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Synthetic aperture radar (SAR) imaging is used to identify ships, which is a vital

task in the maritime industry for managing maritime fisheries, marine transit,

and rescue operations. However, some problems, like complex background

interferences, various size ship feature variations, and indistinct tiny ship

characteristics, continue to be challenges that tend to defy accuracy

improvements in SAR ship detection. This research study for multiscale SAR

ships detection has developed an upgraded YOLOv5s technique to address

these issues. Using the C3 and FPN + PAN structures and attention mechanism,

the generic YOLOv5 model has been enhanced in the backbone and neck

section to achieve high identification rates. The SAR ship detection datasets and

AirSARship datasets, along with two SAR large scene images acquired from the

Chinese GF-3 satellite, are utilized to determine the experimental results. This

model’s applicability is assessed using a variety of validation metrics, including

accuracy, different training and test sets, and TF values, as well as comparisons

with other cutting-edge classification models (ARPN, DAPN, Quad-FPN, HR-

SDNet, Grid R-CNN, Cascade R-CNN, Multi-Stage YOLOv4-LITE, EfficientDet,

Free-Anchor, Lite-Yolov5). The performance values demonstrate that the

suggested model performed superior to the benchmark model used in this

study, with higher identification rates. Additionally, these excellent

identification rates demonstrate the recommended model’s applicability for

maritime surveillance.

KEYWORDS

synthetic aperture radar (SAR), ship identification, artificial intelligence, deep learning
(DL), YOLOv5S, SAR ship detection dataset (SSDD), AirSARship
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1 Introduction

Detection of ships is a crucial task in the maritime industry

for controlling maritime fisheries, marine transit, and rescue

operations. However, some issues, such as intricate backdrop

interferences, numerous ship size fluctuations, and imprecise

little ship features, still pose difficulties and frequently thwart

advancements in SAR ship recognition accuracy. Accurate

position and trajectory determination of the target ship is

essential for managing maritime traffic, recovering from

maritime accidents, and the economy (Xiao et al., 2020).

According to the kinds of remote sensing technologies used,

the two main categories of ship detection study are, respectively,

the SAR image-based and optical satellite image-based

methodologies. One of the major challenges of ship

identification in optical remote sensing images is finding

suitable areas from complex backgrounds fast and correctly

(Wang et al., 2021). High-resolution capabilities, independence

from the weather, and flight altitude independence are all

attributes of SAR images. SAR’s self-illumination capability

ensures that they always produce high-quality images under

any circumstance (Chang et al., 2019). SAR has been extensively

employed in ship identification (Ma et al., 2018; Xu et al., 2021;

Li et al., 2022; Yasir et al., 2022; Xiong et al. 2022), oil spill

identification (Yekeen et al., 2020; Wang et al., 2022), change

detection (Gao et al., 2019; Chen and Shi, 2020; Zhang et al.,

2020b; Wang et al., 2022), and other fields (Niedermeier et al.,

2000; Baselice and Ferraioli, 2013). Because of its broad

observation range, brief observation duration, great data

timeliness, and high spatial resolution (Ouchi, 2013), SAR

performing a significant role in ship identification. The

amount and quality of SAR data have been steadily improving

recently due to the quick development of space-borne SAR-

imaging technologies. As a result, many researchers are studying

how to identify ships in HR SAR images (Wang et al., 2016; Li

et al., 2017b; Salembier et al., 2018; Du et al., 2019; Lin et al.,

2019; Wang et al., 2019; Wang et al., 2020b; Wang et al., 2020c;

Wang et al., 2020d; Zhang et al., 2020c; Yasir et al., 2022).

However, due to the complicated environment and other

difficult issues, such as sidelobes and target defocusing (Chen

et al., 2019; Han et al., 2019; Xiong et al., 2019; Yuan et al., 2020),

identifying ship targets in HR SAR images is still challenging.

Deep learning (DL) technologies has enhanced quickly in

recent years, enabling natural image identification.

Convolutional neural networks (CNNs) were introduced into

the target identification area by R-CNN (Girshick et al., 2014),

and as a result, target identification has received new scientific

research thoughts, and its use in SAR images has a wide range of

potential applications. Currently, two stage identification

approaches addressed by R-CNN, Fast R-CNN, and Faster R-

CNN (Girshick, 2015; Ren et al., 2015) are the main

convolutional neural network-based algorithms employed in
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ship identification in SAR images. The complexity of their

network topologies, the sheer number of parameters, and the

slow recognition speed, however, prevent them from being able

to complete ship detection tasks in the required amount of time.

The target identification problem is also seen as a regression

analysis task involving target location and category information

by the single stage algorithms from the SSD (Liu et al., 2016) and

YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017;

Redmon and Farhadi, 2018; Patel et al., 2022) series. They are

more suited to ship identification applications that need virtually

real-time identification since they output the identification

results directly through a neural network model with high

accuracy and speed (Willburger et al., 2020).

Although the aforementioned methods have strong

detection performance, it is challenging to directly apply them

to SAR ship identification. There are still a number of problem

with the DL-based ship identification approaches in SAR images

(Li et al., 2020; Zhang et al., 2021a). (i) Due to the unique

imaging technique utilized by SAR, there is less contrast between

the ocean and ship in the SAR images since there are more

scattering noise and sea debris and less side flap. (ii) Different

ships have various sizes and shapes which are reflected in SAR

images as varying numbers of pixels, especially for tiny-scale

ships. Smaller ships have less information about their

whereabouts than large ships, and since they have fewer pixels,

they are more susceptible to being deceived by the speckle noise

in SAR images. While this is going on, the detection process

becomes more complex, which lowers the accuracy of

identification and recognition. (iii) SAR images cannot be

directly supplied to the network for identification if the scene

is large. It is anticipated that the network has now received the

SAR image of the expansive landscape. The ship target will be

resampled in this situation to a few or possibly only one pixel,

which will significantly reduce the identification accuracy. The

main goals of the current study are as follows:
• To identify optimum multi-size ship target in SAR images

by modified YOLOv5 model.

