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method for leopard coral
grouper (Plectropomus
leopardus) using deep
convolutional neural
networks with PDE-based
image decomposition

Yangfan Wang1,2, Chun Xin1, Boyu Zhu3, Mengqiu Wang1,
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Zhenmin Bao1,2 and Jingjie Hu1,2*
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Science, Ocean University of China, Qingdao, China, 2Key Laboratory of Tropical Aquatic
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Sanya, China, 3Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
External tagging methods can aid in the research of leopard coral grouper

(Plectropomus leopardus) in terms of its spatio-temporal behavior at

population and individual scales. However, due to the strong exclusion ability

and the damage to the body wall of P. leopardus, the retention rate of

traditional invasive tagging methods is low. To develop a non-invasive

identification method for P. leopardus, we adopted a multiscale image

processing method based on matched filters with Gaussian kernels and

partial differential equation (PDE) multiscale hierarchical decomposition with

the deep convolutional neural network (CNN) models VGG19 and ResNet50 to

extract shape and texture image features of individuals. Then based on image

features, we used three classifiers Random forest (RF), support vector machine

(SVM), andmultilayer perceptron (MLP)) for individual recognition on sequential

images of P. leopardus captured for 50 days. The PDE, ResNet50 and MLP

combination obtained a maximum accuracy of 0.985 ± 0.045 on the test set.

For individual temporal tracking recognition, feature extraction and model

training were performed using images taken in 1-20 days. The classifier could

achieve an accuracy of 0.960 ± 0.049 on the test set consisting of images

collected in the periods of 20-50 days. The results show that CNNs with the

PDE decomposition can effectively and accurately identify P. leopardus.

KEYWORDS

Plectropomus leopardus, non-invasive tagging method, convolutional neural
networks, PDE-based image decomposition, complex trait
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1 Introduction

P. leopardus represents one of the most economically

significant chordate and is mainly distributed in the Western

Pacific Ocean along the coasts of China, Vietnam, and Thailand

(Yang et al., 2020). P. leopardus has a high economic value in the

international market due to its high nutritional profile and plays

a vital role in marine ecosystems (Xia et al., 2020). However, the

P. leopardus industry has encountered many challenges in recent

years, including devastating diseases and environmental stresses,

which caused a large amount of economic loss and hampered the

healthy and sustainable development of the P. leopardus

industry (Rimmer and Glamuzina, 2019). Therefore, it is

urgent to advance the scientific culture of P. leopardus and to

select and breed new species with superior characteristics.

Designing effective external tagging methods for long-term

and stable tracking identification of P. leopardus is not only

essential for successful breeding but also a concern for ecologists

conducting population dynamics studies (Williams et al., 2002;

Zhuang et al., 2013), as well as revealing the ecological

significance of fish endotherms (Watanabe et al., 2015), and

studying the life history of fish such as foraging, migration and

reproduction (Quinn et al., 1989; Ogura and Ishida, 1995; Yano

et al., 1996; Hinch et al., 2002; Welch et al., 2004; Sulak et al.,

2009; Døving et al., 2011).

Traditionally, individual recognition has been accomplished

by capturing animals and placing visible and unique marks on

them. The traditional marking methods include implanting

acoustic markers inside the abdominal cavity of fish (Shi et al.,

2022), and then using the positioning system to track the

acoustic markers. The individual unique electric field

generated by electric fish discharges was used for recording

and tracking (Raab et al., 2022). Due to the strong exclusion

ability and the damage to the body of P. leopardus, the retention

rate of traditional invasive tagging methods is low (Bolger et al.,

2012). Besides, the infection rate and mortality rate of implanted

marker fish are relatively high (Shi et al., 2022), and the marker

will also affect the original normal life of fishes in the water, and

with the extensive use of individual markers, it is also a hazard to

the environment (Šmejkal et al., 2020), while individual electric

field tracking is only applicable to fish that can generate

electricity. This makes it difficult for breeders to manage good

individuals, which is not conducive to the implementation of

accurate breeding by tracking the growth of individuals.

Recently, molecular genetic markers such as RFLP (restriction

fragment length polymorphism), RAPD (random amplified

polymorphism DNA), SSR (simple sequence repeat), and SNP

(single nucleotide polymorphism) have also been widely used to

study the population and individual recognition (Reed et al.,

1997; Wang, 2016). However, these methods are not suitable for

a larger population because of inconsistency, inconvenience, and

higher cost, among others. Currently, photographic mark-
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recapture has gained popularity because of the advances in

digital photography and image processing software. The

abundance of species with variable natural marking patterns

makes this an attractive method for many researchers. The

image mark method has been employed particularly in the

studies of populations of marine mammals and mammalian

terrestrial predators (Karanth and Nichols, 1998; Forcada and

Aguilar, 2000; Langtimm et al., 2004; Fearnbach et al., 2012).

