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Introduction

Aquatic species naturally live in water environment, therefore stress brought on by

alterations in the environmental conditions directly affects them (Huo et al., 2021). The

growth, survival and distribution of marine organisms are largely influenced by

environmental factors like water temperature and dissolved oxygen (DO) (Coutant,

1985; Gobler et al., 2014). By the end of the century, it is expected that global

temperatures will rise by at least 2°C, but ocean DO concentrations will drop by 4-7%

(Matear and Hirst, 2003; Hoegh-Guldberg et al., 2007). Since oxygen becomes less soluble

as temperature rises, heat stress and hypoxic stress frequently coexist (Huo et al., 2020).

The sea cucumber Apostichopus japonicus is an echinoderm with considerable

commercial and ecological significance (Huo et al., 2020). As an aquatic

poikilothermal animal, the physiological activities (i.e., digestive function, immunity,

and antioxidant defense) of sea cucumber are directly influenced by water temperature

and dissolved oxygen. The suitable temperature range for A. japonicus growth is between

15°C and 18°C (Dong et al., 2006), and when the temperature exceeds 26°C and persists

for more than 10 days, massive mortality would occur in farmed sea cucumbers.

Moreover, hypoxia is typically seen as occurring when dissolved oxygen levels drop
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below 2 mg·L-1 (Wu, 2002). An earlier study illustrated that A.

japonicus could survive at hypoxic condition (2 mg·L-1) in a

short time, but its physical status and movement would be

affected (Huo et al., 2018). The A. japonicus mainly relies on

non-specific immunity, and the humoral immune response is

one of its main defense reactions (Shao et al., 2018). The

coelomic fluid of A. japonicus is similar to lymphatic fluid,

and the cells inside work together with various humoral immune

factors to form an immune response. Therefore, it is necessary to

investigate the variations of enzyme activity in the coelomic fluid

of A. japonicus to reveal how that species reacts to

environmental challenges.

The activity of digestive enzymes is one of the most

commonly used indicators to evaluate the digestive capacity,

nutritional biochemistry and physiological status of the

organism (Zhang et al., 2014). A. japonicus would reduce

feeding and the digestive tract would be degraded when water

temperature increases and dissolved oxygen decreases (Xu et al.,

2015; Huo et al., 2018), and the digestive functions were

potentially negatively affected (Huo et al., 2018). Therefore, the

digestive function of A. japonicus may be altered under

environmental stress, and to investigate this change, we could

check digestive enzyme activities.

Environmental stresses could lead to an increase in reactive

oxygen species (ROS) in the organism (Das and Roychoudhury,

2014). To avoid the damage caused by ROS, organisms have

evolved various types of antioxidant systems, including non-

enzymatic antioxidants represented by vitamin C and vitamin E

and enzymatic antioxidants represented by superoxide

dismutase (SOD) and catalase (CAT) (Tan et al., 2020). The

antioxidant enzyme family members are widely distributed in

the organism and regulate ROS levels thus acting as antioxidants

and play crucial roles in response to stress. It is necessary to

identify the changes of antioxidant enzymes in A. japonicus

under adverse environment. In this study, 16 enzymes related to

immune defense, digestive function, and antioxidant level were

measured to reveal the physiological response characteristics in

A. japonicus exposed to environmental stress. Our findings

would provide insight into the response and adaptation of sea

cucumber under the context of global climate change.
Methods

Experimental A. japonicus were collected from the coast of

Weihai, China, with a wet weight of 90-110 g. One-week

acclimatation in a tank containing aeration sand-filtered

seawater at a temperature of 16 ± 0.5°C before the formal

experiment. The normal control (NC) group was maintained

at a temperature of 16°C with sufficient aeration; the high

temperature (HT) group (heat stress group) was maintained at

a temperature of 26°C with sufficient aeration; the low dissolved

oxygen (LO) group (hypoxic stress group) was maintained at a
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mg·L-1; the high temperature and low dissolved oxygen (HL)

group (heat combined with hypoxic stress group) maintains at a

temperature of 26°C and a DO concentration of 2 mg·L-1. The

equipment used for temperature and DO change, and the

changing rate were same with the previous study (Huo et al.,

2020). Five replicates were set in each group and cultured in

separate tanks during the experiment. After 48h exposure, the

coelomic fluid of each A. japonicus was collected by sterile

syringe and rapidly frozen in liquid nitrogen, and then

transferred to a refrigerator at -80°C for storage.