• To offer the backbone extraction network a well-designed

structure, a set of CSP framework and attention

mechanisms have been upgraded, and the output layer

has been expanded to four feature layers.

• To improve the overall performance throughout the

recognition process, this improved version of the

YOLOv5 model also produces effective results in a

condensed amount of time with a relatively smaller

database.

• To use the SSDD and AirSAR ship Datasets, two distinct

and well-known datasets, in these simulations. The

SSDD collection contains 1160 SAR images in total,

collected by RadarSat-2, TerraSAR-X, and Sentinel-1,

with resolutions ranging from 1m to 10m and
frontiersin.org
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Fron
polarizations in HH, HV, VV, and VH. Gaofen-3 has

collected 31 single-polarized SAR images, which are

included in the AirSARship.

• To assess the suggested model’s applicability utilizing

cutting-edge benchmark convolutional neural

network-based techniques.

• To employ several performance indicators for application

evaluation reasons, including precision, accuracy, time

consumption, and different training and test sets.

• To demonstrate the model’s superiority the performance

results would be demonstrated to the desired benchmark

models (CNN-based SAR ship identification techniques).
The paper is organized as follows; Section 2 shows the study

serves as an organizational framework for the remainder of the

research, explaining the proposed methodology. The findings

and analysis of the suggested research project are described in

Section 3. Additionally, by contrasting it with other cutting-edge

produced models, it has demonstrated the model’s usefulness.

Section 4 describes the ablation study and the paper is concluded

in Section 5.
2 Proposed methodology

The target of this current study is to develop a ship detection

model that could potentially function when there are inadequate

hardware resources. Because of its reputation for speed and

accuracy, the lightweight version of YOLO has received

attention. Open source model YOLO was first presented by

Joseph Redmon in 2016 (Redmon et al., 2016). It is suitable as a

real-time system since it can identify things at extremely quick

speeds. In this research work, the upgraded model lightweight

version of YOLOv5 is used. This upgraded model resulted with

higher accuracy and efficient identification capabilities (Caputo

et al., 2022; Nepal and Eslamiat, 2022). Two datasets that are

available in the literature, the AirSARship (Xian et al., 2019)

dataset and the SSDD dataset (Li et al., 2017a), have both

been considered.
2.1 Data augmentation

In order to train the model for deep learning, a lot of data is

typically required. However, in practice, certain data sets are

challenging to collect, leading to a small quantity of data in this

category that falls short of the required data volume for deep

learning. Experts have thus suggested data augmentation

approaches to successfully address this issue (Najafabadi et al.,

2015). The data augmentation techniques such as random

rotation and mosaic was used. Given training data, mosaic

randomly crops four images and stitch them together to create
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one. It has the advantage of enriching the background of the

image and enhancing the batch size discretely so that it can help

to minimize the model dependence on a large batch size when

training (Figure 1).
2.2 Data annotation

The images were annotated using the Labellmg software,

which generates a json annotation file and transforms it into a txt

file. The type and number of the labeling target, the labeling

image’s standardized width and height, and the center point’s

coordinates are all information that can be found in the txt file.

Figure 2 displays the labelling outcomes.
2.3 YOLOv5 network

YOLO is a regression-based technique and, despite being less

accurate, is actually faster than region proposal-based methods

like R-CNN (Girshick et al., 2014). The goal of YOLO is to achieve

object identification by approaching it as a regression and

classification issue. Identifying the bounding box coordinates for

the objects in the images is the first step, and second step is to

classifying the objects that are identified in a class. This is

accomplished in a single step by first splitting the input images

into a grid of cells, then determining the bounding box and

relative confidence score for each cell’s containing object.

The YOLOv5 network is one of the recent research

advancements in the YOLO series of algorithms. Despite

sharing a network structure with the YOLOv4 network, it is

smaller, has a faster running speed and convergence speed, and

uses a lightweight algorithm. Additionally, it improves precision

at the same time. As a result, the YOLOv5s algorithm is used in

the current study work to detect ships in SAR images. Four

components make up the YOLOv5 network structure: input,

backbone, neck, and prediction. The Yolov5 framework

architecture is displayed in Figure 3A. Networks can be

categorized as YOLOv5l, YOLOv5m, YOLOv5x, and

YOLOv5s. Their widths and depths may differ significantly,

but their network structures are comparable. The network

structure of YOLOv5s is the shortest, shallowest, runs the

fastest, and has the least accuracy. As a result, the accuracy

continues to rise, the speed of operation declines, and the other

three network structures increasingly deepen and widen.

Adaptive anchor box operation, mosaic data augmentation,

image scaling, and CSP structure were used to process the

input dataset, while focus and CSP framework were used to

build the backbone. Focus increased network speed and cut

down on floating-point operations (FLOPs) by clipping the

input image. Figure 3A presented the focal structure. The two

CSP (Wang et al., 2020a) framework that were used by YOLOv5

were CSP1_X and CSP2_X; CSP1_X was utilized for down
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sampling in the backbone while CSP2_ X was utilized in the

neck. CSP can reduce operations while increasing the network’s

capacity for learning and guaranteeing accuracy. Figure 3B

depicted the two CSPs’ structures; the neck used the SPP-net

and FPN + PAN framework to improve the network’s feature

fusion effect, while the prediction employed the GIOU_ Loss

(Rezatofighi et al., 2019), which did not only focus on the overlap

between the prediction box and the ground truth but also on the

non-overlapping areas. (Yu et al., 2016) found that GIOU

maintains the benefits of IOU while solving its issues. The
Frontiers in Marine Science 05
computation for Equation (1-2) is as follows:

IOU =
A ∩ Bj j
A ∪ Bj j  (1)

GLOU = IOU − j
C

A∪Bð Þ
Cj j j  (2)

Four separate networks were used, and YOLOv5 was

continuously upgraded as well. Version 5.0 of YOLOv5s was

used in this study project; in comparison to version 4.0, this
A B

FIGURE 3

(A) The framework of the YOLOv5 Model, and (B) CSP structure.
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version modified all functional activation in the framework to

SiLU (Elfwing et al., 2018), eliminated the conv in the CSP, and

designated it C3 as presented in Figure 4. Additionally, v5.0 has a

smaller and faster network structure than v4.0.
2.4 YOLOv5 network improvement

In this section of the study, the improvements made to the

YOLOv5 classifier have been described in accordance with the

guidelines of the proposed research challenge. The neck and

backbone parts are enhanced to produce the greatest

identification outcomes.

