMTA feasibility (Cranford et al., 2013; Sanz-Lazaro

et al., 2018). In addition, optimal species combinations in regard

to environmental variables can maximize the production and

reduce the environmental impacts of aquaculture.

The concept of IMTA has been used for hundreds of years in

Asian countries which now promote IMTA concepts, followed

by Canada and North European countries (Chopin et al., 2012).

On the contrary, Europe and Mediterranean-bordering

countries, have been latecomers to the IMTA concept (Kleitou

et al., 2018), despite the fact that the industry is highly developed

in those areas (Papageorgiou et al., 2021). This article is part of a

project aiming to investigate the potential for using IMTA as a

means for reducing environmental impacts of mariculture while

increasing the revenues of mariculture farms in the oligotrophic

Eastern Mediterranean environment. The objectives of this

study were to define: (a) the ability of co-cultivated species to

remediate the nutrients released by fish farming, (b) the optimal

combination of co-cultivating organisms for efficient utilization

of the released nutrients, (c) the ecosystem and economic
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importance of reducing the environmental footprint of a fish

farm through the co-cultivation of other species.
Methods

The analyses presented in this study are divided in two parts.

The first part is a desk study where literature data were used to

calculate the expected quantities of nitrogen (N) and phosphorus

(P) released from a fish farm and then the amount retrieved by

harvesting co-cultivated IMTA species. The pilot polyculture

systems include aside from fish (sea bream, sea bass),

Mediterranean mussels (Mytilus galloprovincialis), pearl

oysters (Pinctada imbricata radiata) and holothurians

(Holothuria polii).

The calculation of the nutrients (nitrogen, phosphorus)

input to the marine ecosystem was calculated for a theoretical

fish farm with an annual production of 100 tons. In the

calculations it was assumed that the supplied fish feed had a

content of 7% nitrogen (N) and 1.4% phosphorus (P), based on

the nutrient content of the standard commercial fish feed used in

the Greek market. Furthermore, it was assumed that the

percentage of N and P in the fish feed that is retained in the

harvested fish (seabass and sea bream) is 20% N and 30% P,

while the remaining 80% and 70% respectively is released into

the environment with their excrement. Soluble ammonia and

urea released into the marine environment, represents the 63%

of the consumed N and 20% of P, while the rest is in particulate

form (fish feces) and will settle in the sediment. All the above

ratios were extracted from scientific literature sources for

salmonids, trout, seabass and seabream retention experiments

and a mean value was calculated with special consideration to

experimental studies on seabass and sea bream (Krom et al.,

1985; Gowen and Bradbury, 1987; Porter et al., 1987; Folke,

1989; Holby and Hall, 1991; Walain and Hakason, 1991; Hall

et al., 1992; Ballestrazzi et al., 1994; Krom et al., 1995; Dosdat

et al., 1996; Kaushik, 1998; Lemarié et al., 1998; Lupatsch and

Kissil, 1998; Lanari et al., 1999; Karakassis et al., 2005; Tsapakis

et al., 2006; Garcıá Garcıá et al., 2019). It is important to mention

that the fine part of the particulate material does not settle but

remains suspended in the water column. The percentage of these

“never-settling” solid fish wastes is approximately 7% for N and

8% for P (Lupatsch and Kissil, 1998; Tsapakis et al., 2006).

In order to calculate the removed quantities of N and P from

the water column through bivalve harvesting, we made the

assumption that these organisms use N and P bound in

phytoplankton biomass. Sanz-Lazaro and Sanchez-Jerez (2017)

found that mussels did not directly assimilate fish farming

wastes and thus we considered that the increased dissolved

nutrients in the water column near the fish farm induced an

increase of the phytoplankton abundance that is then used by

bivalves as their primary food source. A proportion, of the
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nutrients bound in phytoplankton are transferred to the bivalves

through active filtration and are utilized for growth.

