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Impact of assimilating repeated
subsurface temperature
transects on state estimates of a
western boundary current
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UNSW Sydney, Sydney, NSW, Australia, 2School of Mathematics and Statistics, UNSW Sydney,
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Western Boundary Currents and the eddies they shed are high priorities for

numerical estimation and forecasting due to their economic, ecological and

dynamical importance. However, the rapid evolution, complex dynamics and

baroclinic structure that is typical of eddies and the relatively sparse sampling in

western boundary currents leads to significant challenges in understanding the

3-dimensional structure of these boundary currents and mesoscale eddies.

Here, we use Observing System Simulation Experiments (OSSEs) to explore the

impact of assimilating synthetic subsurface temperature observations at a

range of temporal resolutions, to emulate expendable bathythermograph

transects with different repeat frequencies (weekly to quarterly). We explore

the improvement in the representation of mesoscale eddies and subsurface

conditions in a dynamic western boundary current system, the East Australian

Current, with a data-assimilating regional ocean model. A characterisation of

the spatial and temporal ocean variability spectrum demonstrates the potential

for undersampling and aliasing by a lower sampling frequency. We find that

assimilating subsurface temperature data with at least a weekly repeat time best

improves subsurface representation of this dynamic, eddy-rich region.

However, systemic biases introduced by the data assimilation system hinder

the ability of the model to produce more accurate subsurface representation

with fortnightly or monthly sampling. Removal of this bias may improve

subsurface representation in eddy-rich regions with fortnightly or even less

frequent observations. These results highlight the value of both increased

subsurface observation density in regions of dynamic oceanography as well

as continued development of data assimilation techniques in order to optimise

the impact of existing observations.

KEYWORDS

Western Boundary Current (WBC), East Australian current, expendable
bathythermograph (XBT), observing system simulation experiment (OSSE), data
assimilation (DA)
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1 Introduction

Subtropical Western Boundary Currents (WBCs) are

narrow, rapidly flowing warm water currents that are

important for ecosystems, climate, weather and cross-shelf

exchange (e.g. Lambaerts et al., 2013; Malan et al., 2020; Oliver

et al., 2021; Li et al., 2022a). As fast-flowing WBC jets become

unstable, they shed O(100) km-wide mesoscale eddies. The

formation, structure and evolution of these eddies and

associated structures are important due to the impact they

have on the transport of heat and salt (Abernathey and Haller,

2018), weather (Frenger et al., 2013), mixing (Klocker and

Abernathey, 2014), and the delivery of nutrients (Everett

et al., 2012).

Given their location adjacent to populous coastlines, WBCs

have a pivotal role in coastal fisheries and other blue economies

(e.g. Young et al., 2011; Brieva et al., 2015), weather and climate,

and search-and-rescue and navigation. An impediment to

manyof these end-users is the limitation in model predictability

resulting from the dynamically changing eddy field. Mesoscale

dynamics are inherently sensitive, where divergent evolution

results from small differences in initial conditions. This leads to

a timescale limit on predictability for techniques such as search

and rescue, navigation and other methods that require accurate

forecasts of ocean weather.

Accurate estimates and predictions of WBCs and eddy-rich

regions are generally sought through data-assimilating models

(Oke et al., 2013). The technique of data assimilation combines

observations with a model forecast, often in an iterative process,

to produce an analysis or optimal estimate of the ocean state.

Hence, the evolution of eddies can be continually updated within

model forecasts, providing a best estimate of eddy structure,

timing and location (Oke et al., 2013).

One of the key ways in which operational forecasting systems

differ from non-operational, research-focussed assimilation

systems is the types of observations that can be assimilated. For

example, operational forecast systems typically assimilate sea

surface height (SSH), sea surface temperature (SST), a smaller

number of subsurface observations, such as vertical temperature

profiles from expendable bathythermograph (XBT) probes and

Argo floats, as well as occasionally wind stress and sea surface

salinity observations (e.g. Brassington et al., 2007).

In contrast, hindcast reanalyses with a research focus (e.g.

Kerry et al., 2016; Siripatana et al., 2020), can augment these

traditional observation types with more novel, often delayed-

mode observations, e.g. high frequency radar-inferred surface

currents, hydrography from autonomous gliders, and

measurements from subsurface moorings. The constraint

limiting operational forecast systems from assimilating the full

gamut of non-traditional and subsurface observations, is the

ability to have data prepared and available in near-real time for

the next operational window — which can often not be met

when quality control or other data preparation must be
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conducted with human supervision, or obviously if there is a

delay in data recovery. As a result, operational systems will often

be limited to just surface observations combined with a small

number of near-real time subsurface measurements.