A total of 16 enzyme activities involving immunity, digestion

and antioxidant ability were measured in this study, including

acid phosphatase (ACP), alkaline phosphatase (AKP) and

lysozyme (LZM), lipase (LPS), a-amylase (AMS), pepsin

(PEP), trypsin (TRY), SOD, glutathione peroxidase (GSH-PX),

CAT, succinate dehydrogenase (SDH), lactate dehydrogenase

(LDH), total antioxidant capacity (T-AOC), malondialdehyde

(MDA), peroxidase (POD), and phenol oxidase (PPO). All

enzyme activities were determined within one month of

sampling the coelomic fluid samples, and the commercial kits

used in this study were purchased from Nanjing Jiancheng

Biological Research Institute (Nan Jing, China) and tested

according to the instructions. Specifically, the kit number for

the enzymes assay were listed in Table S1. The obtained data

were statistically analyzed by SPSS19 software (IBM Corp.,

Armonk, NY, USA). The significance of the differences

between the treated and comparison groups for each enzyme

was analyzed by t-test and the statistical significance threshold

was set at P < 0.05. Bar graphs were plotted using Prism7

software (GraphPad Software Inc., USA).
Data description

As the immune response in A. japonicus is a typical non-

specific immune response, enzymes like ACP, AKP, and LZM

may be able to aid in the complete destruction of foreign

compounds after they have passed through the organism’s first

line of defense (Wang et al., 2015). In this study, the activity of

the three enzymes related to immune defense was measured

(Figure 1). Compared with the normal environmental condition,

the activity of ACP was significantly higher in A. japonicus under

hypoxic stress (P < 0.05), and the changes of AKP activity were

not significant under the three environmental stresses; the

activity of LZM was significantly higher in A. japonicus under

heat combined with hypoxic stress (P < 0.05). This could be that

more adenosine triphosphate (ATP) was needed to maintain

normal metabolic level when A. japonicus exposed to

environment stress, and the inorganic phosphate required for

ATP synthesis can be produced by the hydrolysis of phosphate

by ACP and AKP (Zheng et al., 2014). The results suggested that

supply of potential metabolic high energy demand was
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enhanced, thus providing more energy to adapt to the adversity.

Lysozyme is an important innate immune factor widely present

in the endothelial cells and body fluids of echinoderms that kills

germs and shields against bacterial infection (Canicatti and

Roch, 1989). The increased LZM activity suggested that

phagocytic activity of phagocytes may be elevated. A high

temperature also caused an increase in serum lysozyme levels

in Atlantic halibut Hippoglossus hippoglossus L. (Langston et al.,

2002). According to the findings, the immune defense

mechanisms were induced in A. japonicus in response to

environmental stress, the organism’s defense against foreign

substances was enhanced.

In this study, four enzymes related to digestive function were

selected for activity measurement, including LPS, AMS, PEP and

TRY. The results showed that the LPS activity was significantly

reduced under hypoxia (P < 0.01) and heat combined with

hypoxic stress (P < 0.05); AMS activity was highly significantly

reduced under heat and heat combined with hypoxic stress (P <

0.01); PEP activity was extremely significantly reduced under

heat combined with hypoxic stress (P < 0.001); and TRY activity

was significantly reduced under heat stress (P < 0.05) and

hypoxic stress (P < 0.01) (Figure 1). In the previous of

yellowtail kingfish Seriola lalandi, TRY, LPS and AMS enzyme

activities were altered by temperature but did not seem to be

impacted by dissolved oxygen concentration (Bowyer et al.,

2014); PEP and AMS activities also significantly changed by

temperature in the leopard coral grouper Plectropomus

leopardus (Sun et al., 2015). Under environmental stress, A.

japonicus undergoes degeneration of the intestine and
Frontiers in Marine Science 03
respiratory tree (Xu et al., 2015; Huo et al., 2018), and may

even occur evisceration. Substantial changes in these digestive

organs are also responsible for the decrease in digestive enzyme

secretion and activity. The decrease in digestion-related enzyme

activities in A. japonicus under environmental stress indicated

that there was a negative impact of environmental stress on the

digestive function of A. japonicus.