For the IMTA mussel cultivation exercise, the N, P values

content in the harvested mussels were used as reported by Maar

et al. (2020). These values are experimental but, as stated by the

authors are in agreement with previous studies. In the present

study, the lower reported values were used and then adjusted for

the theoretical production of 100 t of mussels (1.31% N and

0.12% P). Respectively, averaged values (16.10 kg N/t, 0.61kg P/

t) were used also for pearl oysters, as calculated in the literature

review of Gifford et al. (2004); Gifford et al. (2005). The bivalve

(mussels and oysters) nutrient assimilation capacity was set to

60% (Bouwman et al., 2011; Dabrowski et al., 2013), thus 40% of

the nutrients consumed are re-introduced into the marine

environment through the pseudo-feces of bivalves. For the sea

cucumbers, the volume of N and P concentration in the

harvested organisms, as well as the assimilation capacity of

them was based on existing literature (Nelson et al., 2012;

Hannah et al., 2013; Orr et al., 2014; Shpigel et al., 2018; Israel

et al., 2019; Neofitou et al., 2019; Chary et al., 2020). The

assimilation capacity for both N & P that can be converted to

biomass was set to 0.5 and it was assumed that these organisms

fed on the solid material released by a fish farm (100 t fish/y).

The second part estimates the ecosystem value (EV)

provided by the IMTA systems by examining the potential of

nutrient remediation by co-cultivated IMTA species in

commercial Greek fish farms of different size and trophic

status. The latter combines information derived from the

theoretical exercise with polyculture performance data

derived from the study of Chatzivasileiou et al. (2022). In that

study pilot IMTA setups for Mediterranean mussels (Mytilus

galloprovincialis), pearl oysters (Pinctada imbricata radiata) and

holothurians (Holothuria polii) were developed and tested in

three fish farms with different trophic status in the eastern

Mediterranean. The trophic status was oligotrophic, low

mesotrophic, high mesotrophic, based on Simboura et al.

(2005). The survival, robustness, growth data and cultivation

methodology for each species are presented in detail by

Chatzivasileiou et al. (2022). In short, the mussel M.

galloprovincialis was successfully cultivated from juvenile to

commercial size in the two mesotrophic farms with a

condition index of 33% and 42% respectively. The pearl oyster

P. imbricata radiata was successfully cultivated from juvenile to

commercial size in all locations with a condition index of 19% in

oligotrophic, 56% in lower mesotrophic and 53% in higher

mesotrophic waters. The H. polii although they had a high

survival rate did not show any significant biomass gain. This

was probably caused by the fact that for the cultivation were used

adult individuals and not offspring. This compromise was made

because reared juveniles could not be purchased and it was not

possible to find juveniles in such large amounts in natural

populations. Thus, the average mean weight of the natural

population was used for the calculation 0,11 ± 0,03 kg/
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individual.To estimate the ecosystem value, we considered the

economic value for the nutrient removal (N and P) from the

environment through the remediation process of the IMTA

organisms. In addition, we considered that the shell of the co-

cultivated bivalves constitutes a net sink of carbon through

bivalve harvesting, which is very important for mitigating the

impacts of climate change and particularly ocean acidification.

For removing nitrogen, the alternative cost set in the market was

applied (Newell et al., 2005; Beseres Pollack et al., 2013; van der

Schatte Olivier et al., 2020). According to it, it costs $ 6.20/kg to

reduce nitrogen to 8mg/l, but $ 19.13/kg to reduce nitrogen to

3mg/l. Thus, the average value used in this study was 17290€ for

the removal of 1 ton of nitrogen.

For phosphorus, there is no purchase price, and therefore a

“shadow” price was used. According to Molinos-Senante et al.