2.4.1 Backbone improvement
It is frequently possible to combine features from various

scales to obtain more meaningful object information. The high-

level feature has lesser resolution and poor perception of object

information, but the receptive field is bigger, which is suited for

identifying huge objects. The low-level feature has higher

resolution, a smaller receptive field, more texture information,

and more noise. The complex background environment in the

SSDD and AirSARship dataset results in some large ground

objects having an inadequate detection effect. In the current

research work, a set of C3 framework was used to construct the

YOLOv5s backbone network. The original three sets of C3 were

converted into four sets of C3 to further the network framework

as a whole (Figure 4). In turn, the model’s detection accuracy

may have improved as a result of the network’s increased ability

to communicate and learn about larger ground objects.
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2.4.2 Attentional mechanism
The human visual attention process is referred to as the

“attention mechanism,” which concentrate on local details and

blocks out redundant details. To put it another way, the network

is able to identify critical information among a plethora of data

due to the attention mechanism. The network performance is

enhanced in this way by the addition of a small amount of

computing. Figure 5 presented the increased backbone structure.

2.4.3 Neck enhancement
The neck was constructed using the FPN (Lin et al., 2017) +

PAN (Liu et al., 2018) framework. This framework incorporated

a bottom-up feature pyramid network after the FPN, which

improved location information and semantic expression on

various scales. The C32_X structure was incorporated into the

neck of the YOLOv5s to enhanced the feature fusion impact of

the network framework. Because of the development of a set of

C3 structures in the current research work, an output layer was

updated to the network’s neck to increase feature extraction.

Figure 6 presented the increase structure of FPN + PAN.

2.4.4 Extending receptive field area
Each pixel in the output feature map must respond to an

area in the image that is large enough for it to get information

about the large object, which makes the size of the receptive field

a major issue in many vision applications. Consequently, a

maximum pooling layer has been chosen to be added to the

space pyramid in order to improve multiple receptive field

fusion and increase the accuracy of identification of tiny

targets. The updated architecture is shown in Figure 7.
FIGURE 4

The C3 structure.
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Figure 7 includes a graphic representation of the contribution of

a maximum pooling layer. Figure 7 shows the spatial pyramid

pooling module SPP and the combination module CBL, which

combines convolutional layers, BN, and activation function

layers. The addition of a 3*3 maximum pooling filter has

increased the model’s receptive field.
Frontiers in Marine Science 07
3 Results and discussion

This section has a detailed description of the SSDD,

AirSARship datasets, experimental settings as well as

evaluation metrics and assesses the performance of the

technique. The testing set is then separated into two sets, one
FIGURE 6

Improved FPN + PAN structure.
FIGURE 5

The improved backbone Network structure.
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is offshore ships and the other one is inshore ships, and each

group has been used to assess the efficacy of the various

strategies. The identification outcomes of the current model

and a few unique CNN-based models are shown on the two SAR

large scene images.
3.1 Dataset introduction

SSDD dataset: The first and most important stage in ship

detection using deep learning techniques is the construction of a

sizable and representative dataset. Therefore, the experiment

utilize the SSDD (Li et al., 2017a) dataset, which have 1160 SAR

images with resolutions ranging from 1m to 10m with

polarizations in HH, HV, VV, and VH from RadarSat-2,

TerraSAR-X, and Sentinel-1. Each sample image has a

dimension of roughly 800 x 800, with a ratio of 7:1:2, where

the SSDD dataset is divided into three sets for the experiment: a

training set, a validation set, and a testing set (Table 1).
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AirSARship Dataset: In the present study, experiments also

use the AirSARShip-1.0 (Xian et al., 2019) dataset to assess the

performance of proposed model utilize high-resolution SAR ship

identification dataset. Gaofen-3 provided 31 single-polarized

SAR images for AirSARShip-1.0. Most images have a size of

3000 x 3000 pixels, while one has a size of 4140 x 4140 pixels

with resolutions ranging from 1 to 3 meters with HH

polarization. The large scene image has been split into 1000 x

1000 slices with a ratio of 7:1:2, where the dataset is divided into

three sets for the experiment: a training set, a validation set, and

a testing set (Table 1).

Two SAR large scene images from the Chinese GF-3 satellite,

as shown in Figure 13, further illustrate the efficacy of the

suggested strategy for identifying different size ships in SAR

large scene images with complicated sceneries. These images

contain inshore and offshore scenery as well as ship targets at

various scales. In Figure 8, some image slices are presented and

offshore and inshore scenes as well as multiscale ship targets are

primarily shown in Figure 8A. The dataset clearly shows that
FIGURE 7

Pooling layer improvement structure.
TABLE 1 Reveal the dataset’s complete details.

