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Effect of hyposaline stress on
the release of dissolved organic
carbon from five common
macroalgal species

Jiajia Chen1,2,3, Dehua Ji1,2,3, Yan Xu1,2,3, Changsheng Chen1,2,3,
Wenlei Wang1,2,3, Chaotian Xie1,2,3* and Kai Xu1,2,3*

1Fisheries College, Jimei University, Xiamen, China, 2Key Laboratory of Healthy Mariculture for the
East China Sea, Ministry of Agriculture, Xiamen, China, 3Fujian Engineering Research Center of
Aquatic Breeding and Healthy Aquaculture, Fujian Development and Reform Commission,
Xiamen, China
Macroalgae are important primary producers in coastal waters; they have high

carbon sink potential and are often subjected to hyposaline stress in their natural

habitats. The effect of hyposaline stress on dissolved organic carbon (DOC) release

from macroalgae remains to be studied in depth. In this study, five common

intertidal macroalgae in coastal waters of Fujian Province, China—Pyropia

haitaneisis, Gracilaria lemaneiformis, Sargassum thunbergii, Enteromorpha

prolifera, and Ulva lactuca—were used as research materials to investigate the

effects of 6-h hyposaline treatments (5 PSU, 0 PSU) on the growth, DOC release

rate, photosynthesis, respiration, and contents of carbon (C), nitrogen (N), and

phosphorus (P). Our results showed that, although there were significant

interspecific differences in the tolerance of the five species of macroalgae to

low salinity, the DOC release rate of macroalgae increased overall with decreasing

salinity, while the photosynthetic rate showed the opposite trend. Hyposaline

treatments reduced the net photosynthetic rate of macroalgae, as the net

photosynthetic rate of all five species decreased by more than 50% and 75%

under the 5 PSU and 0 PSU treatments, respectively. The tissue C contents of P.

haitaneisis, G. lemaneiformis, and E. prolifera increased significantly with

decreasing salinity, by 6.90%, 40.15%, and 43.80% at 0 PSU, respectively.

However, the tissue C contents of S. thunbergii and U. lactuca were not

influenced or were slightly decreased by low salinity. These results suggest that

short-term hyposaline treatment has a dual effect on organic carbon

accumulation of macroalgae by inhibiting photosynthetic carbon fixation and

increasing DOC release, and this in turn may have a large impact on the carbon

cycle in macroalgae enrichment areas.
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1 Introduction

Owing to increasing global warming, the topics of

greenhouse gas emission reduction and carbon sequestration

have attracted worldwide attention. Our planet includes two

main categories of primary producers: marine phytoplankton

and terrestrial plants, each accounting for about 50% of global

net primary productivity (Field et al., 1998; Schlesinger and

Bernhardt, 2020). The carbon fixed by marine photoautotrophs

(including macroalgae, phytoplankton, and seagrasses) is

generally referred to as “Blue Carbon” (Nellemann et al. 2009;

Krause-Jensen et al., 2018; Raven, 2018; Gao et al., 2022). During

the growth process, macroalgae convert inorganic carbon into

organic carbon through photosynthesis, and part of this organic

carbon is involved in the formation of algal tissues, while the

other part is released into the environment as dissolved organic

carbon (DOC) and particulate organic carbon (POC). Part of the

POC and DOC are eventually exported to the deep sea to be

sequestered; this is the carbon sink formation mechanism of

macroalgae (Krause-Jensen and Duarte, 2016; Krause-Jensen

et al., 2018). Some economically important macroalgae have

already been established in complete industrial chains and

therefore have greater potential for application in carbon

sequestration and sink enhancement (Raven, 2018; Chen et al.,

2020a; Gao et al., 2021; Gao et al., 2022; Tian et al., 2023).

However, the current understanding of macroalgal-mediated

carbon sink processes is not sufficiently advanced to accurately

assess the carbon sink potential of macroalgae (Paine et al., 2021;

Hurd et al., 2022).