Some image processing methods have been used to extract, store,

and compare pattern information from digital images (Bolger

et al., 2012). With the development of computer vision, deep

learning (DL) methods, such as convolutional neural networks

(CNNs) are emerging as possibly powerful tools for individual

recognition and long-term tracking (He et al., 2016; Redmon

et al., 2016). Numerous broad models of convolutional neural

networks, such as AlexNet, Inception, VGG19, ResNet50, etc.,

have been presented (Kamilaris and Prenafeta-Boldú, 2018).

These models are trained using public datasets (e.g., CIFAR-

10, ImageNet datasets, etc.) and used to perform Multi-Category

tasks for particular items. Considering the unique body shape

and texture patterns of different P. leopardus individuals, it is a

promising technical route to extract and identify the body

surface features using CNN as an alternative method against

traditional invasive tagging methods.

In this study, we used a novel multiscale image processing

method based on matched filters with Gaussian kernels and

partial differential equation (PDE) multiscale hierarchical

decomposition (Wang et al., 2013) to segment the shape

features of P. leopardus images. Two deep CNN models,

VGG19 and ResNet50, were implemented to extract the

texture features. Then based on the shape and texture features,

three classifiers (Random forest (RF) (Kamilaris and Prenafeta-

Boldú, 2018), support vector machine (SVM) (Cortes and

Vapnik, 1995), and multilayer perceptron (MLP) (LeCun et al.,

2015) were compared for individual recognition on sequential

images of P. leopardus captured over the course of 50 days.

Finally, we found that the combination of PDE and CNN

methods could achieve the best accurate recognition of P.

leopardus. This is the first time, to our knowledge, that image

recognition analysis has been applied to the tracking of P.

leopardus. Our results will provide a new vision for using non-

invasive tagging of P. leopardus.
2 Materials and methods

2.1 Data acquisition

P. leopardus used in this study were obtained from Sanya,

Hainan Province. 50 individuals were randomly selected from a

breeding population of 10,000 P. leopardus, and reared under

laboratory conditions. The numbered clapboards were added to
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the rearing pool to facilitate individual identification. In the 50

days from September 3, 2022, to October 23 2022, each

individual was taken out from the rearing pool daily and

placed on a smooth white foam plastic plate. The P. leopardus

were anesthetized by immersion in seawater which containing

MS222 (tricaine methanesulfonate) with a concentration of 100

mg/L and kept in the solution for 3 min after loss of body

posture (Savson et al., 2022). After its body was fully stretched,

photos were taken directly for each individual using a mobile

device. Then they were placed back in the pond immediately. At

the end of the experiment, 50 images were taken for each

individual. So, we obtained a total of 2500 images for

all individuals.
2.2 Image feature extraction

2.2.1 PDE-based feature extraction
We used a PDE-based multiscale decomposition method to

extract the shape features of P. leopardus images. For the shape

detection, we used matched filtering with Gaussian kernel

(MFGK) ker(x,y; a,b)=−exp(−a−1(x−b)2/2s2) (Chaudhuri et al.,
1989), and the computed MFGK response image was as follows:

Mker x, y; a, bð Þ = maxq rq ker x, y; a, bð Þð Þ*Img x, yð Þð Þ (1)

where Img, (x, y), s, ker, a, and b denoted an image, a two-

dimensional pixel position, the standard deviation of image gray

value in Gaussian convolution kernel, two-dimensional

Gaussian functions, the dilation parameter (also known as

scaling parameter), and the translation parameter, respectively.

rq rotated the kernel function with an angle q, and * represented

the convolution operation in variables (x and y).

The normalized response image was defined as follows:

f = Mker x, y; a, bð Þ − mð Þ=s
where m and s were the mean and standard deviation of the

enhanced MFGK image Mker(x,y;a,b) The multiscale hierarchical

decomposition of an image f was defined as follows (Wang et al.,

2013). Given an initial scale parameter l0 and the PDE-based

total variation (TV) function (Rudin et al., 1992)

J f ,  lð Þ = ljj vljj2L2+jj uljjBV
where BV stood for the homogenous bounded total variation

space equipped with the norm of total variation

jj  :jjBV=  jj  :jjL1=
Z
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ul)

2
x + (ul)

2
y

q

f = u0 + v0,  where   u0, v0½ � : = argmin ∣u+v=f   J f ,  l0ð Þ

vk = uk+1 + vk+1,   k = 0, 1,…,  lk = l02
k+1

where [uk+1,vk+1:=argmin∣u+v=vkJ(vk,l02
k+1) ].
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Based on the above enhancement with MFGK and

multiscale hierarchical decomposition, many line maps ul
were generated at varying image resolutions, representing

different levels of line details to avoid the possible failure of

feature extraction caused by a single-scale segmentation. The

initial scaling parameter was l0 = 0.01 in the multiscale

hierarchical decomposition.