Dataset Size (pixel) Image (num) Mode Satellite Resolution(m)

SSDD 390 ×205
500 ×500

1160 SL RadarSat-2
TerraSAR-X
Sentinel-1

1-15

AirSARship 3000 × 3000 31 SL/UFS GF-3 1/3
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both off-shore and inshore scenarios are included, and that the

sizes of the ships fluctuate widely.
3.2 Experimental environment

The experiments are all carried out using PyTorch 1.7.0, CUDA

10.1, and CUDNN 7.6.5 on an NVIDIA Geforce GTX 2080Ti GPU

and an Intel Core i9-9900KF CPU. The PC, which was equipped

with a deep learning environment for our research and was running

Windows 10, is depicted in Table 2. Additionally, each model was

trained over 100000 iterations utilizing the Stochastic Gradient

Descent (SGD) technique on a total of two images per minibatch.

The initial learning rate was set at 0.001, while the weight decay was

set to 0.00004. In every trial, the detection threshold IOU was set to

0.7. Table 2 displayed the experimental hardware and software

configuration. During the experiment, the same platform was used

for all comparison techniques.
3.3 Evaluation metrics

Since optical and SAR image object detection tasks are

comparable, the effectiveness of various approaches is assessed

using a variety of established indicators, such as average precision

(AP), recall rate (r), precision rate (p), F score (F1), and these

indications are specifically formulated in following equations (3-6):

Pr ecision =
TP

TP + FP
 (3)
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Re call =
TP

TP + FN
 (4)

The number of correctly recognized ships, false alarms, and

missing ships are denoted by the acronyms FN (false negative),

FP (false positives), and TP (true positives). The precision and

recall are combined into the F1 score as follows:

F1� score = 2� Pr ecision� Re call
Pr ecision  +   Re call

​ (5)

AP =  

Z 1

0
P Rð ÞdR  (6)

The complete detection effectiveness of the various models is

assessed using the AP and F1-score metrics, and a higher

number indicates a superior detector performance.

The percentage of ground truth ships that networks correctly

predict in all predictions is referred to as the precision rate. The

percentage of ground truth ships that networks correctly predicted in
A

B

FIGURE 8

Inshore, offshore and different scale ship target on SAR images, (A) ships from the first SAR large scene images presented in Figure 13A, and (B)
ship from the second SAR large images presented in Figure 13B.
TABLE 2 Environment Configuration.

Project Model/Parameter

System windows 10

RAM 32GB

GPU NVIDIA GTX Geforce 2080 Ti

CPU Intel i9-9900KF

Framework CUDA10.1/cudnn7.6.5/torch 1.7.0

Code python3.7
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all ground truth ships is referred to as recall rate. F1 is a

comprehensive statistic that combines precision rate and recall rate

to assess the effectiveness of various framework. AP outlines the

region beneath Precision-Recall (PR) curves and also shows the

overall effectiveness of various approaches. Additionally, Frames-

Per-Second (FPS), which is derived from Equation (7), is used to

assess the detection speed of various approaches. A method achieves

a higher speed the higher the FPS.

FPS  =  
1

Tper−img
 (7)

When processing an image, the inference time (Tper-imgis)

is the cost of a method.
3.4 Detection performance of inshore
and offshore ships

In this section, the proposed approach and alternative CNN-

based approaches, such as Faster-RCNN (Lin et al., 2017), SSD

(Liu et al., 2016), R2CNN (Jiang et al., 2017), ARPN (Zhao et al.,

2020), DAPN (Cui et al., 2019), Quad-FPN (Zhang et al., 2021b),

HR-SDNet (Wei et al., 2020), Grid R-CNN (Lu et al., 2019),

Cascade R-CNN (Cai and Vasconcelos, 2018), YOLOv4-LITE

(Liu et al., 2022), EfficientDet (Tan et al., 2020), Free-Anchor

(Zhang et al., 2019), Lite-Yolov5 (Xu et al., 2022), and yolov5-X,

are assessed using offshore and inshore ships of testing sets.

Aside from these metrics, F1, AP, and FPS are also employed to

investigate the applicability of various methodologies. The

suggested model’s identification performance against other

CNN-based approaches tested on offshore ships and inshore
Frontiers in Marine Science 10
ships based on SSDD dataset and AirSAR ship dataset is

presented in Tables 3, 4; Figures 9, 10. The current model

provides the best accuracy for offshore SSDD (about 95.36%

AP for the offshore scenes). The second-best result is 89.03%

from the R2CNN approach, although it still performs better at

detecting anomalies than the currently suggested model by

6.33% AP. The studied model also delivers the best accuracy

for inshore on SSDD (about 92.27% AP for the inshore scenes).

The second-best result is 83.53% from the R2CNN approach,

although it still performs better in terms of detection than the

currently suggested model by 8.74% AP. The researched model

provides the best accuracy for offshore on AirSARship (about

94.57% AP for the offshore scenes). It has the best detection

performance, as seen by the second-best result of 88.27% from

the Quad-FPN approach, which is still 6.3% AP less than the

proposed model. The proposed model also delivers the best

accuracy for inshore on AirSARship (about 91.11% AP for the

inshore scenes). It also has the best detection performance, with

the second-best estimate coming from the Lite-Yolov5 approach

at 84.94%, however it is still 6.17% AP lower than the

current model.

The suggested model and the other state-of-the-art CNN

based approaches include Faster-RCNN (Lin et al., 2017), SSD

(Liu et al., 2016), R2CNN (Jiang et al., 2017), ARPN (Zhao et al.,

2020), DAPN (Cui et al., 2019), Quad-FPN (Zhang et al., 2021b),

HR-SDNet (Wei et al., 2020), Grid R-CNN (Lu et al., 2019),

Cascade R-CNN (Cai and Vasconcelos, 2018), YOLOv4-LITE

(Liu et al., 2022), EfficientDet (Tan et al., 2020), Free-Anchor

(Zhang et al., 2019), Lite-Yolov5 (Xu et al., 2022), and yolov5-X

techniques all have detection accuracies that are higher for

offshore scenes than for inshore situations. This is reasonable
TABLE 3 The identification outcomes of various state-of-the-art CNN based approaches on offshore and inshore ship scene for SSDD Dataset.

