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Spatiotemporal variations of
tidal flat landscape patterns and
driving forces in the Yangtze
River Delta, China

Shuo Cheng, Xu Zeng, Zihan Wang, Cong Zeng
and Ling Cao*

School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
As a crucial coastal wetland habitat in the transition zone between land and sea,

global tidal flats have severely declined by 16% over the last two decades under

the dual threats of intense human activities and climate change. The Yangtze

River Delta of China, the largest estuary in the western Pacific Ocean, has

abundant mudflat resources and a dense human population. It also has some of

the most prominent conflicts between economic development and ecological

conservation. The current lack of understanding of landscape patterns and

influencing factors of the Yangtze River Delta mudflats has severely hampered

the region’s ecological conservation and restoration efforts. Based on Landsat

time-series images, this study generated a 30-m spatial resolution map of

mudflats in the Yangtze River Delta, which shrank by 47% during 1990–2020,

with a higher density of mudflat loss in Yancheng and Nantong cities of the

Jiangsu province and Hangzhou, Shaoxing, and Ningbo cities of the Zhejiang

province. Landscape indices, such as the patch density of tidal flats, have

gradually changed since 2000, with most of them showing significant changes

in 2010. Mudflats in Lianyungang, northwestern Yancheng, Nanhui, Jiaxing, and

Hangzhou showed sharp negative changes in landscape characteristics.

Natural and anthropogenic factors had synergistic effects on the above

changes in mudflat landscape patterns in the Yangtze River Delta. Mudflat

landscape features were mainly influenced by population growth, economic

development, reclamation, sediment discharge, and air temperature. Based on

the evolving characteristics of mudflat landscape patterns, we recommend

improving mudflat landscape management and planning by strengthening

mudflat policies, laws, and regulations, developing countermeasures against

threats from major stressors, and enhancing the effectiveness of nature

reserves for mudflat protection.
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1 Introduction

Coastal wetlands, including coastal vegetation areas and tidal

flats, are transition zones between marine and terrestrial

ecosystems (Wang et al., 2020; Song et al., 2021). Tidal flats

are an essential part of highly productive coastal zones, which

contain abundant mineral, biological, and marine resources (Hill

et al., 2021). They provide essential biodiversity maintenance

services, serving as energy supply stations for water birds and

spawning and nursery grounds for fish and invertebrates

(Murray et al., 2014; Ghosh et al., 2016; Jackson et al., 2021).

Meanwhile, tidal flats also play an essential role in storm

protection, shoreline stabilization, nutrient cycling, as well as

carbon storage and sequestration (Barbier et al., 2011; Spalding

et al., 2014; Jin et al., 2017; Li et al., 2020b; Lin et al., 2020).

However, tidal flats are one of the most vulnerable ecosystems

along the coast, under intense pressure from human interference

and natural disturbances (Rodriguez et al., 2017; Murray et al.,

2022). A worldwide crisis of tidal flat degradation has taken

place, with tidal flats falling by 16% globally over the past 20

years (Murray et al., 2019; Lin et al., 2020). Understanding the

spatial and temporal changes in tidal landscapes and their

drivers is critical for tidal flat conservation (Zahran et al.,

2006; Ma et al., 2014; Larson, 2015).

With their dynamic processes, tidal flats are relatively

independent ecosystems, but they also depend on surrounding

landscapes for the exchange of materials and energy (Mitsch,

1994). Patterns of tidal landscapes refer to the quantity,

attributes, geospatial distribution, type conversion, and

connectivity of tidal resources, and are related to the resistance

to disturbance, resilience, stability, and biodiversity of tidal

ecosystems (Zhang et al., 2017; Yang et al., 2021; Zhang et al.,

2021). The landscape pattern of tidal flats is constantly changing

and evolving. As the expression of dynamic changes in tidal flats,

landscape pattern evolution is a comprehensive spatial

representation, indicating not only the changing extent of tidal

flats and changes in landscape types but also changes in their

evolutionary rates and ecological functions (Kahara et al., 2009;

Bai et al., 2013). The landscape pattern evolution of tidal flats

reflects a combination of different ecological progress and

human activities acting upon the tidal flats (Cao, 2008; Huang

et al., 2012). Thus, landscape pattern analysis can help

understand the rules and mechanisms needed for the

conservation of tidal flats.

On the southeastern coast of China, the Yangtze River Delta

(YRD) is an ecologically important area with extensive tidal flats

(Han and Ma, 2021; Zhang et al., 2022). The YRD is also one of

China’s most developed regions, subjected to rapid urbanization

and stressed by human activities (Du et al., 2016; Sun et al.,

2016). The YRD is, therefore, essential for the sustainable

development of regional ecology and economics. Tidal flats in
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the YRD are crucial for biodiversity conservation, acting as

critical habitats for birds migrating between East Asia and

Australia (Jackson et al. , 2021). However, due to a

combination of natural environmental succession and human

activities, the tidal flats in the YRD have experienced a noticeable

degradation (Wang et al., 2021b). Given the YRD’s strategic

position in China, tracking landscape dynamics and identifying

the corresponding drivers of tidal flat changes are of great

importance for the conservation of tidal flats and the

sustainability of coastal development.