The binarization is performed as follows:

out x, yð Þ =
1         �u x, yð Þ   ≤ u x, yð Þ

0               otherwise
 

(

where out stands for the finally segmented binary mask of

the P. leopardus image.
2.2.2 CNN-based feature extraction
With the development of deep learning algorithms, many

general models of convolutional neural networks have been

proposed, such as AlexNet, Inception, VGGNet, ResNet, etc.

(Kamilaris and Prenafeta-Boldú, 2018). These models have been

trained on large public datasets (e.g., CIFAR-10, ImageNet datasets,

etc.) (Lecun et al., 1998) to achieve the goal of multiple-classification

tasks for specific items. After training, the deep layers and

convolutional kernels in these models can explore the visual

characteristics of images. For other classification tasks, new

characteristics can be extracted with the help of the pre-trained

convolutional layers and used as input for many classifiers. This

method of applying the “knowledge” gained from training on a

specific dataset to a new domain is also known as migration

learning (Yoshua, 2011). In this study, the VGG19 and ResNet50

of CNNmodels were used for image feature extraction. The weights

of each convolutional layer of VGG19 or ResNet50 were frozen and

fed into a new CNN. The output of the last pooling layer of the new

CNN was then taken as the extracted image features. After feature

extraction using VGG19 or ResNet50, a 4096-1D or 2048-1D vector

of features was obtained, respectively.

LeNet-5 Convolutional Neural Network (Lecun et al., 1998), as a

classic CNN, has only two convolution layers and a simple structure,

which is suitable for preliminary evaluation of the complexity of the

dataset. The structure of the model is as follows. Input layer: single

input is a 224*224*3 RGB three-channel image without feature

extraction; convolutional layer 1, containing 6 convolutional kernels

with the size of 5*5 pixels using activation function ReLU; batch

normalization layer 1; maximum pooling layer 1, with the pooling

size of 2*2; convolutional layer 2, containing 16 convolutional

kernels with the size of 5*5 pixels using activation function ReLU;

batch normalization layer 2; Maximum pooling layer 2, with the

pooling size of 2*2; fully connected layer 1, containing 120 neurons

using activation function ReLU; batch normalization layer 3; fully

connected layer 2, containing 84 neurons using activation function

ReLU; batch normalization layer 4; output layer, outputting 20

classes using activation function softmax. The loss function is
frontiersin.org
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cross entropy and the optimizer is Adam. When training on the raw

dataset, batch_size is 30 and epoch is 50.

VGG is a type of CNN model developed by the Oxford

Robotics Institute (Simonyan and Zisserman, 2015). VGG19

uses an architecture of very small (3x3) convolution filters and

pushes the depth to 19 weight layers. There are five building

blocks in VGG19, consisting of 16 convolutional layers and 3

fully connected layers. The first and second building blocks have

two convolutional layers and one pooling layer, respectively, and

four convolutional layers and one pooling layer exist in the third

and fourth building blocks. The last building block contains four

convolutional layers.

The architecture of the residual network consists of 50 layers

named ResNet50 (He et al., 2016). There is an extra identity in

ResNet50 where the ResNet model predicts the delta needed in the

final prediction from one layer to the next. ResNet50 provides

alternate paths to allow gradient flow which helps to solve the

problem of gradient disappearance. The ResNet model uses identity

mapping to bypass the weight layer of the CNN when the current

layer is not required. This model solves the overfitting problem of

the training set with the presence of 50 layers in the feature

extraction of ResNet50 (Stateczny et al., 2022).

In this study, the PDE-based multiscale decomposition and the

Convolutional Neural Networkmodels, VGG19 and ResNet50, were

used to extract shape and texture features on the original image

datasets. A total of five combined datasets are generated, which are

called: PDE+ raw dataset, VGG19+ raw dataset, ResNet50+ raw

dataset, PDE+VGG19+ raw dataset, and PDE+ResNet50+ raw

dataset. After feature extraction, the image features obtained from

each feature extraction method are visualized using the t-SNE

algorithm (Linderman et al., 2019) to visually examine the

effectiveness of several feature extraction methods.
Frontiers in Marine Science 04
2.3 Training of classifiers based on
extracted features

The feature-extracted dataset is used as input to train

Random Forest (RF), Support Vector Machine (SVM), and

Multi-layer Perceptron (MLP), models, respectively. The RF

models were trained using default parameters. The SVM

models were trained with RBF kernel using default parameters.