Methods Off-Shore In-Shore FPS

P (%) R (%) AP (%) F1 P (%) R (%) AP (%) F1

Faster-RCNN (Lin et al., 2017) 88.60 91.81 88.60 0.8770 77.21 79.37 74.20 0.7377 16

SSD (Liu et al., 2016) 85.59 85.65 82.50 0.8170 74.67 71.45 78.25 0.7735 87

R2CNN (Jiang et al., 2017) 91.14 90.07 89.03 0.8853 78.99 70.88 83.53 0.8289 48

ARPN (Zhao et al., 2020) 91.64 90.38 88.10 0.8797 79.63 77.70 77.7 0.7690 21.55

DAPN (Cui et al., 2019) 91.89 89.89 83.37 0.8271 75.76 78.77 70.98 0.6950 20.81

Quad-FPN (Zhang et al., 2021b) 85.97 89.56 80.10 0.7989 52.90 77.78 76.59 0.7551 20.25

HR-SDNet (Wei et al., 2020) 86.47 88.28 84.03 0.8350 72.57 77.97 73.85 0.7225 15.16

Grid R-CNN (Lu et al., 2019) 89.10 91.18 79.73 0.7853 81.08 81.56 74.01 0.7332 7.55

Cascade R-CNN (Cai and Vasconcelos, 2018) 90.10 84.75 87.01 0.8623 69.78 79.03 69.89 0.6814 10.55

YOLOv4-LITE (Liu et al., 2022) 89.59 87.03 79.17 0.7835 54.80 85.70 74.62 0.7323 42.5

EfficientDet (Tan et al., 2020) 92.19 89.15 86.11 0.8517 79.01 77.64 73.63 0.7292 21.44

Free-Anchor (Zhang et al., 2019) 90.31 87.35 87.67 0.8677 75.70 76.07 71.80 0.7055 13.76

Lite-Yolov5 (Xu et al., 2022) 91.32 91.08 80.16 0.7901 75.78 80.62 81.92 0.8045 43.25

Yolov5-X 77.25 82.60 79.56 0.7862 70.89 81.61 76.49 0.7578 140

Our model 94.57 94.06 95.36 0.9413 89.44 90.77 92.27 0.9140 157
frontiersi
n.org

https://doi.org/10.3389/fmars.2022.1086140
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yasir et al. 10.3389/fmars.2022.1086140
considering that the former has a more complicated background

than the latter. Perhaps as a result of their poor small ship

identification capabilities, the other alternative approaches have

lower precision values than the suggested model. In this current

research work, the recall values of the proposed model are

occasionally less than those of other offered methods. As a

result, a suitable score threshold can be further thought about in

the future to balance missed detections and false alarms.

Additionally, the current model appears to be faster than other
Frontiers in Marine Science 11
approaches based on the FPS data in Tables 3, 4, and Figures 9, 10,

potentially as a result of the separable depth-wise and point-wise

convolutions utilized in the backbone network. In conclusion, the

offshore scene has greater accuracy, AP, and F1 scores for both

datasets than the inshore scenario. This might be due to the

inshore scene’s densely packed ships and increased backdrop

interference from the land. Additionally, it demonstrates that it

is more difficult to spot ships in the inshore scene than it is in the

offshore environment.
TABLE 4 The identification outcomes of various state-of-the-art CNN based approaches on offshore and inshore ship scene for AirSARship
Dataset.

Methods Off-Shore In-Shore FPS

P (%) R (%) AP (%) F1 P (%) R (%) AP (%) F1

Faster-RCNN (Lin et al., 2017) 83.72 89.89 84.12 0. 8370 69.58 86.01 79.21 0.7877 16

SSD (Liu et al., 2016) 92.09 86.66 86.54 0.8550 64.76 88.08 81.41 0.8035 87

R2CNN (Jiang et al., 2017) 84.08 94.07 85.11 0.8653 72.15 90.92 79.22 0.6989 48

ARPN (Zhao et al., 2020) 82.40 80.83 82.22 0.8161 71.74 69.13 68.10 0.6754 21.55

DAPN (Cui et al., 2019) 90.18 87.98 85.83 0.8454 69.50 66.57 72.98 0.7141 20.81

Quad-FPN (Zhang et al., 2021b) 89.70 90.56 88.27 0.8789 62.10 78.15 80.77 0.7945 20.25

HR-SDNet (Wei et al., 2020) 83.40 89.82 79.27 0.7818 70.50 78.71 76.05 0.7506 15.16

Grid R-CNN (Lu et al., 2019) 89.89 89.91 81.03 0.8010 76.81 71.60 69.55 0.6854 7.55

Cascade R-CNN (Cai and Vasconcelos, 2018) 88.75 74.57 79.26 0.7854 70.87 81.03 70.91 0.6998 10.55

YOLOv4-LITE (Liu et al., 2022) 87.01 89.55 79.07 0.7889 68.60 84.09 82. 02 0.8189 42.5

EfficientDet (Tan et al., 2020) 89.10 90.75 81.20 0.8081 87.29 76.91 63.35 0.6260 21.44

Free-Anchor (Zhang et al., 2019) 90.38 77.35 84.60 0.8354 70.65 78.60 74.12 0.7379 13.76

Lite-Yolov5 (Xu et al., 2022) 91.56 90.48 81.17 0.8054 78.90 74.82 84.94 0.8388 66.25

Yolov5-X 79.12 82.70 79.44 0.7822 76.35 79.69 73.46 0.7225 140

Our model 92.83 90.55 94.57 0.9313 90.14 89.08 91.11 0.9014 157
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FIGURE 9

Performances of AP and FPS for various CNN-based techniques on offshore and inshore ships for SSDD dataset.
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The proposed model’s performance in terms of detection

results compared to existing convolutional neural network

-based approaches tested on offshore ships and inshore ships

using SSDD dataset and AirSARship dataset is shown in

Figures 11, 12. The suggested model is capable of detecting

different SAR ships with multiscale sizes under varied

backgrounds. This demonstrates its great scale and scene

adaption together with excellent detection performance. The

currently proposed model can increase the detection confidence

scores when compared to the second-best CNN-based ship

detector R2CNN. For instance, the suggested model raises the

confidence score in Figure 11 first detection sample from 0.96 to

1.0. This can demonstrate the better trustworthiness of the newly

proposed model. It is evident that the inshore scenario contains a

sizable number of tightly packed ship targets. The other

suggested solutions miss certain closely grouped inshore ships.