Changes in tidal flats and their driving factors have received

increasing attention in recent years (Chen et al., 2016; Li et al.,

2020b; Wang et al., 2021b). Globally, the distribution and

trajectory of tidal flats have been mapped using satellite

images and machine-learning technology (Murray et al., 2019).

The drivers of tidal flats dynamics mainly include anthropogenic

disturbance through coastal development projects (e.g., road

construction), which leads to tidal flat degradation and

reduction of biodiversity (Reimer et al., 2015). Within China,

reclamation of coastal wetlands for urban construction and

agriculture in the Yellow River Delta has been shown to have

destructive effects on coastal ecosystems (Murray et al., 2014).

Over the past three decades, the driving forces of tidal flat

evolution have included factors such as river sand transport

and afforestation (Wang et al., 2021b). Studies focusing on the

YRD examined the trend of tidal flats in the Yangtze estuary and

their extent and classification, and also assessed the potential

impacts of various estuarine projects such as land reclamation

and sedimentation on mudflats (Chen et al., 2016; Zhang et al.,

2019; Li et al., 2020b). It concluded that land reclamation and

coastal development were the major drivers of tidal flat loss in

the YRD (Wang et al., 2020). However, few studies have

examined the landscape pattern dynamics of the YRD tidal

flats, implying a lack of information on variations of the tidal

flats’ landscape patterns and their causal responses to driving

factors. By analyzing the landscape patterns of the tidal flats and

their drivers over time, we can gain insight into the environment

of the YRD and how to develop guidelines for protecting and

assessing tidal flats.

In this study, we combined the latest remote sensing and

ecological datasets, integrating remote sensing (RS), geographic

information system (GIS), landscape dynamic analysis,

landscape pattern metrics, and mathematical statistics, in an

attempt to (1) determine the distribution of tidal flats between

1990 and 2020 by remote sensing cloud computing; (2)

investigate the evolutionary processes of landscape patterns of

the YRD tidal flats and quantitatively identify the drivers. Our

research aims to improve our understanding of the landscape

patterns of tidal flats and explore possible pathways for

improved conservation measures that will ultimately help

achieve sustainable development in the YRD region.
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2 Materials and methods

2.1 Study area

This study determined the geographic location of coastal

tidal flats based on existing definitions of tidal flats (Murray

et al., 2019; Zhang et al., 2019; Wang et al., 2020). In accordance

with the concept of intertidal zones as stated in the

Comprehensive Survey of China’s Coastal Zones and Tideland

Resources, and considering the topography and coastal type of

the YRD, we delineated a remote sensing monitoring area for the

coastal tidal flats as the zone extending 10 km from land to sea,

from using the Open Street Map (OSM) as a benchmark (29°N–

35°N, 119°E–23°E) (Figure 1). Hangzhou Bay is the natural line

of distinction between the northern and southern coastal

wetlands of China (Sun et al., 2016; Zhang et al., 2019).

Therefore, the boundary of this study extended from

Hangzhou Bay of Zhejiang Province to Lianyungang in

Jiangsu Province, where tidal flats are abundant, and most

coast types are silty. This study area is the most rapidly
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urbanizing region in China, accompanied by rapid population

growth and economic development (Haas and Ban, 2014). An

estimated 225 million people reside in the YRD region,

contributing about one-quarter of China’s GDP (Wei, 2020).

Industrialization in the YRD has progressed rapidly over the past

two decades, and the development of the maritime industry in

particular has made the region the largest and fastest location for

port construction in China (Zhao et al., 2021; Lu et al., 2022).

Thus, the study area represents a focal area of global change and

human activities.
2.2 Tidal flat mapping

This study used remote sensing images generated by the

Google Earth Engine (GEE) (https://earthengine.google.com)

cloud computing platform to map the YRD tidal flats. For

remote sensing mapping of the tidal flats in the target years

(1990, 2000, 2010, and 2020), we selected time-series images for

each target year and the year before and after it. Landsat

TM/ETM+/OLI images were first retrieved and then pre-

processed for cloud removal, shadow masking, and mosaicking

through the GEE algorithm. The cloud removal was performed

using the mask function (FMask), and the recognition results

were recorded in the QA band (Foga et al., 2017). Along with

spectral information from remote sensing images, NDVI, EVI,

LSWI, mNDWI, and ETOPO1 topographic bathymetry data

were selected as signature variables in this study, while

supervised classification was performed using the Random

Forest algorithm on the GEE platform (Pal, 2005).