The East Australian Current (EAC; see Figure 1 for region) is

one such WBC with routine subsurface sampling. The EAC

flows southwards from 27.5°S as a coherent jet, before beginning

to meander and lose coherency between 31°–33°S and then

feeding an ‘evolving’ field of cyclonic and anticyclonic eddies in

the Tasman sea. Like many other WBCs, an important source of

subsurface real-time measurements in the EAC are repeated

XBT transects and Argo floats. A long-term program of XBT

deployments from ships of opportunity has been operated along

repeat transects in the southern Pacific Ocean since the late

1980s (and 1991 for the two transects through the EAC region,

named ‘PX30 ’ and ‘PX34 ’) by Scripps Institution of

Oceanography, the Australian Commonwealth Scientific and

Industrial Research Organisation and the New Zealand

National Institute for Water and Atmospheric Research. The

original use of this data was for estimating boundary current

heat budgets (e.g. Roemmich and Cornuelle, 1990; Morris et al.,

1996; Roemmich et al., 2005). However the near-real time data

delivery and consistent transects lends itself well to data

assimilation into ocean models. As the XBT data is delivered

to the global telecommunications system it is readily available in

near realtime for ingestion into operational modelling systems

and reanalyses (e.g. Carton et al., 2000).

Argo floats are a second source of subsurface observations

that have also been used in operational forecasting. Argo floats

return vast amounts of deep (to 2000 m) vertical temperature

and salinity profiles over a much broader area of the ocean and

have revolutionised understanding of the ocean (Wijffels et al.,

2016; Wong et al., 2020). However, they still have relatively low

spatial distribution and are not measuring systematically e.g.

along repeat transects at routine time and space scales.

Thismeans the data cannot easily be used for closed box heat

budgets, their Lagrangian paths could lead to sample aliasing,

nor can we systematically assess observation impact. For these

reasons we do not consider Argo data in this analysis.

It has been shown with data assimilation experiments that

weekly subsurface temperature (XBT-like) observations have a

significant impact on representation of the EAC: improving mean

surface and subsurface circulation patterns, upper ocean heat

content estimates (Gwyther et al., 2022), as well as baroclinic

mode structure and eddy representation (Gwyther et al., 2023).

However, the actual EAC XBT observing system only employs an

approximately quarterly transect repeat time (or less). Hence, there

is strong motivation to assess how impactful the existing XBT

system is on representation of the EAC and its eddy field. Further it

is useful to explore how representation of the EAC System is

improved by increasing the observation sampling frequency.

This assessment is conducted with Observing System

Simulation Experiments (OSSEs), which are a method of
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assessing observation impact, where a free-running simulation is

taken as the true ocean or reference state, from which synthetic

observations are extracted (e.g. Halliwell et al., 2014; Halliwell

et al., 2015; Gasparin et al., 2019; Moore et al., 2020). These

observations are then assimilated into a simulation that had an

initial perturbation applied, and the resulting estimate can be

compared to the ref state (see Figure 2 of Gwyther et al., 2022 for

a schematic of the full OSSE procedure). We are thus able to

assess the impact of the observing strategy on the representation

of key ocean properties. In this study, we compare how several

temporal sampling frequencies impact representation of

subsurface temperature and eddy kinetic energy. This

approach has the advantage of being able to assess the impact

of a range of sampling configurations on ocean state estimates,

without the time or cost of obtaining the ocean observations.

We present a series of model experiments that assimilate

synthetic XBT observations with increased temporal resolution

approximately matching the existing XBT transect network in the

EAC System. In particular, we focus on assessing the impact of

different sampling frequency on subsurface temperature fields and

eddy kinetic energy, which have previously been shown as

challenging to represent accurately (Gwyther et al., 2022; Gwyther

et al., 2023). We characterise the ocean variability spectrum in order

to demonstrate the potential for undersampling and aliasing by low

frequency observations. Lastly, we explicitly separate the systemic
Frontiers in Marine Science 03
error that is introduced by the data assimilation system from the

endemic error resulting from inadequate representation ofthe

mesoscale dynamics.
2 Methods

Numerical simulations are conducted with the Regional

Ocean Modeling System (ROMS; Shchepetkin and McWilliams,

2005) which is a finite-difference primitive equation model with a

terrain-following s-coordinate. The model domain extends from

27°S to 38°S and over 700 km offshore (with meridional grid

resolution of 2.5 km linearly increasing to 6 km towards the east),

and with constant meridional resolution of 5 km). There are 30

model layers in the vertical, with the model s-coordinate

configured for more resolution in the surface boundary layer.

This discretisation leads to cell thicknesses in the EAC of 1–3 m

immediately below the surface, ~50–100 m thick cells in several

hundred metres of water and ~300 m thick cells in the deep ocean

below 3000 m. The model grid is rotated by 20° clockwise so as to

approximately align the model coordinates with the along-shore

and across-shelf directions (Model grid shown in Figure 1A. The

bathymetry is sourced from the Geoscience Australia 50 m

multibeam survey (Whiteway, 2009). The model domain is

identical to that used in several other studies that explore the
FIGURE 1

(A) A snapshot of model SST at 11-March 2012 is shown for the East coast of Australia. Dots mark deployment locations of XBTs along the XBT-
N (beginning at ~28.5°S) and XBT-S (beginning at ~34°S) transects and the line shows the analysis transect beginning at ~31°S. Major east coast
cites Brisbane and Sydney are marked, and grey vectors show model surface currents at the same time. (B) Temperature measurement
locations are marked as grey dots in this vertical slice of temperature (at the same time as in panel A) along the XBT-S deployment line (see A).
Inset in (A) shows model domain.
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EAC velocity variability (e.g. Kerry and Roughan, 2020),

biogeochemistry (e.g. Rocha et al., 2019), eddy dynamics (e.g. Li

et al., 2021; Li et al., 2022b) and observation impact (e.g. Kerry

et al., 2018; Gwyther et al., 2022; Gwyther et al., 2023).