The proposed model, however, is capable of accurately localizing

and detecting these multiscale ships with high probabilities.

The other suggested CNN-based techniques in this research can

precisely identify the port’s heavily docked ships. However, it can be

observed that the suggested method is more accurate and can detect

these ships better when comparing the detection outcomes of several

proposed CNN-based systems. The detection outcomes of the

Faster-RCNN (Lin et al., 2017), SSD (Liu et al., 2016), R2CNN

(Jiang et al., 2017), ARPN (Zhao et al., 2020), DAPN (Cui et al.,

2019), Quad-FPN (Zhang et al., 2021b), HR-SDNet (Wei et al.,

2020), Grid R-CNN (Lu et al., 2019), Cascade R-CNN (Cai and

Vasconcelos, 2018), YOLOv4-LITE (Liu et al., 2022), EfficientDet

(Tan et al., 2020), Free-Anchor (Zhang et al., 2019), Lite-Yolov5 (Xu

et al., 2022), and yolov5-X algorithms contain several false alarms for

the offshore and inshore scene (Figures 11, 12). Additionally, there

are a few missed ships in the detection findings, which could be a
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result of how closely docked the ship targets are, making it more

challenging for the framework to discriminate between them.

Similarly, it is observed by comparing the suggested model’s

detection results that they are more precise than those produced

by existing CNN- based techniques. Figures 11, 12 displays the

outcomes of various CNN-based object detection techniques in an

offshore scenario created for SAR images. It is evident that the

offshore landscape contains a substantial number of dense multi-

scale ship targets (the first two column of Figures 11, 12).

A pink color circle denotes false alarms in the identification

outcomes of other proposed CNN-based models in this study that

are not the current model. This might be due to a small number of

false alarms that closely resemble ships, creating it great challenging

for the network to successfully recognize. Because there are wakes of

ships and surroundings, such ship A in Figure 12, the Faster-RCNN

(Lin et al., 2017), SSD (Liu et al., 2016), R2CNN (Jiang et al., 2017),

ARPN (Zhao et al., 2020), DAPN (Cui et al., 2019), Quad-FPN

(Zhang et al., 2021b), HR-SDNet (Wei et al., 2020), Grid R-CNN

(Lu et al., 2019), Cascade R-CNN (Cai and Vasconcelos, 2018),

YOLOv4-LITE (Liu et al., 2022), EfficientDet (Tan et al., 2020),

Free-Anchor (Zhang et al., 2019), Lite-Yolov5 (Xu et al., 2022), and

yolov5-X algorithms can distinguish between wakes of ships and

their surroundings. Additionally, several ships are overlooked by the

Faster-RCNN (Lin et al., 2017), SSD (Liu et al., 2016), R2CNN

(Jiang et al., 2017), ARPN (Zhao et al., 2020), DAPN (Cui et al.,

2019), Quad-FPN (Zhang et al., 2021b), HR-SDNet (Wei et al.,

2020), Grid R-CNN(Lu et al., 2019), Cascade R-CNN (Cai and

Vasconcelos, 2018), YOLOv4-LITE (Liu et al., 2022), EfficientDet

(Tan et al., 2020), Free-Anchor (Zhang et al., 2019), Lite-Yolov5 (Xu

et al., 2022), and yolov5-X algorithms, as seen by the red circles in

Figures 11, 12. The inability to extract distinguishing characteristics

of ships and interference may be to blame. However, the suggested
frontiersin.org
FIGURE 10

Performances of AP and FPS for various CNN-based techniques on offshore and inshore ships for AirSARship dataset.
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FIGURE 11

The visual detection outcomes of CNN-based approaches for offshore and inshore ships based on SSDD Dataset. Results from (A) is ground
truth, results from (B) is Faster-R-CNN method, results from (C) SSD method, results from (D) is R2CNN method, results from (E) is ARPN,
results from (F) is DAPN, results from (G) is Quad-FPN, results from (H) is HR-SDNet, results from (I) is Grid R-CNN, results from (J) is Cascade
R-CNN, results from (K) is YOLOv4-LITE, results from (L) is EfficientDet, results from (M) is Free-Anchor, results from (N) is Lite-Yolov5, results
from (O) is yolov5-X, and results from (P) is our proposed method. Note the pink circle show the false detection of ship and red circle is show
the missing ship.
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FIGURE 12

The visual detection outcomes of CNN-based approaches for offshore and inshore ships based on AirSARship Dataset. Results from (A) is
ground truth, results from (B) is Faster-R-CNN method, results from (C) SSD method, results from (D) is R2CNN method, results from (E) is
ARPN, results from (F) is DAPN, results from (G) is Quad-FPN, results from (H) is HR-SDNet, results from (I) is Grid R-CNN, results from (J) is
Cascade R-CNN, results from (K) is YOLOv4-LITE, results from (L) is EfficientDet, results from (M) is Free-Anchor, results from (N) is Lite-Yolov5,
results from (O) is yolov5-X, and results from (P) is our proposed method. Note the pink circle show the false detection of ship and red circle is
show the missing ship.
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model could identify these ships without any false alarms, which is

also one of the driving forces for this paper and highlights the

current proposed model’s powerful and robust feature

representation skills.