The mechanism of organic matter release from algae is

generally considered to include two types: active release and

passive leakage (Thornton, 2014; Paine et al., 2021). Overflow is

a typical example of active release as it results in the leaching of

DOC from cells when the production capacity of algal

photosynthesis exceeds consumption (Hatcher et al., 1977;

Fogg, 1983; Livanou et al., 2019). This DOC active release

mechanism can avoid the excessive accumulation of

photosynthetic products that leads to algal damage and thus

can maximize the utility of ribulose-1,5-bisphosphate

carboxylase (Rubisco). Since the released organic carbon and

the release processes are closely related to photosynthesis and

respiration, it is thought that those factors that could influence

these two metabolic pathways may alter the release of organic

carbon (Thornton, 2014; Paine et al., 2021). In this manner,

stressful growth conditions due to changes in CO2

concentration, temperature, light, salinity, and photoperiod

can indirectly but strongly increase the release of organic

carbon (Paine et al., 2021). However, the effects of

environmental stresses on organic carbon release from

macroalgae lack in-depth study.

Fujian Province ranks first in China in terms of production

of macroalgae, and it has abundant wild macroalgae resources
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(Chen et al., 2020a; Fishery-Department-of-China, 2021). The

tides in Fujian Province are semi-diurnal, and the macroalgae at

the high tide zone can experience a maximum of 6 h of

desiccation. Moreover, Fujian is one of the provinces of China

with the highest average annual rainfall, up to 2,432.6 mm

(Fujian-Meteorological-Bureau, 2021). As a result, intertidal

macroalgae in Fujian coastal waters are often under pressure

from hyposaline stress. In addition, many macroalgae are found

in estuaries where the salinity of seawater depends on the mixing

ratio of seawater and freshwater and thus is highly variable; for

example, the salinity falls in the range of 0.81–50 PSU (Hurd

et al., 2014; Ma, 2021). This is another cause of hyposaline stress.

It has been shown that hyposaline stress due to rainfall is an

important driver of DOC release from the macroalgae

Enteromorpha prolifera , Chondrus crispus, and Fucus

vesiculosus (Sieburth, 1969; Pregnall, 1983). However, such

studies are few, and it is uncertain whether the conclusions are

widely representative.

Based on the above analyzation, we hypothesized that

hyposaline stress may increase DOC release from macroalgae,

resulting in an underestimation of the carbon sink potential of

macroalgae. Therefore, this study analyzed the effects of

hyposaline stress on the growth, organic matter release rate,

and tissue C, N, and P contents of five common intertidal

macroalgae in the coastal areas of Fujian Province, China, and

preliminarily analyzed the biogeochemical effects of hyposaline

stress on the carbon sink process mediated by macroalgae.
2 Experimental materials
and methods

The W28 strain of P. haitaneisis was obtained from the

Laboratory of Germplasm Improvements and Applications of

Pyropia in Jimei University of Fujian Province. Gracilaria

lemaneiformis was obtained from the culture raft. The

collection time and locations of wild Sargassum thunbergii,

Enteromorpha prolifera, and Ulva lactuca are shown in

Table 1. The collected algae were quickly transported back to

the laboratory, rinsed at least three times with sterilized seawater

to remove impurities, and placed in five liter glass bottles for

temporary incubation for 3–5 days. The photoperiod was 12

L:12 D, and the light intensity was set at 100 mmol m-2 s-1.

The healthy algae were selected and rinsed again with

sterilized seawater three times and placed in 500 mL glass

bottles. The algae were treated with three salinities (0 PSU, 5

PSU, and 30 PSU) for 6 h. During the incubation period, the

cultures were aerated and irradiated with a light intensity of 100

mmol m-2 s-1. The incubation temperatures were the same as the

temperature at the time of algal collection (Table 1). Different

salinities of seawater were taken from natural seawater and

ultrapure water.
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2.1 DOC release rate