We use two model configurations: a free-running and a data

assimilating configuration. The free-running model uses lateral

boundary forcing (currents, temperature and salinity

conditions) from BRAN2020 (Chamberlain et al., 2021) and

surface forcing conditions from the Bureau of Meteorology

Atmospheric high-resolution Regional Reanalysis for Australia

(BARRA-R; Su et al., 2019). More details are given in Gwyther

et al. (2022) and Gwyther et al. (2023).

The data assimilating configuration used for the OSSEs is

based on the model setup developed by Kerry et al. (2016), and

uses an Incremental Strong Constraint 4-Dimensional

Variational scheme (IS4D-VAR; e.g. Moore et al., 2011). This

scheme calculates the differences between a free-running

‘forecast’ and observations over a chosen assimilation window

(5 days in our case), where model and observations have

associated error fields. The data assimilation scheme then

generates new initial and boundary conditions such that a new

‘analysis’ simulation running with these adjusted initial,

boundary and surface forcing conditions has minimised

differences (in a least-squares sense) from the observations.

The cycle then increments forward, using the previous analysis

as the initial conditions for the new forecast. This data

assimilating configuration has also been used in previous

studies (e.g. Kerry et al., 2016; Kerry et al., 2018; Kerry et al.,

2020; Siripatana et al., 2020) including for OSSEs (Gwyther et al.,

2022; Gwyther et al., 2023). The lateral forcing conditions are

from BRAN2020, while atmospheric conditions are sourced

from the Australian Bureau of Meteorology’s ACCESS

reanalysis (Puri et al., 2013). Both free-running and data

assimilating configurations use a bulk flux parameterisation

(Fairall et al., 1996) for calculating surface fluxes. This

difference in surface forcing conditions between configurations

is a necessary requirement for ‘fraternal twin’-type OSSEs. As

summarised by Halliwell et al. (2014), a balance must be sought

between slightly different configurations (forcing conditions,

mixing parameters or parameterisations) that introduce error

and realistically test the data assimilation system, and a long-

term bias that the assimilation cannot correct for. An analysis of

long-term mean bias resulting from the different forcing

conditions showed that bias is minimal and constrained to the

surface ocean, where it can be readily corrected by assimilating

SST (see Gwyther et al., 2023).

We use the free-running configuration as the reference state

(referred to as the ‘ref state’), to which a series of data-

assimilating simulations (the OSSEs) are compared. Values are

extracted from the ref state and a representative level of error is

added as a normally distributed perturbation with standard

deviation equal to the observation error. The observation error

is set at 0.04 m for SSH, 0.5°C for SST, and with a depth-
Frontiers in Marine Science 04
dependent profile for XBT observations, ranging from 0.6°C to

0.12°C (more information is given in Gwyther et al., 2022).

These values are then taken as the synthetic observations, and

are assimilated into a perturbed data-assimilating simulation

(the OSSE). Following the procedure of (Gwyther et al., 2022),

we generate a perturbed simulation by initialising the free-

running simulation with an 8-day offset. This perturbation is

enough to cause a free-running simulation to diverge

significantly from the ref state, and is thusan effective test of

the performance of the data assimilation system in assimilating

observations into a realistically-diverged background state.

Several different perturbations were tested, including a 1-day

offset, 1-month, 1-year and a climatological state, but all were

found to eventually generate similarly high levels of error (not

shown). We thus chose a 8-day offset as it relatively quickly

diverged, but it still had mesoscale features in the approximately

correct locations, which is analogous to initialisation error in a

true data assimilation system. For a more detailed description of

the OSSE method, Gwyther et al. (2022) gives further

information and includes a schematic of the procedure

(their Figure 2).

Previous work has showed that the free-running model

produces accurate seasonal and interannual representations of

the EAC, including the eddy field, the separation latitude, eddy

kinetic energy and volume transport (e.g. Kerry et al., 2016;

Kerry and Roughan, 2020; Li et al., 2021). This demonstrates

that the free-running ref state is representative of the true ocean.

Hence, by analogy, the impact of assimilating the synthetic

observations should translate to the true ocean.

This study assesses the performance of four different

hypothetical XBT observing strategies through OSSEs, by

comparing these against the ref state. All OSSEs assimilate the

same synthetic surface observations representing SST and SSH by

extracting observations from the ref state simulation with the

appropriate location and timing, as per Gwyther et al. (2022;

2023). Synthetic SSH observations are based on the spatial and

temporal coverage of the global ocean along-track multi-mission

sea level altimeter data. Synthetic SST observations are based on

the spatial and temporal coverage of the near-real time Himawari-

8 satellite product. Each OSSE also assimilates subsurface XBT-

like temperature observations, also extracted from the ref state,

along two transects: at ~28.5°S and ~34°S, with a horizontal

observation spacing of ~12.5 km at the continental shelf break.