The structure of the multi-layer perceptron was: input layer,

where the number of neurons contained depends on the length

of the features used (2048 for PDE features, 4096 for VGG19

features, 2048 for ResNet50 features); fully connected layer,

containing 1024 neurons using activation function ReLU

(LeCun et al., 2015); batch normalization layer; output layer,

outputting 50 classes using activation function softmax. The loss

function was cross entropy and the optimizer was Adam (LeCun

et al., 2015). When training on the raw dataset, batch_size is 30

and epoch is 50.

The essential architecture of our method for fully automated

segmentation and identification of P. leopardus is shown

in Figure 1.
2.4 Model assessment indicators

In a multi-classification task, there are differences in the

predicting ability of the model for different categories, and there

may be category imbalance in the predicting results. Since the

accuracy rate simply calculates the ratio of the number of correctly

predicted samples to the total number of samples, ignoring the

predicting ability of the model for different categories, it is hard to

objectively measure the predicting effect of the model. In order to
FIGURE 1

The essential architecture of our method for fully automated segmentation and identification of P. leopardus.
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measure the model’s comprehensive predicting ability for each

category, the accuracy for each category should be taken into

account, so the Precise, Recall and Macro-F1 Score are selected as

evaluation indicators (Zhou et al., 2021). The calculation method is

as follows.

True Positives (TP): all cases where we have predicted YES and

the actual result was YES. True Negatives (TN): all cases where we

have predicted NO and the actual result was NO. False Positives

(FP): all cases where prediction was YES, but the actual result was

NO (‘Type I error’). False Negatives (FN): all cases where prediction

was NO, but the actual result was YES (‘Type II error’).

Precision is the proportion of positive samples that are correctly

predicted out of all samples that are predicted to be positive:

Precision =
TP

TP + FP

Recall is the proportion of positive samples that are correctly

predicted out of all actual positive samples (including the

positive samples that were predicted incorrectly).

Recall =
TP

TP + TN

F1-Score is the harmonic mean of precision and recall.

F1 =
2� Precision� Recall
Precision + Recall

Macro-F1 is the mean of F1-Score for each category, where

N is the total number of categories.

Macro F1 = o
i
NF1i
N

2.5 Software and hardware environment

In this study, the Python 3.8.10 environment was used with the

scikit-image library for feature extraction, the scikit-learn 0.24.0

library for principal component analysis and the construction of

random forest and support vector machine models, and the

tensorflow 2.3.1 library for CNN-based feature extraction and the

training of multilayer perceptrons. The tsne library was used to

accomplish the t-SNE downscaling and visualization in the R

4.1.1 environment.
3 Results

3.1 PDE-based feature extraction

The results of the illustrative segmentation of P. leopardus

using the PDE multiscale decomposition method with different

scale parameters are shown in Figure 2. Obviously, the camera

image can be used for good segmentation with the selection of

more growth rings of body shape. Meanwhile, the segmentation
Frontiers in Marine Science 05
of shape contours in the image can be still detected even though

the original image was degraded by some body color; hence, our

segmentation method was robust in noise and color.
3.2 CNN-based feature extraction

As shown in Figure 2, the PDE method can obtain more

details of the shape of P. leopardus compared with the ResNet50

model of CNNs. By visualizing several convolutional layers in

the ResNet50 model (Figure 1), we found that some kernels in

different layers could distinguish smaller tubular and periodic

structures in P. leopardus images, which made ResNet50 more

effective in the extraction of texture details.

The shape and texture features obtained by PDE-based and

CNN-based methods were visualized using the tSNE software

(Figure 3). For the shape features obtained by PDE, the points of

different categories overlapped each other and were difficult to

distinguish (Figure 3A). While we found that the CNN-based

texture features of the same individuals were gathered into a

cluster, reflecting the intra-category consistency and inter-

category dissimilarity, for example, individuals of 4, 5, 14, 15,

16, 17, 18, 19 in ResNet50 features (Figure 3B) and individuals of

5, 15, 19 in VGG19 features (Figure 3C). Features of the same

individuals using the ResNet50 model were more likely to gather

into clusters than the VGG19 features, suggesting that the

ResNet50 feature may extract more small texture information

from images than VGG19 features.
A B

C D

E F

FIGURE 2

Segmentation results produced by multiscale hierarchical
decomposition using PDE with l0 = 0.01 and li = l02i (A)
original image; (B–F) segmented image at scaling parameters l1,
l2, l3, l4, and l5, respectively.
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A

B

C

FIGURE 3

Visualization of feature-extraction methods (number labels in the range of 1~20 denote 20 individuals randomly sampled from all the P.
leopardus) (A) PDE feature; (B) CNN ResNet50 feature; (C) CNN VGG19 feature.
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3.3 Prediction performance of
combinations with different features
and classifiers

In this section, five-fold Cross-validation (5-fold CV) was

used to assess the prediction performance of the different

methods in the P. leopardus data set. For 5-fold CV, the data

set was divided into five mutually exclusive subsets; four of five

formed the estimation set (ES) for fitting input feature effects

and the fifth subset was used as a test set (TS). Three methods

(RF, SVM and MLP) were trained on the feature-extracted

(PDE, VGG19 and ResNet50) datasets, and the traditional

LeNet-5 convolutional neural network dataset of the 224*224-

pixel images from the raw dataset, respectively (Table 1).