Based on the historical images from Google Earth Pro,

random samples for supervised classification were derived by

visual interpretation. We classified the study area following a

review of the Guidelines for the Classification of Land Use for

Land Use Spatial Survey, Planning, and Use Control as well as the

available studies (Fan et al., 2013; Murray et al., 2019; Zhang

et al., 2019; Wang et al., 2020). In total, there were five categories

identified in this study: tidal flats (TF), seawater (SW), coastal

vegetation zones (CV), farmland and forestry land (FL), and

construction land (CL). For the final map of coastal tidal flats,

the supervised classification results were post-processed

according to spatial topological relationships. We first filtered

the classification results using plural filtering and then smoothed

out the irregular edges by boundary cleaning. Due to spectral

overlap, there was a mixed classification of tidal flats and other

feature types. Consequently, patches that were incorrectly

categorized as not conforming to the spatial distribution of

tidal flats were removed (e.g., patches located within the

artificial shoreline). We applied overall accuracy (OA) and

Kappa coefficient (K) in the confusion matrix for classification

accuracy assessment in GEE (Lewis and Brown, 2001). OA refers

to the ratio between the number of correctly classified pixels and

the total number of pixels. K reflects the confusion matrix
FIGURE 1

Geographical location map of the study area. YRD: Yangtze River
Delta, including Shanghai, Jiangsu, Zhejiang, and Anhui provinces.
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balance, which is generally used in consistency tests and

contributes to overall classification accuracy (Cohen, 1960).
2.3 Kernel density analysis

To investigate the overall spatial pattern of tidal flat

landscapes in the YRD, kernel density analysis was used to

represent the evolution of tidal flat landscapes over time. Based

on kernel density estimation (KDE), the kernel density analysis

assumes that geographical events can occur anywhere in space

with varying probabilities (Seaman and Powell, 1996). Points

with dense clusters have a higher probability of events than those

with sparse clusters (Bonnier et al., 2019). Tidal flats have been

experiencing constant variation in their spatial pattern in the

YRD for many decades. In addition to changing in size,

distribution characteristics of tidal flats landscape may also

have changed. The formula for Kernel density calculation is as

follows:

fn xð Þ = 1
nho

n

i=1
K

X − Xi

h

� �
(1)

where fn(x) is the estimated value of kernel density for tidal

flat evolution, n is the observation numbers, k is the kernel

function, X–Xi is the distance from the estimated point to the

sample position, and h is the smoothing parameter. In this study,

spatial distribution information on changes of the tidal flat area

between 1990 and 2020 was first obtained by overlaying tidal flat

maps. Next, kernel density in ArcGIS was used to estimate the

nuclear density of the tidal flat change for each point, using

patch area as a weighting metric. In addition, the KDE result was

graded according to Jenks’ (natural breaks) method to determine

the three classes of loss and gain for tidal flats (Jiang et al., 2018;

Yuan et al., 2019).
2.4 Landscape transfer matrix

A transfer matrix describes the changes in different

landscape types within a certain period, which reveals the rules

of landscape pattern evolution (Foody, 2002). In this study, the

transfer matrix was applied to clarify the quantity of shifts

between tidal flats and other landscape types at each phase.

The formula for the transfer matrix is:

pij

p11 p12 … p1n

p21 p22 ⋯ p2n

⋮ ⋮ ⋮ ⋮

pn1 pn2 … pnn

2
666664

3
777775

(2)

Where Pij is the area of each land use type, i and j represent

the types of landscapes before and after the transfer, respectively,
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and n is the total number of landscape types before and after the

transformation. We used the transfer matrix to reveal the

outflow and inflow of the YRD tidal flat area.
2.5 Landscape index calculation

Landscape index changes have been commonly used to analyze

the dynamic evolution of landscape patterns (Chen et al., 2022). A

landscape index is the result of highly concentrated information

about landscape patterns. In addition, a landscape pattern index has

important ecological significance since it specifies the characteristics

of ecosystem landscape elements. Different sizes, shapes, types,

numbers, and spatial configurations of landscape elements reflect

the quality of landscape functions and ecological processes

throughout the region. Tidal flats in the study area were studied

using landscape indices selected from the classes at the YRD to

quantify the variation process and characterize the functions of the

tidal flat system. The following seven landscape pattern indices were

selected for this study: largest patch index (LPI), patch density

(PD), mean patch area distribution (MPS), mean shape index

(SHAPE_MN), area-weighted mean patch fractal dimension

(FRAC_AM), patch cohesion index (COHESION), and splitting

index (SPLIT) (Table S1). The LPI values indicate the abundance of

tidal flats across the entire landscape. PD values represent the

density of tidal flat patches and reflect the heterogeneity of the

landscape within a unit area. MPS reflects the average condition of

the tidal flats patch. The SHAPE_MN is an indication of the

complexity of the tidal flat landscape. Because they express the

influence of human activities on a landscape pattern, the

FRAC_AM values of natural landscapes with less interference are

higher than the values for disturbed landscapes (Li et al., 2020a).

COHESION refers to the connectivity between tidal flats within a

YRD, while SPLIT represents the degree of separation.
2.6 Driving factor analysis

Both anthropogenic and natural factors can drive tidal flat

variations. Tidal flats are often considered potential areas for

urban development. Therefore, urban development activities like

reclamation significantly affect tidal flats (Jackson et al., 2021).

There has been a substantial economic benefit to the region from

aquaculture, which also occupies tidal flats (Ma et al., 2014).