However for each experiment the temporal repeat time of the XBT

transects is different, ranging from weekly (the ‘W-12.5’ OSSE),

fortnightly (the ‘2W-12.5’ OSSE), monthly (the ‘M-12.5’ OSSE) to

quarterly (the ‘Q-12.5’ OSSE). Experiment names, and temporal

and spatial resolutions are shown in Table 1.

Subsurface observations consist of vertical temperature

profiles down to 900 m, with 10 m vertical resolution (or one

observation per model layer for model vertical layer spacing

greater than 10 m). These observations are taken along two

transects, one in the north (referred to as XBT-N; ~28.5°S) and
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one in the south (referred to as XBT-S; ~34°S) of the domain.

The two XBT lines are chosen to represent the approximate

location and vertical sampling rates of the PX30 and PX34 lines

(Figure 1A shows transect locations and Figure 1B shows vertical

distribution of observations along XBT-S). For ease of

implementation, in our experiments, the XBT lines are

oriented along grid coordinates (i.e. normal to the shore),

whereas in reality the PX30 and PX34 XBT lines are along

shipping routes from Brisbane to Nouméa, New Caledonia and

Sydney to Wellington, New Zealand and thus at an angle to our

model grid. The unique niche of the XBT dataset is the relatively

fine spacing (10–100 km) between vertical profiles along defined

repeat transects, allowing the resolution of a broad spectrum of

processes, from eddies to basin-scale circulation (Smith

et al., 1999).

All OSSEs assimilate surface observations (SSH and SST; see

above) and subsurface temperature observations along both the

northern transect and the southern transects, with horizontal XBT

spacing of 12.5 km to 30 km (every 5 model cells) and 5-days to

sample the transects. Each OSSE has different XBT transect repeat

times: The W-12.5 OSSE has a transect repeat every week, the

2W-12.5 OSSE has transect repeats every two weeks, the M-12.5

has transect repeats every month (30 days) and the Q-12.5 has

transect repeats every quarter year (90 days). The Q-12.5 OSSE

represents the true Scripps XBT lines most closely in spatial

resolution and temporal repeat time. The other OSSEs (W-12.5,

2W-12.5 and M-12.5) represent how a higher-frequency sampling

scheme will impact simulated representation of the ocean.
3 Results

3.1 Modes of variability in the surface
and subsurface EAC

We firstly use the ref state to explore the important spatial

and temporal modes of variability of the EAC over the one-year

simulation. The goal of this is to gain an understanding of the

key frequencies and scales of variability, so that we can better
Frontiers in Marine Science 05
interpret the effectiveness of observing strategies with different

sampling times and lengths.

The time evolution of several surface and subsurface

quantities in the ref state simulation at ~34°S are shown in

Figure 2. The surface fields clearly display the seasonal cycle

(transition of high to low SST anomaly from 2012-02 to 2012-08;

Figure 2A) and the passage of anticyclonic and cyclonic eddies

towards the south-west (anticyclonic at 2012-03 and cyclonic at

2012-11; Figure 2B). The subsurface fields at 500 m are less

influenced by seasonal processes, instead being dominated by

the passage of eddies (Kerry et al., 2018), and are below the EAC

core depth (Gwyther et al., 2022). The most noticeable feature in

the Hovmöller diagram of temperatureat 500 m is the

temperature increases associated with the passing of warm

core, anticyclonic eddies (and vice versa for some cyclonic

eddies, e.g. mid-August 2012; Figure 2C). Eddy kinetic energy

(EKE; defined as the squared anomaly in velocities from the

2012–2013 mean) at 500 m increases as the largest eddies cross

the transect (Figure 2D). The consistent slopes of EKE features

in the Hovmöller diagram capture the south-westwards

trajectory of the largest (i.e. high EKE) eddies in this region.

The variability in the EKE at 500 m can be explored further

with a frequency-wavenumber spectrum analysis (Figure 3A).

The spectrum is calculated by taking the 2-dimensional fourier

transform of a longitude-time field, which in our case is the EKE

anomaly at 500 m (Figure 2A) and the x and y axes are scaled to

show periodicity and wavelength. The log10 wavelength-period

power spectrum shows several features: higher power at long

wavelengths and monthly–seasonal timescales; and, a distinct

band of increased power that runs from approximately

fortnightly–monthly and very long wavelengths, through

decreasing period and wavelengths to approximately daily

periods and 30–40 km wavelengths. This band of increased

variability is likely associated with the Rossby-mesoscale-

submesoscale energy pathway and dynamics, as identified by,

for example, by Torres et al. (2018). On either side of this feature

(short wavelength and long period, or long wavelength and short

period) there is comparatively low power. The two diagonal grey

lines in Figure 3A represent a non-dispersive relationship, w=ck,
TABLE 1 The configurations of the free-running ref state and the four experiments are described, including the XBT horizontal and vertical
spacing and XBT transect repeat time.

Exp. name Model configuration details XBT horizontal and vertical spacing Transect
repeats

ref state Free-running simulation covering period of Nov
2011–Jan 2013.

Not applicable. Not applicable

W-12.5 4DVar simulations assimilate synthetic along-track
SSH and SST, as well as XBT observations that are
extracted from the ref state along two transects.

Transects at ~28.5°S (XBT-N) and ~34°S (XBT-S). Horizontal
spacing is 12.5-30 km with full transect observed in ~5 days.
Observations extend from 5 m to 900 m, with spacing of at least
10 m.