A seawater sample of 20 mL was collected from each bottle

and filtered using pre-combusted (450°C, 4 h) GF/F filters (with

a pore size of 0.70 mm, Whatman) at low vacuum pressure. The

filtered water samples were stored at −20°C until analysis. All

glassware was combusted at 450°C for 4 h in a muffle furnace

followed by immersion in 0.1 mol/L HCl solution for more than

24 h, and finally rinsed with ultrapure water. Dissolved organic

carbon (DOC) in the filtered water samples was determined with

a total organic carbon analyzer (TOC-VCPH, Shimadzu). The

DOC release rate (mg g-1 FW h-1) was calculated as follows:

DOC release rate  =   DOCt  −  DOC0ð ÞV= FW �  6 hð Þ,
where DOC0 and DOCt are DOC concentrations (mg L-1) before

and after 6 h of incubation, respectively; V is the volume of

seawater (L); FW is the fresh weight of algal tissue (g).
2.2 Tissue C, N, and P contents

After 6 h of incubation, the algal samples were quickly rinsed

with ultrapure water, and then the surface water was gently

removed with gauze. Algal samples were dried at 60°C and

ground into powder. The contents of C and N in algal tissues

were analyzed using a Costech ECS CHNSO elemental analyzer

(Costech Analytical Technologies, USA). P contents were

determined by an automatic chemical analyzer (CleverChem380,

Germany) according to the method of Solórzano (1980).
2.3 Photosynthesis and respiration

The algal samples were dark-treated in trays for 15 min, and

then the maximum quantum yield of photosystem II, fv/fm, was

measured using an underwater modulated fluorometer (Walz

DivingPAM, Germany) or a chlorophyll fluorometer (Qubit

Systems FluorPen, Czech Republic). The equation for fv/fm is

as follows:

fv=fm  =   fm  −  f0ð Þ=fm,
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where f0 and fm are the minimum and maximum fluorescence

of a dark-adapted sample, respectively; f0 is the fluorescence

value obtained when all reaction centers of photosystem II are in

the open state; fm is the fluorescence value obtained when all

reaction centers are in the closed state.

The rates of photosynthesis and respiration were measured

by the light-dark bottle technique. The algal tissues were

transported into dissolved oxygen bottles filled with seawater

and then incubated under light or dark for 6 h at different

salinity treatments. The bottles without algae were set at blanks.

The light intensity for the light bottles was 100 mmol m-2 s-1.

After incubation, the oxygen concentration of seawater was

measured based on Winkler’s method using an automatic

titrator (Mettler-Toledo G20, Greifensee, Switzerland)

equipped with a DMi140-SC platinum electrode (Shriwastav

et al., 2017). The net photosynthetic rate, respiration rate, and

total photosynthetic rate were calculated from the difference in

dissolved oxygen concentrations in light, dark, and blank bottles.

The calculation formulas were as follows:

Pn  =   Ol  −  Obð Þ �  V= FW �  6 hð Þ,

Rd  =   Od  −  Obð Þ �  V= FW �  6 hð Þ,

Pt  =  Rd  +  Pn,

where Od, Ol and Ob are dissolved oxygen concentrations in

dark, light, and blank bottles (mg·L-1), respectively; V is the

culture volume (L); FW is the fresh weight of algal tissues (g); Pn

is the net photosynthetic rate (mg·g-1·h-1); Rd is the dark

respiration rate (mg·g-1·h-1), and Pt is the total photosynthetic

rate (mg·g-1·h-1).
2.4 Data statistics and analysis

The experimental data were processed and statistically

analyzed using the software SPSS 26.0 and Excel 2010. One-

way ANOVA was used to compare the differences between

different data groups, with p< 0.05 indicating significant

differences and p< 0.01 indicating highly significant differences.
TABLE 1 Sampling information for macroalgae.