Factors such as population and GDP are also closely associated

with the development of tidal flats (Murray et al., 2014; Wang

et al., 2021b). Likewise, natural factors play an important role in

influencing tidal flat landscapes. Tidal flats are formed and

changed primarily by sediment carried by incoming rivers, so

sediment plays a crucial role in their evolution (Bi et al., 2014;

Chen et al., 2016). There is also evidence that sea-level rise has a

significant effect on tidal flats (Zhao et al., 2020). Temperature

and precipitation also have an impact on the landscape patterns
frontiersin.org
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of tidal flats (Wang et al., 2021b). A total of eight potential

factors were selected to analyze the evolution of YRD’s tidal flat

landscape: population (POP), gross domestic product (GDP),

urban area (UA), aquaculture area (ACA), sediment discharge

(Sediment), sea-level rate (SL), annual precipitation (Prcp), and

annual average air temperature (Tavg) (Table S2).

To investigate the motives for tidal flat evolution, landscape

pattern characteristics of the flats were associated with potential

driving factors using correlation analysis. Correlation coefficients

were used to investigate the extent and direction of each

influencing factor that drove tidal flat dynamics (Humphreys et al.,

2019). Further analysis of the driving factors influencing tidal flat

landscape patterns was conducted using principal component

analysis (PCA). In principal component analysis (PCA), multiple

indices are merged into one composite index, or several

comprehensive indices are constructed to reduce the dimensionality

of a large dataset. To concentrate on potential drivers of tidal flat

dynamics, redundant variables (closely related variables) can be

eliminated in PCA. For this study, principal components were

selected based on the eigenvalue being greater than one and the

cumulative contribution rate exceeding 85% (Fang et al., 2017).
3 Results

Following classification and post-processing, maps of YRD

coastal tidal flats were produced at 30 m resolution for four

different time periods: 1990, 2000, 2010, and 2020 (Figure 2). We

evaluated tidal flat mapping results in the YRD using the OA and

K. The study showed that the average OA was 94.40%, and the

average K was 0.93. In 1990, 2000, 2010, and 2020, the OA was

96.75%, 96.21%, 92.35% and 92.27%, with K of 0.96, 0.95, 0.90,

and 0.90, respectively.
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3.1 Characteristics of spatial
pattern dynamics

Area changes of the YRD tidal flats are illustrated in Figure 3.

The YRD’s tidal flats have decreased significantly over the past three

decades, from 4231 km2 in 1990 to 2236 km2 in 2020, a 47%

reduction (Figure 3A). During the period 1990 to 2000, the area of

tidal flats decreased by 24%. This was the most dramatic decline

during the study period, with an average annual decrease of 100

km2. Since then, the Chinese government has enacted more

management measures and nature reserves to protect coastal

wetlands. Therefore, tidal flat loss in the YRD slowed down over

the next decade, decreasing by 439 km2. In the period 2010 to 2020,

the YRD lost 20% of its tidal flats. Based on the KDE results, tidal

flats change zones were classified into three levels (class I, class II,

and class III). The two classes with high tidal flat loss in the YRD,

classes II and III, occurred mainly in Yancheng and Nantong of

Jiangsu, but also in Hangzhou, Shaoxing, and Ningbo in Zhejiang,

along with sporadic distribution in Shanghai (Figure 3B). The map

of the kernel density distribution of tidal flat gains shows that classes

II and III with high density occurred mainly in the radial sand

ridges of Yancheng in Jiangsu and of Jiuduansha and Nanhui in

Shanghai, with scattered occurrence in Zhejiang (Figure 3C). There

was a more significant loss of tidal flats in the YRD than a gain. The

regions with a high kernel density of tidal flat loss had a greater

geographic spread than regions with low kernel density.

Inflows and turnovers of tidal flats from 1990 to 2020 were

examined using the landscape transfer matrix (Figure 4). Tidal flat

influx increased and then decreased from 1990 to 2020. Over the

first three periods (1990, 2000, and 2010), seawater replenishment

of tidal flats accounted for 94.54%, 97.83%, and 95.52%,

respectively, of the total inflow to tidal flats. Seawater was the

major outflow from tidal flats. As an overall result of conversions
B

C

A

FIGURE 2

Tidal flat maps for the Yangtze River Delta in the years 1990, 2000, 2010, and 2020. (A) Detection of tidal flats in Jiangsu (32 °15′N~34 °15′N,
120 °15′E~121 v45′E). (B) Detection of tidal flats in Shanghai (29 °55′N~30 °50′N, 120°30′E~122 °00′E). (C) Detection of tidal flats in Zhejiang
(30 °40′N~31 °40′N, 121°15′E~122 °15′E).
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between seawater areas and tidal flats, the tidal flat area increased by

91 km2 between 1990 and 2020. Tidal flats were largely outflowing

during the study period due to urban construction, which was the

main cause of the decrease in tidal flat area. There was a notable

conversion of tidal flats to construction land in 1990 and 2000, with

593 km2 and 693 km2 of tidal flats being converted to construction

land, respectively. After 2010, comprehensive environmental

regulations and laws were enacted, and reclamation projects were

tightened (Chen et al., 2016; Zhao et al., 2020; Wang et al., 2021b).