The suggested model is compared with other state-of-the-art

CNN based methods SAR ship identification techniques. As can be

observed, two-stage or multi-stage approaches typically execute

detection tasks more effectively than single-stage methods.

However, compared to these two stage or multistage detection

methods, one stage detection methods clearly have a faster

inference efficiency. This might be as a result of the two-stage

detection network’s sophisticated network architecture and

increased computational load. Some one-stage detection techniques

that are more effective at detecting ships have recently been

proposed, including YOLOv4-LITE (Liu et al., 2022), EfficientDet

(Tan et al., 2020), Free Anchor (Zhang et al., 2019), Lite-Yolov5 (Xu

et al., 2022), and two-stage detectors like ARPN (Zhao et al., 2020),

DAPN (Cui et al., 2019), Quad-FPN (Zhang et al., 2021b), HR-

SDNet (Wei et al., 2020), Grid R-CNN(Lu et al., 2019), and Cascade

R-CNN (Cai and Vasconcelos, 2018) are the performance

comparisons of the current model with other cutting-edge detectors.

The detection accuracies of inshore scenes for the proposed

model and the other CNN-based techniques are also all lower than

those of offshore scenes. De-formable convolution can lessen the

interference of complicated backgrounds, particularly for inshore

sceneries, hence the recently presented technique seems to be robust

to background interferences. The other state-of-the-art techniques

are less precise and have lower recall values than the model now

under study because of their poor small ship recognition

capabilities. As a result, it will be possible to consider an

acceptable score threshold in the future to balance missed
Frontiers in Marine Science 15
detections and false alarms. Additionally, accuracy needs to be

further improved, for example, when striking military targets with

precision. It might be suggested in the future to choose between

speed and accuracy. The suggested model has a higher detection

effectiveness. This might be the case because other methods

overlook smaller targets since they do not consider the underlying

data in the prediction layer. There are some false alarms in the

identification outcomes of previous techniques for the complicated

inshore scenarios. Particularly, several land features in the inshore

scene are wrongly identified as targets by Faster-RCNN, SSD,

R2CNN, ARPN, DAPN, Quad-FPN, HR-SDNet, Grid R-CNN,

Cascade R-CNN, YOLOv4-LITE, EfficientDet, Free-Anchor, Lite-

Yolov5. By doing several experiments using the SSDD and

AirSARship datasets, we illustrate the effectiveness of our

suggested model. The SSDD dataset ablation studies of FPN

+PAN and attention mechanism modules have shown that each

of them can enhance ship detection performance, and the

combination of both can increase detection outcomes.
3.5 Detection performance on SAR large
scene images

This section compares various CNN-based algorithms, such

as Yolov5-X, Faster-RCNN (Lin et al., 2017), SSD (Liu et al.,

2016), and R2CNN (Jiang et al., 2017), as well as current

methods for object recognition in SAR images using large-

scale scene SAR images. To validate the good migration ability

of the suggested model, the actual ship identification in two

more SAR large scene images has been carried out. Figure 13

displays the areas covered by the two SAR large scene images
frontiersin.org
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FIGURE 13

In this current research work, the two SAR large scenes images acquired from Chinese GF-3 satellite are utilized for ship detection. (A) AirSARship
resolution is 1/3m, and (B) GF 3 satellite resolution is 1m.
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acquired by the Chinese satellite GF3. These two SAR images

were selected because they both lie along globally important

routes named Malacca strait (Table 5). The VV polarization SAR

images from Table 5 are considered because ships often exhibit

higher backscattering values in VV polarization (Torres et al.,

2012). Due to the restricted GPU memory, they are divided into

800 x 800 (Zhang et al., 2020a) and followed by (Xian et al.,

2019) 1000 x 1000 of small sub images before being used for

training and testing. SAR ships are ultimately added to the

suggested model in order to actually detect them. The outcomes

of the sub- image’s detection are then added to the original SAR

large scene image (Figure 14). The detection accuracy and speed

of various approaches are assessed, respectively, using the AP

and FPS (Table 6).

The two SAR large scene images are used to depict the results

of SAR ship detection using the current model and other CNN-

based methods. The current model is able to successfully detect

the majority of ships, demonstrating its strong migration

application capabilities in ocean surveillance (Figures 15A, B).

Features and a clear environment come first. In particular, just a

few ships in the big panorama were missed by all of these

convolutional neural network -based approaches, which are

indicated by pink circles in Figures 15A, B. The identification
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outcomes on the second SAR large scene image are displayed,

and the identification results of various CNN-based approaches

on the SAR large scene images are demonstrated on the left side

of Figures 15A, B. Figures 15A, B’s right side enlarges and

displays two particular regions designated with brown and blue

rectangles. The comparison of the detection outcomes of various

model performances on SAR large scene images is presented in

Figures 15A, B. Offshore ships make up the majority of this SAR

large-scene image. Inshore scenes have substantial clutter, which

could cause false alarms. The results of another CNN-based

approach suggested in this study show that there are few false

alarms and missed targets in the offshore scenes, and the false

alarms are repressed in the inshore scenes as well. However, the

proposed approach does not have false alarms or miss target

detection, which is one of the motivating factors for this paper.

Figures 15A, B illustrates the visualization of the SAR ship

identification performance of the suggested model on two SAR

large scene images acquired from the Chinese GF3 satellite and

employed in the current study. The suggested model can

successfully detect the majority of ships, which demonstrates

its good migration application capability in ocean surveillance, it

can be deduced from Figures 15A, B. In conclusion, the

identification outcomes on the two SAR large scene images at
FIGURE 14

Ship target identification Framework in a SAR large scene images.
TABLE 5 The details descriptions of two SAR large scene images.