(2011) the estimated price of phosphorus remediation for which

there is no purchase price is set at 13,118-58,561$/t. The mean

value was estimated to 30950 euros for the removal of 1 ton of

phosphorus (van der Schatte Olivier et al., 2020). According to

Smaal et al. (2019), 95% of the shell of bivalves is composed of

calcium carbonate, of which 12% is carbonate. In the

calculations, we have considered the shell as a by-product that

constitutes a net sink of carbon independent of the CO2 released

during the biocalcification and respiration. The equivalent

weight of CO2 has been calculated (https://www.epa.gov/

energy/greenhouse-gas-equivalencies-calculator) from the shell

weight of the total production according to the data from

Chatzivasileiou et al. (2022). The economic value of carbon

removal depends to a large extent on the price range of removing

1 ton of CO2 (Smaal et al., 2019) with an average price of 24$

(21.5€) per ton of CO2 (average price for Denmark, France, the

United Kingdom, British Columbia and Ireland, - (World Bank,

2016; Smaal et al., 2019).

The final calculation of the EV and consequently the

reduction of the environmental footprint by IMTA co-

cultivated organisms was performed for three commercial

Greek fish farms of different size and ambient water trophic

status. Three scenarios were examined:(a) small fish farm with

leased area of 1ha and fish production of 250t/y; (b) medium fish

farm (4 ha leased area) with annual fish production 800 t and (c)

large fish farm (leased area 8 ha) and annual production 1600 t

fish/year. The first scenario is representative for a standard small

business fish farm of Greece, while scenarios (b) and (c) involve

larger businesses that lease extended areas with multiple parks.

For each scenario, an oligotrophic, low mesotrophic and a

high mesotrophic area are considered as aquaculture sites with

different growth rates for the co-cultivated organisms, supported

by the data provided by Chatzivasileiou et al. (2022). In addition,

IMTA systems were designed within the boundaries of the

already leased areas of the farms in order not to be financially

burdened with additional costs (e.g. leasing, vessels etc.) other

than the expenses of the farming equipment. Of course, this

assumption sets a space limit to the production of the co-
frontiersin.org

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://doi.org/10.3389/fmars.2022.1083099
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Papageorgiou et al. 10.3389/fmars.2022.1083099
cultivated organisms according to the aquaculture area leased.

Regarding the calculation of the volume of nitrogen (N) and

phosphorus (P) released from the fish farming units, the

assumption was made that in all scenarios and areas the fish

Food Conversion Ratio (FCR) was 1.8.

For the first part of analyses, no statistical package was used

since all data applied in the calculations were extracted from

published articles with comprehensive statistical analyses

performed. For the second part the statistical analysis was

carried out using the Statistical Package for the Social Sciences

(SPSS), (University of Crete, Biology Department, Heraklion,

Greece) program. The growth of bivalves (condition index) and

survival of Holothurians at the three locations was confirmed by

comparing monthly data with one-way ANOVA at p < 0.05

statistical significance after variables were checked for

assumptions of normality (Shapiro–Wilk test) and

homogeneity of variance (Levene’s test). All mean and

standard deviation values were calculated with SPSS from raw

data of the study described in Chatzivasileiou et al. (2022). In

addition, a residual analysis was performed at the morphometric

raw data (weight of bivalves and shells) and a Normal

distribution of the residuals was examined by the Normal

Probability Plot of Residuals (residuals vs normal expected

values). Identified residuals were checked by Mahalanobis

distance, and Cook’s distance and occasional outliers

were removed.
Results

The values of N and P released for a fish farm with an annual

production of 100 t and an FCR of 1.8 reach up to 7358 kg of N
Frontiers in Marine Science 04
(7056 kg dissolved and 302 kg solid) and 1250 kg of P (524

dissolved and 726 solid) annually.

For the IMTA bivalves nutrient remediation, the calculation

exercise (Figure 1) showed that near a fish farm with a

production of 100 t/y, the co-cultivation with 100 t/y of

mussels can remove from the system 19% of nitrogen and 22%

of phosphorus derived from the secretions of fish. Respectively,

the co-cultivation of fish and 10 t/y of pearl oysters removes 2%

N and 1% P. Finally, the annual co-cultivation of 10 t/y sea

cucumbers can absorb the 4% particulate N and 2% particulate P

derived from the fish excretions.