Macroalga Sample time Location Culture temperature

Pyropia haitaneisis 2021.11.19 College of Fisheries, Jimei University, Xiamen, Fujian Province 21°C

Gracilaria lemaneiformis 2022.02.26 Nanri Island, Putian City, Fujian Province 21°C

Sargassum thunbergii 2021.12.04 Dongxiang Island, Pingtan County, Fuzhou City, Fujian Province 17°C

Enteromorpha prolifera 2021.12.30 Longzhou pool, Jimei District, Xiamen City, Fujian Province 21°C

Ulva lactuca 2022.01.18 Dongshan Nanyu, Zhangzhou City, Fujian Province 21°C
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3 Results

3.1 Photosynthesis and respiration

As shown in Figure 1, a salinity of 5 PSU did not significantly

influence the fv/fm of P. haitaneisis or S. thunbergii, while this

level significantly decreased the fv/fm of the other three species

G. lemaneiformis, E. prolifera, and U. lactuca (Figure 1). In

addition, 0 PSU strongly decreased fv/fm values of all five

macroalgal species compared with 30 PSU.

The net (Pn) and total (Pt) photosynthetic rates of all five

macroalgal species decreased significantly with decreasing

salinity (Figures 2A–E, p< 0.05). Compared with 30 PSU, A

low salinity of 5 PSU decreased Pn of P. haitaneisis, G.

lemaneiformis, S. thunbergii, E. prolifera, and U. lactuca by

77.6%, 84.26%, 81.36%, 56.18%, and 58.97%, respectively.

Except for G. lemaneiformis, 0 PSU further decreased Pn of

the other four macroalgal species (p< 0.01); in particular, Pn of S.

thunbergia decreased to a negative value (p< 0.01).

The dark respiration rates (Rd) of G. lemaneiformis and E.

prolifera did not change significantly with the decrease in salinity

(p > 0.05), while Rd of the other three species decreased with

decreasing salinity (p< 0.05). Compared to 30 PSU, 0 PSU

decreased the Rd of P. haitaneisis, S. thunbergii, and U. lactuca

by 61.35%, 42.18%, and 71.55%, respectively (p< 0.05). The Rd

of U. lactuca was unchanged by the 5 PSU treatment (p > 0.05).

A further decrease in salinity from 5 PSU to 0 PSU significantly

decreased the Rd of P. haitaneisis (p< 0.01) but did not decrease

the Rd of S. thunbergii or U. lactuca (p > 0.05).

The response trends of total photosynthetic rates (Pt) of all

five macroalgal species were almost the same as net

photosynthetic rates (Pn). A low salinity of 5 PSU decreased
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Pt of P. haitaneisis, G. lemaneiformis, S. thunbergii, E. prolifera,

and U. lactuca by 74.19%, 78.29%, 78.47%, 52.01%, and 57.97%

(p< 0.01), respectively. Except for G. lemaneiformis, a further

decrease to 0 PSU further reduced Pt of the other four

macroalgal species (p< 0.05).
3.2 Release of dissolved organic carbon

As shown in Figure 3, the DOC release rates of five

macroalgal species increased with decreasing salinity.

Compared with the 30 PSU treatment, 5 PSU did not

significantly increase the DOC release rates of P. haitaneisis or

E. prolifera (p > 0.05), while those of the other three seaweeds

were significantly enhanced (p< 0.05). Compared with the 5 and

30 PSU treatments, 0 PSU significantly increased the DOC

release rate of all five macroalgal species. At 0 PSU, the DOC

release rate of G. lemaneiformis was the highest, more than 3.5

times that of the other four macroalgal species.
3.3 Tissue C, N, and P contents
and ratios

With decreasing salinity, the tissue C contents of P. haitaneisis,

G. lemaneiformis, and E. prolifera were elevated significantly (p<

0.01), while the C contents of S. thunbergii did not change

significantly (p > 0.05) and that of U. lactuca decreased

significantly (Figure 4A, p< 0.01). Compared with 30 PSU, the 0

PSU treatment resulted in 6.90%, 40.15%, and 43.79% increases in

the C contents of P. haitaneisis, G. lemaneiformis, and E. prolifera,

respectively. The C contents of U. lactuca decreased (p< 0.01) by
FIGURE 1

Effects of hyposaline stress on fv/fm of five macroalgal species. Different lowercase letters only indicate significant differences between the
three salinity treatments for each macroalgal species. Data are presented as mean ± SD, n = 4. p< 0.05 was considered significant.
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2.54% and 2.45% under 5 PSU and 0 PSU, respectively, compared