Among the classifiers trained on the only PDE features for the

dataset, PDE+ MLP achieved the best prediction (Macro-F1 Score

0.748 ± 0.066), followed by PDE + SVM (Macro-F1 Score 0.717 ±

0.076). The predicting performance of RF was poor with Macro-F1

score of only 0.681 ± 0.117. Compared with classifiers trained on

PDE features, the simple CNN LeNet-5 with a simple structure had

a significant improvement in the predicting effect with Macro-F1

score of 0.861 ± 0.069. For the deep CNN VGG19 features, VGG19

+MLP achieved the best prediction (Macro-F1 Score 0.872 ± 0.068)

followed by VGG19 + SVM (Macro-F1 Score 0.849 ± 0.071) and

VGG19 + RF (Macro-F1 Score 0.813 ± 0.079). Only VGG19 +MLP
Frontiers in Marine Science 07
outperformed the simple LeNet-5 model (Macro-F1 Score 0.861 ±

0.069) with a Macro-F1 score increased about 0.011. After training

on ResNet50 texture features, any classifier can achieve better

predictions than any other combinations on VGG19 texture

features. ResNet50 + MLP achieves the best prediction (Macro-F1

Score 0.927 ± 0.043) followed by ResNet50 + SVM (Macro-F1 Score

0.925 ± 0.048). It is interesting that SVM can also achieve similar

performance on ResNet50-extracted features.

If we combined PDE shape features with ResNet50 or

VGG19 text features to form a new feature set, any classifier

can achieve better predictions than the feature set of PDE,

VGG19, or ResNet50. In the PDE+ResNet50 dataset, the

maximum accuracy was Macro-F1 Score 0.985 ± 0.045 for

MLP. In the PDE+VGG19 dataset, the maximum accuracy

was Macro-F1 Score 0.949 ± 0.069 for MLP. We, therefore,

decided to take PDE+ResNet50+MLP and PDE+ResNet50

+SVM as the experimental model to identify individuals in the

following analyses.
3.4 Predictions effect of the model on
training sets of different sizes

Due to the constraint of time and labor costs in actual

application scenarios, it is often difficult to obtain large datasets.
TABLE 1 Predictive accuracies obtained with different combination of features and classifiers by 5-fold CV.

Input feature Classifiers Metrics
Precision Recall Macro-F1 score

LeNet-5 0.851 ± 0.078 0.869 ± 0.061 0.861 ± 0.069

ResNet50 RF 0.881 ± 0.082 0.892 ± 0.073 0.889 ± 0.079

SVM 0.923 ± 0.054 0.929 ± 0.035 0.925 ± 0.048

MLP 0.925 ± 0.046 0.931 ± 0.037 0.927 ± 0.043

VGG19 RF 0.811 ± 0.084 0.827 ± 0.102 0.813 ± 0.079

SVM 0.847 ± 0.045 0.843 ± 0.062 0.849 ± 0.071

MLP 0.862 ± 0.049 0.879 ± 0.059 0.872 ± 0.068

PDE RF 0.693 ± 0.115 0.715 ± 0.108 0.681 ± 0.117

SVM 0.724 ± 0.078 0.734 ± 0.070 0.717 ± 0.076

MLP 0.736 ± 0.071 0.753 ± 0.062 0.748 ± 0.066

PDE + ResNet50 RF 0.927 ± 0.091 0.932 ± 0.083 0.924 ± 0.074

SVM 0.981 ± 0.063 0.977 ± 0.072 0.981 ± 0.059

MLP 0.984 ± 0.051 0.981 ± 0.067 0.985 ± 0.045

PDE+VGG19 RF 0.919 ± 0.101 0.920 ± 0.105 0.911 ± 0.112

SVM 0.922 ± 0.062 0.935 ± 0.054 0.928 ± 0.071

MLP 0.941 ± 0.061 0.955 ± 0.063 0.949 ± 0.069
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To refrain from the possible effect of the small dataset, it is

necessary to investigate the predicting performance of the

classifier on different size training sets to make a trade-off

between the cost of dataset size and the predicted effect. The

images of days 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 1-35,1-40 and 1-

45 were taken from the ResNet50+ raw dataset and used for

training MLP and SVM, respectively. The evaluation has two

steps. Firstly, the prediction of these classifiers was estimated on

the set of remaining images corresponding to their training set

(e.g., for classifiers trained on images of days 1-5, the prediction

was performed on images of days 6-50, and so on). Secondly, all

classifiers trained on different periods of days were used to

predict the images of days 46-50 (Figure 4).