The National Marine Function Zoning Plan (2011-2020) published

in 2012 strengthened reclamationmanagement and rationalized the

reclamation scale (Liu et al., 2018). Therefore, the conversion from

tidal flats to construction land moderated slightly after 2010. The
Frontiers in Marine Science 06
conversion between tidal flats and construction land accounted for

66% of the area decrease of tidal flats throughout the study period.

The conversion of tidal flats to coastal vegetation zones, farmland,

and forests did not show significant changes from 1990 to 2020. The

loss of tidal flat area has partly been attributed to the conversion of

tidal flats to coastal vegetation zones (16.62%) and the conversion of

tidal flats to farmlands and forests (9.51%).

3.2 Characteristics of landscape
morphology changes

The landscape metrics at the class level for the YRD tidal

flats have changed over the last three decades (Figure 5). Tidal
FIGURE 4

Sankey diagram of tidal flat conversion in the Yangtze River Delta (km2) (SW, seawater; CV, coastal vegetation zones; FL, farmland and forestry
land; CL, construction land).
B CA

FIGURE 3

Distribution of tidal flat dynamics in the study area. (A) Tidal flat area changes. (B) Kernel density analysis of tidal flat losses from 1990 to 2000.
(C) Kernel density analysis of tidal flat gains from 1990 to 2000.
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flat dominance was indicated by the LPI values for the entire

landscape, whereas the LPI values for the YRD tidal flats have

decreased over the past thirty years. In particular, the LPI value

decreased dramatically (from 0.72 to 0.1) after 2000. The MPS

value declined steadily between 1990 and 2020, reflecting the

average interannual degradation conditions for the YRD tidal

flats. According to the falling PD values of the YRD, tidal flats of

the unit area decreased by 0.86 following the year 2000. The

decrease in MPS and PD values indicated a fragmentation of the

tidal flat patches. There was a slight fluctuation in the

SHAPE_MN value between 1990 and 2010, then it decreased

during the last decade. The fluctuation in SHAPE_MN suggested

that the shape of the tidal flats was constantly changing. As

reflected by FRAC_AM indexes that increased and then

dramatically decreased, the tidal flats were unstable and

susceptible to human activity. The SPLIT value rose 0.89

during the period 2000–2020, denoting that the spatial

dispersion of the tidal flats intensified. COHESION decreased

by 0.81 simultaneously, showing that the physical connectivity of

tidal flat patches in the YRD decreased.

Based on the landscape index for 2020 (Figure 6), it was

clear that the distribution characteristics differed spatially.

Tidal flats with high LPI and MPS values can be found

mainly in southeast Yancheng and northwest Nantong of

Jiangsu, clustered here with high patch densities. The mean

patch areas were also high among the tidal flats of Shaoxing

and Ningbo in Zhejiang. However, the tidal flats in
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Lianyungang and northwest Yancheng were even more

fragmented, with low LPI, MPS, and PD values. Ningbo’s

eastern region has the highest SHANPE_MN value, showing

a relatively complex shape for tidal flats. Tidal flats in

Lianyungang and northwest Yancheng showed low

COHESION and FRAC_AM values and high SPLIT values,

indicating poor spatial connectivity and a high degree of

disturbance and dispersal. The southeast Yancheng and the

northwest Nantong had a few scattered patches of tidal flats

with good physical connectivity, which were high in

COHESION values and low in SPLIT values. In Zhejiang

province, Jiaxing, and Hangzhou cities had low LPI values,

low COHESION values, and high SPLIT values. These results

indicated low dominance of tidal flats, as well as a scattered

distribution and poor connectivity. Shanghai’s tidal flats

ranked most frequently in the middle of the landscape index

results. Notably, the SPLIT values of the Shanghai tidal flats

were high, and LPI and COHESION values were low,

particularly in Nanhui, where the tidal flats were widely

dispersed and lacked dominance and connectivity.
3.3 Driving factor analysis

Both human and natural factors influenced the YRD’s tidal

flat landscape (Figure S1). The population of the study area has

grown by 37.6% since 1990. The urban area in 2020 has already

exceeded ten times that of 1990. As of 2020, the region’s GDP

was over 20 trillion yuan. With high growth in aquaculture, the

aquaculture area in 2000 became 2,034 km2. There has been a

decrease in the annual sediment discharge recorded at the

Datong station. The annual precipitation value fluctuated

during the study period, with the lowest value in 2010. An

upward trend in mean yearly temperature was observable in the

study area. The rate of sea level rise in the Yangtze River Delta

was as low as 1.4 mm/year in 1990 and peaked at 3.3 mm/year in

2020, with an upward trend.

Relevant analysis was conducted to investigate the correlation

between anthropogenic and natural factors affecting tidal flat

landscape changes (Figure 7A). The correlations between

features of the tidal flat landscape and four human factors

ranged from –0.99 to 0.99, whereas the correlations with natural

factors ranged from –0.16 to 1. Significant correlations were found

between population and four landscape features and between

GDP and one landscape characteristic. The UA was significantly

relevant to three landscape indices (p< 0.05). For natural factors,

sediment discharge affected three landscape characteristics

positively, with annual precipitation related to one feature and

average yearly temperature related to five features (p< 0.05).