The estimated remediation data of the IMTA systems for

different trophic states and fish farm sizes are presented in

Table 1. For all scenarios, the high mesotrophic sites show the

highest volume of nitrogen and phosphorus remediated followed

closely by the low mesotrophic sites. The much lower numbers

in the oligotrophic sites are explained by the lower production

numbers as long as the absence of the mussels as a third

IMTA organism.

Furthermore, the CO2 equivalent value deriving from the

volume of sequestrated carbon bound in the cultivated bivalve

follows the same patterns.

The ecosystem value of the removal of the nutrients and the

carbon sequestration has been converted to economic values and

reaches more than50 k€ for the mesotrophic area and around

100k€ for eutrophic areas at scenario 2 and 3, while the lowest

values reach just 1.7 ± 0.2 k€ in the oligotrophic site of scenario

1. Comparing the two types of bivalves regarding their efficiency

in removing dissolved nutrients from the water column, it can be

concluded that 1 g of mussels biomass can remove 1.3 10-2 gr N

and 1.2 10-3 gr P. On the other hand, equal biomass of pearl

oysters can remove 1.6 10-2 gr N and 0.61 10-3 gr P
FIGURE 1

Remediation of dissolved nutrients from a fish farm with the help of mussel co-culture (green text box); pearl oyster co-culture (yellow text box)
and sea cucumber co-culture (brown text box). Symbols provided by Integration and Application Network (ian.umces.edu/media-library).
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TABLE 1 Estimation of the footprint mitigation from the application of IMTA systems for three different fish farm sizes (Scenario 1: small fish farm - 250t/y; Scenario 2: medium fish farm - 800t/y;
Scenario 3: large fish farm - 1600t/y) and different trophic status (O, oligotrophic; LM, low mesotrophic; HM, high mesotrophic).

ussels production
data Carbon sequestration Nitrogen remediated Phosphorus remediated

Prod.
ussels
(t)

weight
of shells

(t)
CO2 equiv-
alent (t)

Value of
C-seq. (€)
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removed

(t)

value of N
removed (k

€)
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removed

(t)

Value of P
removed (k

€)

Total value

of foot-print

mitigation

(k€)
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0.004 ±
0.001

0.1 ± 0.02 1.7 ± 0.2
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Pearl oysters
production data

M

Scen

Num of
IMTA orga-

nisms
Trophic
status

Prod.
oysters

(t)
weight of
shells (t)

m

#1 2 O 5 ± 1 1 ± 0.1

3 LM 10 ± 2 5 ± 0.9

3 HM 6 ± 1 2 ± 0.5

#2 2 O 27 ± 3 6 ± 0.7

3 LM 49 ± 9 24 ± 4.6 1

3 HM 32 ± 6 12 ± 2.5 2

#3 2 O 55 ± 6 12 ± 1.4

3 LM 97 ± 18 47 ± 9.2 2

3 HM 63 ± 11 25 ± 5.1 4
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Discussion

IMTA can successfully reduce the organic load of fish farms

in all three locations and produce profit even in oligotrophic

conditions. In conclusion, pearl oysters absorb larger amounts of

N, while mussels are more effective at removing P. Holothurians

absorb lower quantities of N since for 1 g of biomass they can

remove 0.12 10-2 gr N, but they seem to be more efficient in

absorbing P (1.2 10-3 gr P for 1 g biomass). In general, their role is

important since they exploit the particulate part of the fish farm

effluents up to 4% for N and 2% for P. Studies on feeding

holothurians with particulate wastes deposited beneath fish

cages have shown a reduction in the total organic load released,

suggesting that they may play an important role towards a

sustainable development of fish farming in the Mediterranean

(Neofitou et al., 2019). In addition, the presence of holothurians

around fish cages may improve water and sediment quality and

consequently affect the benthic community as well as the immune

system of the fish (Tolon et al., 2017).