Environmental stress may lead to an increase in ROS, which

could oxidize cellular components and damage cell membrane.

The imbalance between the production and clearance of ROS

will cause oxidative stress (Halliwell and Gutteridge, 2001; Kong

et al., 2012). To assess the oxidative stress response of A.

japonicus under environmental stress, nine enzyme activities

were measured in this study (Figure 2), including SOD, GSH-PX,

CAT, SDH, LDH, MDA, POD, PPO, and T-AOC. The T-AOC

was significantly reduced under heat and heat combined with

hypoxic stress (P < 0.05); SOD was significantly reduced, and

MDA were extremely significantly increased under hypoxia and

heat combined with hypoxic stress (P < 0.001). These suggested

that oxidative stress brought on by environmental stress results

in lipid peroxidation and caused oxidative damage to organisms.

SDH activity was significantly reduced heat combined with

hypoxic stress (P < 0.05), suggesting that aerobic oxidation

capacity was suppressed, and the tricarboxylic acid cycle was

impacted. POD and PPO activity were significantly increased

under heat stress; the activity of CAT was significantly reduced

under all three types of environmental stresses. PPO could

oxidize phenolic substrates to unstable quinones (Cerenius

et al., 2008); POD has the property of catalyzing the oxidation
A B
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FIGURE 1

Activities of immune and digestive enzymes in A. japonicus under environmental stresses (A). alkaline phosphatase (AKP); (B) acid phosphatase
(ACP); (C) lysozyme (LZM); (D) lipase (LPS); (E) a-amylase (AMS); (F) pepsin (PEP); and (G) trypsin (TRY); *: P < 0.05; **: P < 0.01; ***: P < 0.001).
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reaction between hydrogen peroxide (H2O2) and hydrogen

donors (Şişecioğlu et al., 2010), and CAT could catalyze the

intracellular hydrogen peroxide decomposition (Wang et al.,

2016). Therefore, by altering their activity to reduce the cell

damage caused by excessive free radicals, A. japonicus could

adapt to the adversity. The activity of GSH-PX and LDH did not

significantly change; It is possible that these two enzymes did not

play such crucial role in the oxidative stress defense in A.

japonicus. It is also possible that these two indicators are not

sensitive to environmental stress in A. japonicus coelomic fluid.

The oxidation status influenced by environmental changes has

been reported in aquatic animals, including the shrimp

Litopenaeus vannamei (Liu et al., 2015), the crab Paralomis

granulosa (Romero et al., 2011), the fish Carassius auratus

(Sun et al., 2012), Micropterus salmoides (Sun et al., 2020) and

the scallop Chlamys farreri (Chen et al., 2007). For example, the
Frontiers in Marine Science 04
results of decreased SOD and CAT were in accordance of the

crucian carp Carassius auratus in hypoxic condition (Sun et al.,

2012). Increased T-AOC and GSH-Px activities were also found

in heat-stressed largemouth bass Micropterus salmoides (Sun

et al., 2020). It was suggested that various environmental stresses

resulted in varing degrees of oxidative stress response, and these

enzymes with altered activity may be vital in protecting A.

japonicus from oxidative damage.

To conclude, the coelomic fluid is an important component in

sea cucumbers to defense against undesirable environments. When

exposed to the environmental stress, digestive function was

suppressed, immune system was induced, and the antioxidant

enzymes changed in varying degrees in A. japonicus. The

integrated regulation of immunity, digestion, oxidative stress,

and other associated enzymes is a series of adaptive mechanisms

made by the A. japonicus to adapt to the extreme environment.
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FIGURE 2

Activities of antioxidative enzymes in A. japonicus under environmental stresses (A). superoxide dismutase (SOD); (B) malondialdehyde (MDA);
(C) glutathione peroxidase (GSH-PX); (D) catalase (CAT); (E) total antioxidant capacity (T-AOC); (F) lactate dehydrogenase (LDH); (G) succinate
dehydrogenase (SDH); (H) peroxidase (POD); and (I) phenol oxidase (PPO); *: P < 0.05; **: P < 0.01; ***: P < 0.001).
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Our results provide a better understanding of how the A. japonicus

survives in adversity in the context of global change.
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