Sediment discharge and mean annual temperature were each

significantly related to one tidal flat landscape feature (p< 0.01).

Based on the PCA analysis, a contribution of 81.12% was

attributed to the first principal component, followed by a
FIGURE 5

Landscape characteristics (normalized) of tidal flats from 1990 to
2020 (LPI, largest patch index; PD, patch density; MPS, mean
patch area distribution; SHAPE_MN, mean shape index;
FRAC_AM, area-weighted mean patch fractal dimension;
COHESION, patch cohesion index; SPLIT, splitting index).
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contribution of 11.03% (Figure 7B). The driving factors with high

load values of the first principal component were, in order, POP,

GDP, UA, Tavg, and Sediment.
4 Discussion

The time-series distribution maps of the YRD tidal flats were

generated by the random forest algorithm on the GEE platform

for four decadal periods from 1990 to 2020. Integrating methods

such as KDE, land transfer matrix, landscape index, and

correlation analysis were used to examine the evolution of

landscape patterns and response factors in the study area. In

the YRD, tidal flat area decreased during the study period, along

with decreased landscape dominance, intensification of

fragmentation, decrease in connectivity, and a more dispersed

distribution. Both artificial and natural factors influence the

landscape features of tidal flats. Quantifying the changes in the

landscape and the factors driving those changes in the YRD tidal

flats could provide a reference for further tidal flat conservation

and management.
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4.1 Reliability and uncertainty
of tidal flat mapping

We mapped the tidal flats of the YRD using Landsat images

and the GEE platform with a spatial resolution of 30 m. For all

four decadal periods between 1990 and 2020, the overall accuracy

of the tidal flats maps was greater than 90% and the Kappa

coefficients were all greater than 0.9, indicating relatively stable

classification accuracy throughout the study period. Further

validation was provided by comparing our tidal flat map with

published maps with the same spatial resolution. There was a

strong correlation between our map of the tidal flats and Murray’s

research, with R2 of 0.83 and a slope of 1.22 (Figure S2) (Murray

et al., 2019). Regarding the spatial distribution of the two tidal flat

maps in 2010, our map corresponded well with Murray’s, which

was larger in extent and also included parts of supratidal flats.

Overall, the tidal flat mapping conducted in this study was

accurate and reliable. There are, however, some inaccuracies

inherent in the classification of satellite images. Landsat images

provide only partial information on the full tidal range, and

satellites are usually unable to observe extreme low and high
BA

FIGURE 7

Relevant analysis results. (A) Correlation coefficient thermodynamic diagram of landscape characteristics of tidal flats and driving factors
(* p<=0.05, ** p<=0.01). (B) PCA analysis of driving factors on mudflat landscape patterns.
FIGURE 6

Distribution of landscape pattern indexes of tidal flats in 2020 (LPI, largest patch index; PD, patch density; MPS, mean patch area distribution;
SHAPE_MN, mean shape index; FRAC_AM, area-weighted mean patch fractal dimension; COHESION, patch cohesion index; SPLIT, splitting
index).
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tides (Dhanjal-Adams et al., 2016; Sagar et al., 2017). Remote

sensing data with a low spatial resolution may also contribute to

lower classification accuracy (Dang et al., 2021). Although the

image fusion technique used in our study can improve

classification accuracy, the medium resolution (30 m) Landsat

images used may exacerbate the mixing of classes with similar

spectral characteristics.
4.2 Evolution trends of tidal
flats in the YRD

The YRD coast is primarily a silty coast with vast tidal flats.

The tidal flats in the YRD decreased continuously during the

study period from 1990 to 2020 (Wang et al., 2020). The

dramatic reduction in tidal flats in the YRD occurred mainly

in two time periods, 1990–2000 and 2010–2020. Geographically,

the losses of tidal flats in the YRD were concentrated in

Yancheng and Nantong of Jiangsu, as well as in Hangzhou,

Shaoxing, and Ningbo of Zhejiang. The high-density areas of

tidal flat gains occurred primarily at Radiation Sand Ridge in

Yancheng of Jiangsu and in Jiuduansha and Nanhui of Shanghai.

It is crucial to manage and protect tidal flats that suffer from

frequent dynamics with high kernel density. There was a

significant interconversion of seawater and tidal flats due to

deposition and erosion (Murray et al., 2015). Throughout the

study area, the main reason for the reduction in tide flats was the

conversion of tidal flats to construction land. There was also a

conversion between coastal vegetated zones and tidal flats.