to the 30 PSU treatment, but there was no significant difference

between two low salinity treatments (p > 0.05). The N and P

contents of P. haitaneisis did not differ significantly at different

salinities (p > 0.05), and the N and P contents of G. lemaneiformis

showed an increase followed by a decrease with decreasing salinity

(p< 0.01). The N contents of S. thunbergii showed a significant

increase (p< 0.01) only at 0 PSU, while the N contents of E. prolifera

showed a significant decrease (p< 0.05) only at 0 PSU. In addition,

the P contents of S. thunbergii and E. prolifera did not change

significantly (p > 0.05), and the N and P contents of U. lactuca

increased and decreased, respectively, with decreasing salinity

(Figures 4B, C, p< 0.01).
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The C:N ratios of P. haitaneisis, E. prolifera and G.

lemaneiformis decreased with salinity (Figure 5A, p< 0.05), while

those of U. lactuca and S. thunbergii showed a significant increase

(p< 0.05). The C:P ratios andN:P ratios of all fivemacroalgal species

either slightly changed (p > 0.05) or significantly increased

(Figures 5B, C, p< 0.05) by hyposaline stress. A low salinity of 0

PSU significantly increased the C:P ratios of G. lemaneiformis, E.

prolifera, and U. lactuca by 97.56%, 39.33%, and 88.06%,

respectively (p< 0.01), while increasing the N:P ratios of G.

lemaneiformis and U. lactuca by 20.68% and 115.79%,

respectively (p< 0.01).

This study also provides a comprehensive analysis of the

relationship between elemental ratios and elemental contents by
A B

D

E

C

FIGURE 2

Effects of hyposaline stress on net photosynthetic rate (Pn, three left bars), dark respiration rate (Rd, three middle bars) and total photosynthetic
rate (Pt, three right bars) of five macroalgal species P. haitaneisis (A), G. lemaneiformis (B), S. thunbergii (C), E. prolifera (D), and U. lactuca (E).
Different lowercase letters only indicate significant differences between the three salinity treatments for each parameter. Data are presented as
mean ± SD, n = 4. p< 0.05 was considered significant.
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combining data from all five macroalgal species. The C:N ratios

of the algal tissues can be expressed as an exponential function of

tissue N contents (R2 = 0.8755, Figure 6A), while C:N ratios

decreased linearly with increasing P contents (R2 = 0.4100, p<

0.001, Figure 6B). The C:P ratios not only decreased linearly with

increasing N contents (R2 = 0.4241, p< 0.001, Figure 6C) but also

can be expressed as an exponential function of P contents (R2 =

0.8624, Figure 6D).

The correlation analysis (Figure 7) revealed that salinity was

negatively correlated with DOC release rate (p< 0.01), tissue C

contents (p< 0.01), and C:P ratios (p< 0.05). In contrast, salinity

was positively correlated with Pn (p< 0.01), Pt (p< 0.01), fv/fm

(p< 0.01), and Rd (p< 0.05). The DOC release rate was negatively

correlated with Pn (p< 0.01), Pt, fv/fm (p< 0.05), and positively

correlated with tissue C content (p< 0.01), N:P (p< 0.01) and C:P

(p< 0.05) ratios.
4 Discussion

Macroalgae can release a large amount of DOC to the

environment during growth, and this makes macroalgae have

a high carbon sink potential (Krause-Jensen and Duarte, 2016;

Ortega et al., 2019; Watanabe et al., 2020; Li et al., 2022).

However, a variety of environmental stressors have significant

effects on DOC release frommacroalgae (Paine et al., 2021; Hurd

et al., 2022). This makes it difficult to assess the carbon sink

potential of macroalgae. For example, intertidal macroalgae

often face low salinity stress caused by rainfall or estuarine

flushing of freshwater, and there is a lack of research on the

effects of low salinity stress on DOC release frommacroalgae. To

this end, this study analyzed the effects of hyposaline stress on

common macroalgal species in coastal waters of Fujian Province,
Frontiers in Marine Science 06
China, and found that hyposaline treatment significantly

inhibited photosynthesis but significantly increased the DOC

release rate (Figure 2). Fujian is one of the province of China

with the highest average annual rainfall, up to 2,432.6 mm

(Fujian-Meteorological-Bureau, 2021). This suggests that the

assessment of the carbon sink contribution of macroalgae in

Fujian coastal waters must take into account the effects of

hyposaline stress.