As shown in Figure 4, the Macro-F1 Scores of all the

classifiers increase with the expansion of the sizes of training

sets. When images of days 1-20 were used as the training set,

models achieved relative high values of macro-F1 on all test sets

with Macro-F1 Scores of 0.960 ± 0.049 for PDE+ResNet50+MLP

to identify the individuals in images of the rest days and 0.960 ±

0.104 in images of days 46-50. When the size of the training set

continues to enlarge, the curve of predicting effect goes steadily

and changes slightly with the expansion of the training set. The

highest Macro-F1 Score (0.983 ± 0.047) is achieved by PDE

+ResNet50+MLP when using images of days 1-45 as the training

set and images of days 46-50 as test sets. Furthermore, the

Macro-F1 Score of PDE+ResNet50+MLP was higher than that

of PDE+ResNet50+SVM in most sets of experiments except

using images of 1-5 days as the training set.
3.5 Temporal tracking recognition of
individuals on different time scales

In the actual scenario of breeding work, individuals need to

be tracked continuously over a while. To investigate the tracking
Frontiers in Marine Science 08
ability of the PDE+ResNet50 + MLP model, predicting the

results of combination of the training set and test set for each

i n d i v i d u a l o n e v e r y d a y w e r e e x t r a c t e d a n d

summarized (Figure 5).

When trained on images of days 1-5, 1-10, and 1-15, the size

of the training set was small and the model performed poorly on

some individuals. For example, when trained on images of days

1-5, the model performed poorly on most of the individuals. As

the size of the training set increased, these hard-to-predict

individuals were gradually correctly identified by the model.

When trained with images of days 1-30, there were few

individuals that were difficult to identify, and for some

individuals, the model could achieve a 100% recognition rate.

To understand how well each individual was tracked, we

treated it as a traceable individual with an error rate of less than

or equal to 10%. Then the predicting effects for all individuals

were counted according to the above criterion (Table 2). When

the size of the training set was small, the number of traceable

individuals increased with the increase of the size of the training

set. When images of days 1-25 were used as the training set, the

number of traceable individuals was 45, accounting for 90% of

the total individuals, and the number of individuals that could be

identified at a 100% recognition rate was 27. When images of

days 1-30 were used as the training set, the proportion of

traceable individuals reached 98%, and the number of

individuals that could be 100% identified was 33.
4 Discussion

The approach described in this paper using image processing

analytical methods, which are widely used in studies on ecology

and evolution (Bolger et al., 2012), has demonstrated its

powerful application in studies on non-invasive tagging

methods for P. leopardus. The PDE-based and CNN-based
A B

FIGURE 4

The results for prediction using classifiers trained by datasets with different size. (A) The results for prediction of the whole images of the rest
days; (B) The results for prediction of the images of the 46th -50th days.
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image feature vector of each shape and texture structure, which

is invariant against translation, rotation, scaling, and even

modest distortion. As long as the feature pattern can be

extracted from each image, the individuals can be effectively

identified by using the RF, SVM and MLP classification of shape

and texture features.
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4.1 Advantages of deep convolutional
neural networks in recognition of P.
leopardus

To explore the feature extraction methods and machine

learning models suitable for the recognition of P. leopardus,
TABLE 2 The statistics for results of tracking recognition on different time scales.

Dataset Number of 100%
identification

Number of an individual
misclassified once

Number of individuals with error
rate no more than 10%

Percent of
trackable
individuals

Training
set

Test
set

1-5 days 6 - 50
days

6 1 10 20%

1-10 days 11-50
days

11 3 25 50%

1-15 days 16-50
days

21 7 36 72%

1 - 20 days 21-50
days

23 12 44 88%

1-25 days 26-50
days

27 15 45 90%

1-30 days 31-50
days

33 12 49 98%

1-35 days 36-50
days

38 9 47 94%

1-40 days 41-50
days

42 7 49 98%

1-45 days 46-50
days

47 2 47 94%
FIGURE 5

The result of tracking recognition of P. leopardus on different time scales.
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the PDE-based shape features, and CNN-based texture features

were used for feature extraction, and then RF, SVM, and MLP

were trained on the extracted features compared to the LeNet-5

model, an early convolutional neural network with fewer layers

and a simple structure. The PDE + MLP obtained the best

predictability with a Macro-F1 score of 0.748 ± 0.066 compared

with PDE+RF and PDE+SVM on the raw dataset, while the

ResNet50+MLP model achieved a Macro-F1 score of 0.927 ±

0.043, indicating that compared to the PDE-based image

segmentation that had the relatively weak ability of feature

extraction, ResNet50 extracted more details of features for

individual imaged and achieved better recognition results.