Images Mode Satellite Resolution (m) Image Size Format

AirSARship SL/UFS GF-3 1/3 3000 × 3000 Tiff

GF3 SL GF-3 1 15350 × 13592 Tiff
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various resolutions show that the present system identifies multi

size ships with competitive outcomes and has a strong

generalization capacity in comparison to the various CNN-

based approaches created for identification object in SAR

images. It demonstrates that the approach now under study

can adapt to SAR images from various sources more effectively.
4 Ablation study

The ablation studies presented in this section, used to

demonstrate the suggested FPN+PAN and attention

mechanism module’s effectiveness through removal and

installation to better understand the behavior of the framework.
4.1 Ablation study on the
FPN+PAN module

Table 7 illustrates the ablation research of YOLOv5 removal

and installation of the FPN+PAN module. Table 7, “✘“ denotes

YOLOv5 without the FPN+PAN module, while “✔“ denotes

YOLOv5 with the FPN+PAN module (i.e., our suggested model).

Experiments were carried out in offshore and inshore scenes

respectively, to evaluate the identification achievement of the

suggested approach for offshore and inshore scenes. In Table 7,

the identification effectiveness of the model is approximately

similar, with little modification in identification indicator, as a

result of the relatively simple background of offshore ship and little

interference, due to the identification achievement has been

outstanding in the simple background, and only limited

enhancement can be obtained. In contrast to offshore ships,

inshore ships have a more complicated backdrop clutter.

Moreover, wharfs as well as other structures on the shore

significantly undermine detections, and SAR ship detection

effectiveness generally declines. However, the detection

performance is significantly enhanced by improving the feature

representation capacity and minimizing the aliasing effect of fusion

features. In Table 7, by installation of FPN +PAN modules, the
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result of p, r and AP rate of the model are enhanced by about 2.9%,

4.6% and, 5.5% respectively for offshore ship detection, while for

inshore ship detection the p, r and AP rate of the model are

enhanced by about 6.08%, 15% and, 8.07% respectively.
4.2 Ablation study on the attention
mechanism module

Table 8 presented the ablation research of YOLOv5 removal

and installation of the attention mechanism module. Table 8, “✘“

denotes YOLOv5 without the attention mechanism module, “✔“

denotes YOLOv5 with the attention mechanism module (i.e., our

suggested model). The installation of attention mechanism

module to our model, the detection performance is significantly

enhanced by improving the feature representation capacity and

minimizing the aliasing effect of fusion features. In Table 8,

through installation of attention mechanism modules, as a result

the p, r and AP rate of the model are enhanced by about 7.22%,

1.36% and, 5.31% respectively for offshore ship detection, while

for inshore ship detection the p, r and AP rate of the model are

enhanced by about 1.03%, 10.97% and, 10.67% respectively.
5 Conclusions and future work

In this modern technological era, the advanced machine

learning and artificial intelligence-based models have

revolutionized diverse research domains with full spectrum. Due

to its automatic feature extraction and strong identification skills,

it can be used in a variety of study fields. An improved version of

the unique one stage YOLOv5 for SAR ship identification has

been proposed in this study work, drawing inspiration from the

capabilities of these models in other research domains. The

generic YOLOv5 model has been improved to address

the major issues with the SAR ship detection process. These

issues include complexity (complex background interferences,

various size ship feature differences, and indistinct tiny ship

characteristics), high-cost effectiveness, poor identification and
TABLE 6 Detection outcomes of various CNN-based approaches on two SAR large scene ship images.

Method Image-1 Image-2

AP Time (s) AP Time (s)

Faster-RCNN (Lin et al., 2017) 0.838 37s 0.845 17s

SSD (Liu et al., 2016) 0.790 14s 0.785 25s

R2CNN (Jiang et al., 2017) 0.879 65s 0.830 39s

Yolov5-X 0.765 140s 0.749 140s

Ours 0.956 157s 0.948 156s
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A B

FIGURE 15

The identification outcomes of various CNN based approaches, (A) first large-scene SAR image based on SSDD Dataset, (B) second SAR large
scene image based on AirSARship Dataset. Rectangles with green colors correspond to the ground truth ships while yellow, sky color, pink and
red colors are referred to predictions ship, respectively. The red circle shows the false detection of ship and pink circle is showing the missing
ship. The right side of an image displays two enlarged special areas that are marked by blue and brown rectangles respectively.
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recognition rates, and implementation complexities. The changes

to the generic YOLOv5 model in the neck region and backbone

section employing C3 and PAN structure have been designed to

address these major issues. The SSDD and AirSARship open SAR

ship datasets, as well as two SAR large scene images acquired from

the GF-3 Chinese satellite, are utilized to obtain the experimental

results. After producing testing findings, it has been determined

that the enhancement to the generic YOLOv5 model not only

enhanced identification capabilities but also demonstrated that

this model is not data-hungry (to provide optimum results even

for a small amount of dataset). The applicability of this model is

assessed using a variety of validation metrics, including accuracy,

different training and test sets, and TF values, as well as

comparisons with other cutting-edge classification models

(ARPN, DAPN, Quad-FPN, HR-SDNet, Grid R-CNN, Cascade

R-CNN, Multi-Stage YOLOv4-LITE, EfficientDet, Free-Anchor,

Lite-Yolov5). Based on the performance values, it has been

determined that the examined model exceeded the benchmark

models targeted in this research work by producing high

identification rates. Additionally, these high identification rates

show how useful the suggested approach is for maritime

surveillance. Recommended and forthcoming future work

includes the following:
Fron
• To enhance the effectiveness of our model detection in the

future, we will consider the challenges in SAR data, such

as the azimuth ambiguity, sidelobes, and the sea

condition.

• In the future, we will investigate optimizing the detection

speed of our model.

• We might suggest merging contemporary deep CNN

abstract features with conventional concrete ones to

further improve detection accuracy.

• In order to further boost the identification speed and

accuracy, we will focus on merging the backscattering
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characterist ics of ships in SAR images with

convolutional network architecture and offering a

robust constraint, such as a mask.

• Future research on instance segmentation and ship

detection will be taken into consideration.
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