Weekly (7days)

2W-12.5 Fortnightly (14 days)

M-12.5 Monthly (30 days)

Q-12.5 Quarterly (90 days)
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for different values of the phase speed c. These represent the

frequency-wavenumber relationships for mesoscale anomalies

propagating with phase speeds of c = 8 km/day and 20 km/day.

The bracketing of the high-power band by these relationships

further confirms that the source of this band of power is

mesoscale interactions.

The frequency-wavenumber power spectrum can be further

analysed at several important periods, as shown in Figure 3B).

Here, we show the spectral variance which we calculate by scaling

the power spectrum by the frequency and wavenumber, leading

to a more even weighting of signals across all frequencies and

wavenumbers. The power contained at each chosen time-scale is

shown to decrease with increasing period (e.g. compare 7 days to

90 days; Figure 3B). This shows that sampling at lower

frequencies will truncate a significant portion of the EKE

variability spectrum, and could alias high-frequency EKE

energy into lower frequency modes.

Singular spectrum analysis (SSA; see Elsner and Tsonis, 1996)

is used to decompose the linearly detrended time series of EKE at

500 m in the ref state at each spatial location. Different time bands

are chosen to perform SSA and the variance explained by the

reconstructed components are plotted for each spatial location.

Benefits of SSA include that it is data-driven and works only in the
Frontiers in Marine Science 06
time-dimension. As a result, it is less affected by the choice of basis

vectors and boundary effects (e.g. EOF analyses). The percentage

of total variance in EKE at 500 m that is captured over four chosen

time bands are shown in Figure 4. The percentage of variance

explained by processes with weekly or greater periodicity is high

(spatial mean explained variance is 88%; Figure 4A), which shows

that in this simulation almost all variability in the EKE field is

occurring with a weekly or longer period. For fortnightly and

monthly periods or longer, the percentageof explained variance

drops to spatial mean values of 73% and 49%, respectively

(Figures 4B, C). For quarterly periods or longer, the percentage

of variance captured in that time range is small, 19% on average

over the model domain (Figure 4D). Together, this illustrates that

the proportion of the ocean variability that is captured

by subsurface sampling will decrease with decreasing

sampling frequency.
3.2 Mean conditions under more
frequent sampling

Given that EKE appears to vary more in its frequency

spectrum rather than wavenumber spectrum (Figure 3), and
FIGURE 2

Hovmöller diagrams show the longitude–time variability in the ref state along the XBT-S transect (see Figure 1) for two surface quantities (A) SST
anomaly, (B) SSH anomaly, and two subsurface quantities (C) temperature at 500 m and (D) EKE at 500 m. All anomalies are calculated by
subtracting the mean value at each longitude over the time period Jan-2012–Jan-2013. Contour intervals are indicated with marks in the
colourbar.
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the increasing percentage of total variance explained over longer

sampling windows, there is justification for a suite of OSSEs that

test the impact on EAC and eddy representation from different

XBT repeat frequencies. We can assess the improvement in

mean ocean conditions by comparing OSSEs with different XBT

repeat frequency to the ref state.

The transect mean RMS error in temperature along three

representative transects (the XBT-N, mid-coast and XBT-S lines;
Frontiers in Marine Science 07
see Figure 1 for locations) show the improvement in representation

withmore frequent sampling (Figure 5). For all transects shown, the

improvement in temperature RMS by increasing from quarterly to

monthly sampling is minimal (Figures 5A–C). In contrast,

increasing sampling to weekly decreases RMS, especially in the

more dynamic region south of the separation zone (Figure 5C).

However, there is not consistent improvement in time series of

RMS for the most rapid sampling scheme.
FIGURE 3

The variability of the EKE anomaly at 500 m along the XBT-S transect is explored for the ref state over the period Jan 2012–Jan 2013, with the
(A) log10 wavelength–period power spectrum of the EKE at 500 m and (B) power spectrum of the EKE at 500 m at four selected periodicities. In
both panels, the power spectrum is the variance-preserving spectral density, calculated as the power scaled by the frequency and wavenumber,
which more evenly weights signalsat higher frequencies and smaller length-scales. The chosen periodicities in (B) are 7 days, 14 days, ~90 days
and ~180 days. The EKE anomaly is calculated by subtracting the EKE from the time-mean EKE at each longitude. The grey dashed lines in
(A) show the non-dispersive relationship, w=ck, between frequency w and wavenumber k. The slope of the line, c, corresponds to the eddy
phase speed, which is shown for two values: 8 km/day and 20 km/day.
FIGURE 4

Singular spectrum analysis is used to quantify the percentage of the total variance in EKE at 500 m explained in four selected time bands. The
variance with a period greater than (A) 7 days, (B) 14 days, (C) 30 days and (D) 90 days, and less than 180 days, is expressed as a fraction of the
total variance. A high value indicates that a large amount of the full spectrum of variability at that location has a period within the indicated time
band. Annotations in each plot show the band over which variance is being explained, and the spatial mean of the in-band variance explained.
The contour interval is 10%.
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The vertical structure of temperature RMS, along the

transects, shows an improvement when increasing the XBT

repeat frequency (Figure 6). This improvement occurs both in

the top 1000 m, where there are observations, and across the full

water column. For example, at ~34°S, the RMS error decreases

from 1.0°C to 0.94°C when increasing sampling from quarterly

to monthly (see Figures 6L, K), which is otherwise not

highlighted in the spatial mean RMS (Figure 5). However,
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there is greater improvement in RMS when increasing from

monthly to weekly sampling, for example, decreasing RMS in the

top 1000 m (where RMS error is highest) from 1.84°C to 1.63°C

(cf. Figures E, G) at 31°S, and a larger improvement again at 34°S

from 2-weekly to weekly Figures 6I, J.