Particularly, the invasion of cordgrass (Spartina alterniflora)

has had a significant impact on the coastal zone, resulting in

changes to tidal flat landscapes (Mao et al., 2019; Jackson et al.,

2021). In recent years, Spartina alterniflora has invaded and

encroached rapidly on tidal flats in Shanghai and Jiangsu

(Huang and Zhang, 2007; Zhu et al., 2022). With the

implementation of the Spartina alterniflora management

projects, its threat to mudflats has gradually moderated (Liu

et al., 2020). With regard to the morphological characteristics of

the tidal flats’ landscape, the landscape index changed gradually

between 2000 and 2020, with most of the indexes showing

significant changes in 2010. According to the results of

landscape index analysis, tidal flats in Lianyungang, northwest

Yancheng, Nanhui, Jiaxing, and Hangzhou require attention in

terms of management and protection.
4.3 Potential driving forces of tidal flat
dynamics in the YRD

Characteristics of the tidal flat ecosystem can be directly

affected by human activities within a relatively short period.

Over the past three decades, the population and economy of the

study area have grown rapidly, thereby increasing human–land
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conflicts. A series of large reclamation projects have been carried

out in the YRD since the 1980s, resulting in the loss of vast

coastal tidal flats (Ma et al., 2014; Wang et al., 2014; Chen et al.,

2016). Through reclamation, the tidal flats were converted into

construction land for ports, terminals, transportation, and

industry (Zhao et al., 2020). Consequently, the urban area in

the YRD expanded significantly between 1990 and 2020.

Although offshore aquaculture brings economic benefits to the

YRD, it has also resulted in continued encroachment on tidal

flats along the coast (Ma et al., 2014). As humans continually

transform the land for socioeconomic objectives, substantial

ecological impacts occur (Sun et al., 2015). Urban expansion

in the YRDmay contribute significantly to climate change due to

the heat island effect (Yang et al., 2017). Aquaculture may

negatively affect regional water quality since it contributes to

the eutrophication of water bodies (Li et al., 2021; Wang et al.,

2021a). Based on the correlation and PCA analysis, four human

factors (i.e., population, GDP, urban area, aquaculture area)

were strongly correlated with the characteristics changes of the

tidal flat landscape. In response to urbanization, the YRD tidal

flats have been shrinking. Urbanization-induced reclamation is

the primary cause of the shrinkage. Furthermore, tidal flats have

been encroached upon irregularly by human activities, which has

adversely affected their original spatial distribution. There has

been significant disruption of tidal flats in the YRD due to

human activities, resulting in a fragmented, dispersed, and less

integrated landscape.

Natural factors have also influenced the development of the

YRD’s tidal flats. In terms of climatic factors, temperature and

precipitation were important variables affecting the YRD tidal

flat ecosystem. A warming temperature without increased

precipitation will intensify wetland evaporation, reducing the

tidal flat area (Harley et al., 2006). Temperatures in the study

area increased gradually from 1990 to 2020, while rainfall

fluctuated within a small range. There was a significant

correlation between tidal flat area and mean annual

temperature in the YRD, but no significant correlation with

mean annual rainfall. As a region sensitive to global change, the

YRD has also experienced sea-level rise due to global warming

(Cazenave and Cozannet, 2014; Moftakhari et al., 2017). The

coastal seawall defense capacity of the YRD has been reduced by

sea-level rise, and coastal erosion has increased, causing tidal flat

loss (Gong et al., 2012; Wang et al., 2012; Kuang et al., 2014).

Coastal tidal flat development is driven by sediment

transportation and accumulation by rivers and tides. Sediment

deposition and the hydrodynamic environment contribute to

tidal flat dynamics due to “loss and gain” (Dyer et al., 2000; Xing

et al., 2012). With increasing evaporation and water engineering

projects, sedimentation in the YRD has weakened, leading to a

slowdown in coastal tidal flat development (Zhao et al., 2017; Li

et al., 2020b). There was a significant correlation between

sediment discharge and characteristics of tidal flats in the YRD

from 1990 to 2020, indicating that higher sediment discharges
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lead to a larger area of tidal flats. Tidal flat morphology and other

natural factors, however, had a weak relationship. During the

continuous urbanization process, human activities have greatly

affected the landscape of the tidal flats (Jiang et al., 2015).
4.4 Recommendations for improving the
conservation of the YRD tidal flats

Policies, laws, and regulations provide the basis for the

management of tidal flats. Since the 1990s, China has taken a

series of measures to manage coastal wetlands, which have

played a role in protecting coastal tidal flats (Table S3). The

dynamic changes analysis of the tidal flats showed that the

reduction of the tidal flats has moderated after 2000.

Nonetheless, rapid economic development and the growing

reliance of human activities on tidal flats have negatively

affected the remaining tidal flats (Jiang et al., 2015; Wei et al.,

2015). The YRD tidal flats are still experiencing declines in

quantity and landscape quality. Tidal flats are not covered by any

national laws or administrative regulations in China. Only local

rules are in place. Local government regulations for managing

tidal flats are more concerned with resource management than

environmental protection. Tidal flats have also been considered

a wasteland and the principal source of resource extraction

(Zhao et al., 2020). The general public has not yet fully

understood the ecological function and value of tidal flats. A

strict, science-based, and effective policy, legislative, and

regulatory framework will be required for tidal flat protection

(Sun et al., 2015). Existing legislation that governs coastal tidal

flat management should be improved, and new policies, laws,

and regulations should be adopted. Furthermore, local

governments should ensure that their policies, laws, and

regulations for tidal flat management take into account the

ecological environment and need for the protection of tidal flats.