The tolerance level of different macroalgal species to salinity

stress differs significantly (Hurd et al., 2014). This conclusion is

consistent with the results of present study. For example, a low

salinity of 5 PSU had no significant effect on the fv/fm of P.

haitaneisis or S. thunbergii (Figure 1), but significantly inhibited

the fv/fm of the other three macroalgal species. In addition, 0

PSU strongly reduced the fv/fm of all five species of macroalgae.

This study also found that compared to 30 PSU, hyposaline

stress significantly reduced the net photosynthetic rate and total

photosynthetic rate of all five macroalgal species (Figure 3). A

previous study also showed that the fv/fm of P. haitaneisis and

Sargassum fusiforme decreased significantly with the increase of

hyposaline treatment time (Chen et al., 2019; Yonemori et al.,

2022). Recent studies have shown that hyposaline treatment

causes osmotic damage to the cells of P. haitaneisis, resulting in

down-regulated expression of relevant genes and proteins

involved in photosynthesis, reduced light energy capture and

transfer efficiency, and reduced photosynthetic pigment content,

thus inhibiting photosynthesis (Wu et al., 2015; Feng et al., 2016;

Chen et al., 2019; Wen et al., 2022). These results suggest that 6 h

of hyposaline treatment inhibited the photosynthetic rate of

macroalgae and negatively affected PSII function.

Under normal growth conditions, about 14% of the carbon

fixed by photosynthesis is released by macroalgae to the

environment in the form of DOC (Chen et al., 2020a). The
FIGURE 3

Effects of hyposaline stress on the DOC release rate of five macroalgal species. Different lowercase letters only indicate significant differences
between the three salinity treatments for each macroalgal species. Data are presented as mean ± SD, n = 4. p< 0.05 was considered significant.
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present study found that hyposaline treatment significantly

increased the release rate of DOC from macroalgae (Figure 2)

while strongly decreasing the photosynthetic rate (Figure 3). A

previous study by Pregnall (1983) found that osmotic stress

caused by salinity fluctuations led to an increase in DOC release

from E. prolifera. The DOC release rate of E. prolifera increased

from 457.95 mmol C g DW-1 h-1 to 1290.59 mmol C g DW-1 h-1

when the salinity decreased from 30 PSU to 5 PSU (Pregnall,

1983). Similar results were reported by Sieburth (1969) in the
Frontiers in Marine Science 07
macroalgae Chondrus crispus and Fucus vesiculosus. These

studies and our results suggest that hyposaline stress causes a

double inhibition of organic carbon accumulation in macroalgal

tissue (Figure S1).

By analyzing the effect of hyposaline stress on the C contents

of macroalgal tissues, we found that hyposaline treatment

substantially increased (> 40%) the C contents of G.

lemaneiformis and E. prolifera but had a smaller effect (< 7%)

on the C contents of P. haitaneisis, S. thunbergii, and U. lactuca.
A

B

C

FIGURE 4

Effects of hyposaline stress on tissue carbon (A), nitrogen (B), and phosphorus (C) contents (%) of five macroalgal species. Different lowercase
letters only indicate significant differences between the three salinity treatments for each macroalgal species. Data are presented as mean ± SD,
n = 4. p< 0.05 was considered significant.
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Thus, there were significant interspecific differences in the effects

of hyposaline stress on the elemental composition of macroalgae

(Figure 4). A previous study found that P enrichment caused a

significant increase in tissue P concentrations of the three

macroalgal species Caulerpa serrulata, Laurencia intricate, and

Sargassum polyphyllum, but the increases were significantly

different among the three species (Reef et al., 2012). In

conclusion, the physiological responses of marine algae to

environmental factors such as salinity, CO2, light, temperature,

and nutrients are generally species-specific (Koch et al., 2013; Ji

et al., 2016; Ji and Gao, 2021).
Frontiers in Marine Science 08
Macroalgae need to absorb large amounts of N and P from the