The spatial structure of temperature RMS clearly shows how

the error is decreased by increasing XBT repeat times (Figure 7),

particularly in the eddy region (indicated by the blue box, in
A

B

C

FIGURE 5

The transect-mean RMS error in temperature for (A) the XBT-N transect at ~28.5°S, (B) the mid-coast analysis transect at ~31°S and (C) the
XBT-S transect at ~34°S for the four different OSSEs. RMS error compares the spatial-mean difference in temperature between each OSSE and
the ref state. Black ticks indicate timings of quarterly XBT data assimilated into the Q-12.5 OSSE.
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Figure 7A). At 250 m, error is highest in the eddy region (~152°

E, 36°S) but decreases as the repeat time is decreased, from a

mean value of 3.1°C to 2.4°C for the eddy region (Figures 7A–D).

The pattern is similar at 500 m with theW-12.5 OSSE having the

lowest RMS compared to the M-12.5 and Q-12.5 OSSEs (cf.

Figures 7E, G–H). At 1000 m, RMS is relatively low for all

OSSEs, which reflects the lower natural variability at this depth

(Figures 7I–L).

Representation of the surface and subsurface salinity show

no improvement with more frequent XBT observation repeats

(Figure S1). This suggests that assimilation of SSH, SST and

subsurface temperature is not enough to improve representation

of subsurface salinity, despite any covariance of salinity and

temperature properties. In our 4DVar configuration, we estimate

the background error covariance matrix by factorisation

(Weaver and Courtier, 2001) and prescribe univariate

covariance. Covariances are assumed to be static with isotropic

horizontal and vertical length scales, with flow-dependence

being introduced by updating the tangent-linear and adjoint

models with the time evolution of the background.

Consequently, salinity is not set to covary with temperature,

which may contribute to explaining this result. Compare this to
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Balmaseda et al. (2013), who show improvement in salinity

through assimilation of temperature observations via the

balance operators.
3.3 Partitioning the source of error

The RMS error in each OSSE field is the combined effect of

error introduced from the data assimilation system and the error

resulting from dynamic features. A bias is calculated as the time-

mean OSSE field minus the time-mean — this represents the

systemic error introduced through data assimilation. This bias is

then subtracted from the OSSE field, and a bias-corrected RMS

error is calculated — this error field now represents the

differences in representation resulting from representation of

dynamic ocean features.

The bias in each OSSE, calculated as the timemean of the OSSE

field minus the time mean of the same field in the ref state, shows

the time-averaged difference between the OSSE and the ref state

(Figure 8). The bias in the SST is close to zero for all different XBT

repeat times (Figures 8A–D). However, there is a cold bias at 250 m

of between -1.4°C to -1.8°C for the whole domain, which is 10—
FIGURE 6

The RMS error in temperature, calculated for the time-mean, at the (A–D) XBT-N transect, (E–H) the mid-coast analysis transect, and (I–L) XBT-S
transect, for the four different OSSEs: (A, E, I) Weekly 12.5 km, (B, F, J) Two-weekly 12.5 km, (C, G, K) Monthly 12.5 km and (D, H, L) Quarterly 12.5.
RMS error is relative to the ref state, and mean values are shown in each panel for full-depth and the top 1000 m. The contour interval of 1°C is
indicated with marks in the colourbar.
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13% of the mean temperature at 250 m (Figures 8E–H). At 500 m

(Figures 8I–L), this bias is smaller, between -1.2°C to -1.6°C –

though relative to the mean temperature at 500 m it is 13—17%;

higher than at 250 m). By 1000 m, this has switched to a warm bias,

particularly in the eddy region (Figures 8M–P). In almost all OSSEs,

particularly in the eddy region (blue box; Figure 8A), the bias is

reduced by more frequent repeat times for XBT observations (cf.

-1.8°C and -2.5°C; Figures 8E, H).