Various researchers are addressing the task of individual

recognition in different way using traditional machine learning

methods (Vaillant et al., 1994; Viola and Jones, 2001; Dollár

et al., 2009) such as thresholding (Sivakumar and Murugesh,

2014), region growing (Gómez et al., 2007; Preetha et al., 2012),

edge detection (Ma andManjunath, 1997; Huang and Kuo, 2010;

Wang et al., 2013), clustering (Celenk, 1990; Ali et al., 2006;

Kavitha and Chellamuthu, 2010; Zheng et al., 2018), super-pixel

(Li et al., 2012; Xie et al., 2019), etc. for years. PDE-based image

multiscale decomposition belongs to edge detection method.

Individual recognition research has also started to use the

convolutional neural network (CNN) for better segmentation

accuracy. That is why CNN is used successfully for

individual recognition.

In this study, the CNN-based texture features included two

categories: the features extracted by VGG19 and ResNet50. The

VGG19 network has 16 layers of convolution layer (Simonyan and

Zisserman, 2015), and the ResNet50 network has 49 layers of

convolution layer (Savson et al., 2022). Among the three

classifiers (RF, SVM, and MLP) trained with VGG19 features,

VGG19 + MLP achieved the highest Macro-F1 score (0.872 ±

0.068), with an improvement of ~0.011 compared to LeNet-5 (0.861

± 0.069). Our result is consistent with the conclusion in (He et al.,

2016) that the accuracy of convolutional neural networks (CNNs)

has been continuously improving. For example, the very deep VGG

models, which have witnessed great success in a wide range of

recognition tasks. In this study, when trained on a small dataset of

50 individuals, VGG19 or ResNet50 can better characterize the

variability among individuals than LeNet-5 due to the deeper

convolutional layers. Trained on the raw dataset, ResNet50+MLP

achieved an improvement of ~0.055 compared to VGG19+MLP,

indicating that the depth of the convolution layers in the ResNet50

network is enough for fully extracting the image features of P.

leopardus. It is generally believed that by stacking multi-layer

convolution kernels, the deep convolutional neural network

allows the model to capture higher-dimensional and abstract

features, including invisible high-frequency features that are

traditionally considered noise (Krizhevsky et al., 2012). Thus, we

purposed to use the ResNet50 to capture the patterns on the surface

of P. leopardus.
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Combined PDE-based and CNN-based features, PDE

+ResNet50+MLP achieved the best prediction and PDE+

ResNet50+SVM got the suboptimal prediction, which are both

better than those achieved by ResNet50+MLP and ResNet50

+SVM trained on the same dataset. These results indicated that

when the size of the training set was small, the CNN had

difficulty in capturing more details of the shape features of P.

leopardus. The PDE-based features generated by PDE multiscale

decomposition contained a series of segmentation results at

varying image resolutions of shape pattern details at different

levels. This process performed an iterative segmentation at an

increasing image resolution in each step, and thus detected much

smaller patterns of shape. It was exactly because the PDE-based

features added more shape features for the CNN-based features

to identify the individuals more effectively. This result also

suggested that CNNs with some image segmentation methods

may be more well-suited for individual recognition when the size

of the dataset is small compared to just using CNNs.
4.2 Prediction at different time scales
determine the optimal dataset size

In practical applications, due to the limited time available for

collecting image data of the P. leopardus, it is usually hard for

researchers to obtain enough data, so a trade-off between data

volume and predicting effect is needed. Thus, the whole dataset

was divided at different ratios to simulate the training set on

different time scales, which were used as the training set to train

the classifier and the remaining images as the test set for

prediction. When using images of days 1-20 (i.e., 20 images

per individual, 1000 images in total) as the training set, better

results could be obtained (0.960 ± 0.049). Then the curve of the

Macro-F1 changed slightly as the size of the training set

increased. When trained on images of days 1-45, a remarkable

improvement in predicting effect was obtained (0.983 ± 0.047).

Since the test set was small, which only had images from days 46-

50 when using images from days 1-45 as the training dataset, the

model may have a higher recognition rate for some specific

individuals coincidently.

After fixing the test set to images of 46-50 days, the predicting

effect of the classifiers trained on a series of image subsets of 1-45

days, compared with the image set of 1-45 days. The results showed

that the average Macro-F1 score increased with the increasing

subset size for the models. It then plateaued when using images

of days 1-20 for training and more selected days. The predicting

effect slight increased training with images of days 1-40 and days 1-

45, which may be a serendipitous result caused by the small test set.