Both natural and human factors have influenced tidal flat

landscape evolution. Tidal flat dynamics in the YRD were closely

correlated with sediments, temperature, sea level, and human

activities. The protection and management of tidal flats can be

improved by exploring effective measures to address the main

threats. Tidal flats form primarily from sediment carried by rivers

into the sea. Due to various evaporation and water engineering

projects, sedimentation in the study area decreased, resulting in

the loss of tidal flats (Zhao et al., 2017; Li et al., 2020b). Providing

artificial silt and sand nourishment can enhance the protection of

tidal flats (Deltacommissie, 2008). Sea-level rise has been triggered

by rising temperatures, resulting in threats to the integrity and

stability of tidal flats (Morris et al., 2002). The YRD should

implement a long-term monitoring system and set up an early

warning system to prevent damage to tidal flats (Leorri et al.,

2013). There are also nature-based solutions for coastal

management that can be used to adapt to SLR (Schuerch et al.,

2018). Restoration of degraded coastal wetlands is a nature-based
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solution that can help strengthen coastal protection caused by SLR

and associated extreme events (Kim, 2010; Narayan et al., 2016).

Besides restoring existing habitats, it is also possible to use hybrid

designs, such as natural habitats combined with built

infrastructure, providing coastal protection against SLR (Sutton-

Grier et al., 2015; Moller, 2019). Human activities such as high

intensity development and frequent reclamation have significantly

contributed to the loss of tidal flats (Mai and Bartholomä, 2000).

The reclamation of tidal flats should be reduced in the future, with

a goal of maintaining them within their natural proliferation rate

(Hodoki and Murakami, 2006). Moreover, a “red line” could be

defined for tidal flats, and reclamation prohibited in the “red line”

area to effectively limit the negative impact of human activities on

the landscape (Sun et al., 2015).

The establishment of nature reserves may contribute to the

conservation of tidal flats (Hill et al., 2021). Nine nature reserves

exist in the study area (Figure 8). There were areas within nature

reserves with frequent tidal flat dynamics (Zone I) based on KDE

results. Landscape index analysis showed a reduction in the tidal

flats’ integrity, connectivity, and stability between 1990 and 2020.

Geographically, it was evident that the landscape index had

changed negatively in some regions (Zone II) not covered by

nature reserves. Although natural reserves exist, the degradation

of their tidal flats cannot be prevented, which may be because

natural factors have caused tidal flats to move outside current

reserves, or the reserves were unable to effectively manage them

(Carranza et al., 2014; Murray et al., 2019). Reserves in the study

area are managed by different departments at a local level, leading

to conflicting management goals (Dhanjal-Adams et al., 2016;

Zeng et al., 2022). It might be possible to consolidate overlapping

reserves and manage them under one department. In Jiangsu and

Shanghai, the tidal flats would benefit from combining the

jurisdictions of their reserves and coordinating the management.

In addition, expanding existing reserves could enhance the

connectivity and integrity of the landscape within the various
FIGURE 8

Distribution of nature reserves within the study area (Department
of Nature Reserves at the local level: MOEP, Ministry of
Environmental Protection; SOA, State Oceanic Administration;
MOA, Ministry of Agriculture; SFA, State Forestry Administration).
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functional zones (Watson et al., 2014). As Yancheng National

Reserve extends north-south, it could encompass wetland areas

meeting international standards, such as the Ganyu, Dongtai, and

Rudong tidal flats (Paulson Institute, 2016). Due to the lack of

nature reserves covering tidal flats in Nanhui, Jiaxing, and

Hangzhou, new protected areas need to be established to

mitigate adverse effects. Finally, nature reserves do not forbid

human activities, so their establishment may slow the loss of tidal

flats but will not stop it. Consequently, adequate buffer zones

should be maintained between human activities and tidal flat

protection areas to alleviate anthropogenic impacts.
5 Conclusion

It has been observed that tidal flats in the YRD have been

degraded from 1990 to 2020, as evidenced by shrinking size,

increased fragmentation and disturbance, as well as reduced

dominance and connectivity across the tidal flat landscape.

Yancheng and Nantong of Jiangsu, Hangzhou, Shaoxing, Ningbo

of Zhejiang, and Jiuduansha and Nanhui of Shanghai were found to

have high densities of tidal flat dynamics. It is worth mentioning

that Lianyungang, northwestern Yancheng, Nanhui, Jiaxing, and

Hangzhou have experienced a considerable negative change in their

tidal flat landscape. In the YRD tidal flats, variations in landscape

characteristics have been driven by various factors such as

population, economy, reclamation, climate change, sea-level rise,

and sedimentation. Future actions should include three aspects of

tidal flat management and protection: strengthening policies, laws,

and regulations related to tidal flat protection, preparing measures

to counteract threats to tidal flat landscapes, and improving the

efficiency of nature reserves to reduce tidal flat degradation.
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