The bias represents the time-mean difference in conditions,

which we hypothesise is imposed by the data assimilation

process. It causes some oceanic features to be too cold in the
Frontiers in Marine Science 10
subsurface–500 m range, and to be too warm at depth. As a

result, subtracting this bias from OSSE temperature fields before

calculating the bias-corrected RMS will give the error resulting

from improper representation of the dynamics. The change in

this bias-corrected RMS between the different OSSEs more

clearly represents how increasingly frequent XBT repeat times

better capture ocean dynamics. The bias-corrected RMS in

temperature fields for each OSSE are shown in Figure 9. There

is a consistent improvement in bias-corrected error at 250 m for

the whole domain and for the eddy region as XBT repeat

frequency is increased (Figures 9A–D). At least fortnightly
FIGURE 7

The RMS error in temperature, calculated for the time-mean, at depths of (A–D) 250 m, (E–H) 500 m, and (I–L) 1000 m, for the four different
OSSEs: (A, E, I) Weekly 12.5 km, (B, F, J) Two-weekly 12.5 km, (C, G, K) Monthly 12.5 km and (D, H, L) Quarterly 12.5 km. RMS error is relative to
the ref state, and mean values are shown in each panel for the full domain and the eddy-rich region designated by the blue box in panel (A).
The contour interval of 1°C is indicated with marks in the colourbar.
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XBT observations are required to reduce RMS in the eddy region

below 30°S. The improvement at 500 m and 1000 m is again

greatest for weekly sampling (Figures 9E, I), though the

improvement over fortnightly and slower sampling is minimal.
4 Discussion

There are different modes of variability present in the ocean,

from fast (e.g. tidal) to slow (e.g. climate modes) timescales and
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from small (e.g. eddy cascade) to large (e.g. gyre circulation)

spatial scales. When designing an observation strategy, a choice

must be made as to what portion of this period-wavelength

phase spectrum should be sampled. Processes that are outside of

the sampled portion of the spectrum are not measured enough

(in time or space) to discern the process and may be aliased into

thesampled portion of the spectrum. These processes either

require more rapid or finer spaced sampling (i.e. for

discerning small or fast scale processes), or, longer or broader

sampling (i.e. for capturing large scale or slow processes).
FIGURE 8

The bias in temperature at depths of (A–D) 0 m, (E–H) 250 m, (I–L) 500 m and (M–P) 1000 m, (E–H) 250 m, (I–L) 500 m and (M–P) 1000 m,
for the four different OSSEs: (A, E, I, M) Weekly 12.5 km, (B, F, J, N) Two-weekly 12.5 km, (C, G, K, O) Monthly 12.5 km and (D, H, L, P) Quarterly
12.5 km. Bias is calculated as the time-mean difference between the OSSE and the ref state temperature fields. A positive value indicates the
OSSE is warmer than the ref state, and vice versa. The mean values are shown in each panel for the full domain and the eddy-rich region
designated by the blue box in panel (A). The contour interval of 1°C is indicated with marks in the colourbar.
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Likewise, model resolution must be fine enough that any small

scale processes that are observed can actually be resolved by the

model simulation – though there could be inherent limits to

predictability at very fine, submesoscale resolutions (Sandery

and Sakov, 2017).

We have shown that in the EAC (using our ref state

simulation), ocean surface processes display a wide variety of

scales, from weekly changes to seasonal variability in SST

(Figure 2A). In the subsurface ocean at 500 m, the most

obvious processes are eddy dynamics, which have small scale

and fast changes in temperature and EKE (Figures 2C, D).

Indeed, inspection of the variability period-wavelength
Frontiers in Marine Science 12
spectrum of EKE at 500 m shows two key features: higher

power at the large scales (>100 km and 30–180 days), and a

band of increased power stretching from ~350 km/monthly to

30-40 km/daily wavelengths and periods, which likely represents

the increased variability associated with the Rossby-mesoscale-

submesoscale energy pathway (Figure 3A). Sampling any less

frequently than monthly will truncate a large portion of this

mesoscale energy pathway. Given that we can quantify the

amount of variability with different spatial scales, we can

directly describe the portion of the total variability that is

captured by repeat sampling at chosen frequencies. In

particular, for EKE at 500 m, quarterly sampling captures
FIGURE 9

The bias-corrected RMS in temperature at depths of (A–D) 250 m, (E–H) 500 m, (I–L) 1000 m, for the four different OSSEs: (A, E, I) Weekly 12.5 km,
(B, F, J) Two-weekly 12.5 km, (C, G, K) Monthly 12.5 km and (D, H, L) Quarterly 12.5 km.
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~20% of total variability, while increasing to monthly sampling

captures ~50%. More rapid sampling rates at fortnightly and

weekly frequencies captures ~70% and ~90% of the total EKE

variability (Figure 4). Note that since data assimilation systems

will not exactly match observations (for e.g. due to observation

error), we would only expect these patterns to be approached in

the long-term.

While there is no obvious reduction in transect-mean error

when sampling is increased from quarterly to fortnightly, reduced

RMS is noticeable with weekly sampling (Figures 5A–C). This

shows that infrequent observations (i.e. quarterly through to

fortnightly subsurface observation repeats) have limited impact

on constraining mean subsurface conditions, and highlights the

importance of regularly assimilating subsurface observations to

maintain an accurate estimate.

This is further confirmed in the vertical transects of

temperature RMS, where the highest error region (~250 m) is

represented with similar error in quarterly, monthly and

fortnightly sampling, but is improved with weekly sampling

(cf. Figures 6A–D). Horizontal fields of temperature RMS show

that the greatest improvement in representation is indeed in the

250 m depth range, and particularly in the high eddy energy

region. This confirms that repeat sampling of at least weekly

frequency is required to improve the mean representation of

heat in the critical 250 m depth range in the northern upstream

region (Figure 7A), separation region (Figure 7E) and southern

high eddy region (Figure 7I). Indeed, this confirms the

importance of higher repeat frequency observations as

suggested by the variability analysis, where sampling at

fortnightly–weekly frequencies is required to capture 60–80%

of variability in the higher EKE region (Figures 4A, B).