In addition, because the images faithfully reflect a continuous

morphological change of P. leopardus over time, the images of

days 1-45 were temporal continuity with the test set of days 46-50,
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which might be another reason for the models to achieve the above

best prediction.
4.3 Reliability of CNN-based recognition
methods in long-term tracking

In the breeding work, breeders require individuals to be

traceable for a long time using tagging methods, so it is necessary

to ensure that the CNN-based method can achieve a comparatively

high correction identification ratio of individuals for a continuous

period. In our tracking experiments, we found that the performance

of predicting effects showed large differences for some individuals.

For example, the CNN-based method had a poor predicting effect

on some individuals using small-size training sets, probably because

the shape and texture features of these individuals were more

similar to each other. If we expanded the training set, the model

performed highly accurate recognition for these hard-to-identify

individuals, showing that the CNN-based method needs large

numbers of training images to obtain temporal-stable features for

individual long-term tracking.

Most of the traditional tagging methods involve puncturing

and destroying the body wall of P. leopardus, which can easily

make them die due to wound ulceration. Meanwhile, the

retention rate of the label fluctuates greatly due to the choice

of the labeling tool, the experimental individual, and the

operation methods. Generally speaking, the retention rate for

one month is between 50% and 80%. The above two types of

problems make it difficult to apply traditional tagging methods

to the tagging work of aquatic animal breeding (Jepsen et al.,

2015). Our method can also save time and cost less in

comparison with molecular methods for the individual

tracking, especially in a large population. For 100 individual

samples, it would take approximately 14 days for good

identification with the traditional molecular methods (Wang,

2016). In addition, these methods are generally laborious and

time-consuming and sometimes require invasive operations that

need a relatively large amount of sample materials, which would

require the sacrifice of animals under study to ensure a sufficient

amount of DNA for individual recognition (Mao et al., 2013).

However, our method can achieve a high-throughput operation

with aid of an ordinary digital camera, and even mobile phones

and can reduce the workload to just less than 1 hrs. Therefore,

we would propose that the use of CNN-based image recognition

method has a great applying potential in the tagging work for

P. leopardus.
4.4 Possible improving directions
of model

In this study, the CNNs were trained on images of 50 days,

which were randomly selected in the period. The sample size was
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relatively sufficient for training. However, in the actual breeding

work, there are often more individuals. It is necessary to increase

individuals in the subsequent study to explore the upper limit of

the individuals that can be classified by the CNNmethod to meet

the actual needs. Fortunately, many multiclassification models

are now available, and perform well. Although the CNN

approach outlined above has great potential, there are several

outstanding challenges with applying CNNs to a wider spectrum

of problems. One important obstacle is the large amount of

training data required by CNNs. This challenge includes both

the generation of large labeled training examples and time- and

memory-efficient training with these large examples given

limited computational resources. Fortunately, continued

improvements in simulation speed and the efficiency of CNN

training (Chilimbi et al., 2014; Urs et al., 2017) are mitigating

this problem.

Another challenge with the application of CNNs is that their

performance can be sensitive to network architecture (Szegedy

et al., 2015). There is no underlying theory for selecting optimal

network architecture, though improved architectures are sure to

continue to arise, and automated methods exist for optimizing

the many hyperparameters of a given architecture (Snoek et al.,

2012). Though we uncover some promising CNN architectures

for the recognition of P. leopardus, we suspect that substantial

improvements can still be made. Meanwhile, length calibrators

(e.g., rulers) can be added to the field of view for photograph, so

that the difference in relative size among individuals can be

involved in the dataset, which may improve the performance of

model in the temporal tracking task. Furthermore, if more

lightweight network architectures such as MobileNets (Li et al.,

2012) are used, it is promising to deploy the recognition systems

on mobile device as applications to enable mobile and real-time

recognition of P. leopardus.
5 Conclusion

In this study, a dataset involving images of 50 P. leopardus

individuals was obtained by continuous photography in 50

consecutive days. Then we performed prediction using

different classifiers with different feature extraction methods

and compare the predicting effect on the dataset. The results

shows that the feature extraction method based on deep CNN

model ResNet50 with PDE-based multiscale decomposition

segmentation method performed well in the recognition task

of P. leopardus. The prediction results on training sets of

different sizes show that the model achieves satisfactory

prediction results when the number of images per individuals

in training set reaches 20. Temporal tracking recognition

experiments on different time scales showed that the deep

CNN model ResNet50 with PDE-based segmentation method

can recognize individuals over a longer time span with better
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accuracy than other invasive tagging methods. The results of this

study will provide an important reference for the development of

non-invasive tagging methods based on deep learning and the

characterization of complex traits of P. leopardus. In the future,

we will increase the population to further verify our conclusion.
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