Concerning the IMTA application in different farm areas

(scenarios 1, 2, 3), as expected the large IMTA-system (scenario

3) showed the highest percentage of nitrogen and phosphorus

removal and the top amount of carbon sequestration. The fact

that the area of the farm is much larger than in the other two

scenarios gives the advantage of more available space in the

leased area to achieve a greater production of co-cultured

organisms (sea cucumbers, Mediterranean mussels, pearl

oysters). Of course, because fish production is increased in this

area, the nutrient removal rates do not differ much from the

other areas since the nutrients released from the farm are just

as high.

The IMTA systems of examined trophic states do not show

important differences between the meso- and more eutrophic

areas. On the contrary, the much lower remediation values in the

oligotrophic area highlight the absence of mussels of this IMTA

system. As an important filter-feeding organism, mussels that

can be cultivated in large quantities near the fish cages affect

greatly the rate of the nutrient reduction. This is in agreement

with studies that showed blue mussel (Mytilus edulis) to be very

efficient in compensating fish farming nutrients, acting as bio-

filters (Holdt and Edwards, 2014; Maar et al., 2020).

It is also worth noting that in the case of the IMTA systems

with only 2 co-cultivated organisms the absence of mussels does

not induce a significant reduction in CO2 capture (especially in

larger fish farming area), which is justified by the larger and

heavier shell of pearl oysters. Therefore, the cultivation of pearl

oysters has a significant environmental value associated with the

mitigation of acidification of the sea. Accordingly, Higgins et al.

(2011) suggest a higher rate of carbon sequestration in oyster

beds than in other ecosystem types. However, further work is

required to estimate the true potential of shellfish as a reservoir

of CO2 (Smaal et al., 2019; van der Schatte Olivier et al., 2020).
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The potential economic gain for the mitigation of the fish

farming footprint has an important economic value only for

larger farms (13000 € at maximum). For smaller farms the costs

for establishing and running such IMTA systems is much higher

than the potential profit for the mitigation value and the actual

net profit of the additional IMTA products. According to

(Theodorou et al., 2014), the mussel farm size is critical to the

financial viability of the producer, because profitability is very

limited for smaller farms (i.e. less than 3 ha).
Conclusions

Regarding the environmental value of IMTA, the results

showed that the co-cultivation of organisms could reduce the

negative effects of a fish farm on the marine environment. Meso-

and eutrophic water states do not show a high variation in terms

of footprint mitigation, with all three of the co-cultivated

organisms to perform well. Mussels cannot grow in

oligotrophic waters and thus their absence reduces the

effectiveness of the IMTA system. Larger-sized IMTA systems

have higher production rates for all cultured organisms and as a

result higher percentages of nutrient removal. But also, a

medium sized IMTA farm including the optimum number of

three co-cultivated organisms can perform well and yield better

profit as biomass and ecosystem services.

The assimilation of nutrients (N and P) released by the fish

farm through the nutrition and growth of co-cultured

organisms, mitigates the organic enrichment around the fish

cages of both the column and the sediment. Part of the

particulate matter released by the fish farms it can be

consumed by the cultivated sea cucumbers, thus reducing the

effects on the benthic system near the fish cages. In the water

column, the dissolved nutrients are utilized and increase

phytoplankton biomass which is then consumed by the co-

cultivated bivalves, reducing the concentration of nutrients, and

preventing the overgrowth of phytoplankton. The latter is very

important as the existence of harmful algal blooms (HABS) is a

growing problem that seems to be linked to climate change. At

the same time, the bivalve harvesting helps to remove the carbon

that is trapped in their shells, contributing to the mitigation of

processes related to climate change, such as the acidification of

the oceans.

From the above it can be concluded that the co-cultivation of

organisms has a significant environmental value for the marine

ecosystem in the naturally oligotrophic waters of the Eastern

Mediterranean, but in order to convince fish farmers to invest in

IMTA cultures there is a need for an additional economic profit.

In Greece there is no refund system for fish farming footprint

mitigation thus a reciprocal fee paid by the state or indirectly as

an allowed increase in fish production could motivate the

farmers to invest in IMTA.
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