Systemic error is introduced by the data assimilation system

and can only be mitigated through improvements to the data

assimilation system. This error could present as overly deep

eddies (Siripatana et al., 2020), incorrect vertical distribution of

temperature and heat content (Gwyther et al., 2022), or baroclinic

mode structure (Gwyther et al., 2023). Endemic error results from

the resolution of mesoscale processes and is improved by faster or

higher resolution sampling. Maps of bias (Figure 8) suggest that the

data assimilation process is producing a temperature structure that

is too cold between 250–500 m and too warm at 1000 m. The

location of the strongest bias suggests that eddies suffer

disproportionately from this systemic error. The slight decrease in

bias that is observed in the W-12.5 OSSE, particularly for the eddy

region, indicates that weekly subsurface temperature observations

are playing an important role in repeatedly correcting the vertical

structure. The bias-corrected temperature RMS shows that the

largest improvement in representation is in the 250 m depth

range, which is achieved by taking XBT measurements at faster

than monthly frequency. Improvement at 500 m is smaller, though,

as most error is concentrated in the 250 m range, this may be

acceptable. The improvement in increasing XBT sampling time
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from quarterly to monthly (see reduction in RMS in the separation

zone; Figure 9D) may represent improvements in capturing

seasonal-scale processes, such as mean separation latitude (Ypma

et al., 2016; Oke et al., 2019), jet core velocity and EKE (Archer et al.,

2017). The comparatively larger reduction in RMS observed when

moving to fortnightly or weekly sampling likely represents better

representation of mesoscale dynamics. This is supported by the

frequency analysis (Section 3.1) and by the largest RMS reduction

being in the eddy region (Figures 9A, B). In Figure 7, the greatest

improvement in RMS error, particularly in the eddy region, is

achieved by weekly sampling. In contrast, Figure 9 shows that

fortnightly sampling achieves sufficient reduction of bias-corrected

RMS error in the eddy region. This indicates that the gain achieved

from moving from fortnightly to weekly sampling is through

reduction of the bias – likely due to the presence of subsurface

observations in each assimilation window.

The large temperature bias (Figure 8) likely results from the

data assimilation process itself. This could result from the

specification of background error covariance matrix, which

controls the influence of observations in the horizontal and

vertical (Bannister, 2008) and the weighting of the model

forecast (Lee and Huang, 2020). Correctly specifying the

background error covariance matrix is a major challenge to

accurate data assimilation simulations (see review in Moore

et al., 2019). Indeed, several studies have shown that 3-

dimensional structure suffers in data assimilation, even with

the inclusion of the limited subsurface observations (see for e.g.

Zavala-Garay et al., 2012; Pilo et al., 2018; Siripatana et al., 2020;

de Paula et al., 2021; Gwyther et al., 2022; Gwyther et al., 2023).

In any case, the result is that subsurface representation needs to

be constrained frequently (i.e. weekly), otherwise subsurface

structure drifts too far from the truth and any improvement from

observations is minimal, though this result may change for different

assimilation techniques. This suggests that improvements to

assimilation schemes could improve representation of the

subsurface structure even in the absence of observations.

Furthermore, existing observations (i.e. quarterly subsurface

measurements) could have more impact than they currently do,

and potentially, sampling on the mesoscale timescale would

be sufficient.
5 Conclusion

Operational and research-focussed data assimilation systems

benefit greatly from the high spatial resolution, coverage and

relatively rapid temporal repeat times of satellite-inferred sea-

surface measurements. As a result, these systems can provide

accurate and representative estimates of sea surface temperature

and height (and hence geostrophic currents). However, subsurface

conditions such as temperature and velocities (Gwyther et al., 2022),

isothermal slopes and baroclinic mode structure (Gwyther et al.,
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2023) are not represented with the same accuracy. These simulation

inaccuracies are further compounded when trying to simulate

dynamically complex 3-dimensional structures such as eddies

(Gwyther et al., 2023). As a result, the assimilation of subsurface

observations is critical to improving representation. While some

subsurface observations are routinely assimilated into operational

ocean models, many of these are sampling sparsely (e.g. Argo

floats), or were designed for climatological studies(e.g. the Scripps

high resolution XBT program). So, there is some justification for the

re-purposing of existing subsurface sampling frameworks, at

potentially faster repeat times, so as to be of more use for

operational models that estimate and forecastocean conditions.

Our results have showed that frequencies of variability of

interest need to be considered when assimilating subsurface

observations. We have explored the benefit of assimilating data

from an XBT observing network designed to observe

climatological-scale processes i.e. heat fluxes through ocean

basins over interannual periods. Our results show that

assimilating XBT data at fortnightly repeat times would give a

better representation of higher frequency processes such as

mesoscale eddies. However, we also show that systemic errors

in the data assimilation process itself limit the ability to represent

accurate vertical structure. Improvements to the assimilation

scheme to reduce systemic error and biases would therefore

increase the positive benefit obtained from current and future

subsurface observation systems.
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