environment during growth, and thus large-scale cultivation of

macroalgae can alleviate the offshore eutrophication problem and

thereby play an important role in the offshore N and P cycles (Xu

et al., 2008; Hurd et al., 2014; Mao et al., 2018). In this study, we

found significant interspecies differences in the effects of hyposaline

treatment on the N and P contents of macroalgae as well as the C:N:

P ratios (Figures 4, 5). This is further evidence that different species

have different levels of tolerance to low salinity (Figure 1). Many

studies have shown that C:N and C:P ratios are inversely correlated

with N and P contents (Chen et al., 2020b; Xu et al., 2021; Wang
A

B

C

FIGURE 5

Effects of hyposaline stresses on tissue C:N (A), C:P (B), and N:P (C) molar ratios of five macroalgal species. Different lowercase letters only
indicate significant differences between three salinity treatments for each macroalgal species. Data are presented as mean ± SD, n = 4. p< 0.05
was considered significant.
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FIGURE 7

Correlation analysis of salinity with DOC, photosynthetic parameters, tissue C, N, and P contents, and elemental ratios. “*” indicates a significant
difference (p< 0.05), “**” indicates an extremely significant difference (p< 0.01).
A B

DC

FIGURE 6

Correlations between N and C:N (A), P and C:N (B), N and C:P (C), and P and C:P (D) of macroalgal tissues.
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et al., 2022). The results of these studies are consistent with our

findings (Figure 6). Therefore, short-term hypersaline stress affects

the N and P metabolism of macroalgae, changing their N and P

contents and C:N:P ratios, and the resulting biogeochemical effects

need to be further investigated.

It is believed that large-scale macroalgae cultivation is a low-

cost, high-efficiency blue carbon strategy, which is why this method

has attracted a lot of attention (Gao et al., 2021; Yang et al., 2021;

Gao et al., 2022). China has abundant macroalgal resources

(including wild seaweeds and artificially cultivated seaweeds) and

12.5 million square kilometers of coastal aquaculture area, laying a

sufficient foundation for planning the cultivation of large seaweed

(Xiao et al., 2017). Therefore, macroalgal cultivation will help China

to achieve its carbon neutrality plan. However, the major

uncertainty of this method is the difficulty of quantifying the role

of macroalgae in the coastal carbon cycle (Paine et al., 2021; Hurd

et al., 2022). The present study suggests hyposaline stress needs to

be considered when quantifying DOC release from macroalgae.

Besides, a recent study found that macroalgal cultivation shaped the

microbial community structure by increasing dissolved oxygen,

decreasing inorganic nutrients, and releasing of DOC (Xu et al.,

2022). Thus, hyposaline stress may indirectly influence the

microbial community structure of the tidal zone. Further studies

are needed to comprehensively explore the ecological and

biogeochemical influence of hyposaline stress on macroalgae.
5 Conclusions

In this study, we found that the DOC release rates of five

common macroalgal species in the offshore waters of Fujian

Province, namely P. haitaneisis, G. lemaneiformis, S. thunbergii, E.

prolifera, andU. lactuca, all increased with decreasing salinity, while

photosynthetic rates decreased with decreasing salinity. Both

responses could seriously affect the accumulation of organic

carbon in tissues of macroalgae. There were significant

interspecific differences in the effects of low salinity stress on the

carbon, nitrogen, and phosphorus contents and their ratios in the

five macroalgal species, which may alter the competitive advantage

and ecological functions of macroalgae, thus affecting the offshore

carbon, nitrogen, and phosphorus cycles. This study showed that

hyposaline stress substantially altered the carbon metabolism of

macroalgae, especially increasing the DOC release rate from

macroalgae, and therefore the effects of salinity stress should be

considered in assessing the carbon sink potential of macroalgae.
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