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Assessing the reliability of
species distribution models in
the face of climate and
ecosystem regime shifts: Small
pelagic fishes in the California
Current System

Rebecca G. Asch1,2*, Joanna Sobolewska1 and Keo Chan1

1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States,
2Department of Biology, East Carolina University, Greenville, NC, United States
Species distribution models (SDMs) are a commonly used tool, which when

combined with earth systemmodels (ESMs), can project changes in organismal

occurrence, abundance, and phenology under climate change. An often

untested assumption of SDMs is that relationships between organisms and

the environment are stationary. To evaluate this assumption, we examined

whether patterns of distribution among larvae of four small pelagic fishes

(Pacific sardine Sardinops sagax, northern anchovy Engraulis mordax, jack

mackerel Trachurus symmetricus, chub mackerel Scomber japonicus) in the

California Current remained steady across time periods defined by climate

regimes, changes in secondary productivity, and breakpoints in time series of

spawning stock biomass (SSB). Generalized additive models (GAMs) were

constructed separately for each period using temperature, salinity, dissolved

oxygen (DO), and mesozooplankton volume as predictors of larval occurrence.

We assessed non-stationarity based on changes in six metrics: 1) variables

included in SDMs; 2) whether a variable exhibited a linear or non-linear form; 3)

rank order of deviance explained by variables; 4) response curve shape; 5)

degree of responsiveness of fishes to a variable; 6) range of environmental

variables associated with maximum larval occurrence. Across all species and

time periods, non-stationarity was ubiquitous, affecting at least one of the six

indicators. Rank order of environmental variables, response curve shape, and

oceanic conditions associated with peak larval occurrence were the indicators

most subject to change. Non-stationarity was most common among regimes

defined by changes in fish SSB. The relationships between larvae and DO were

somewhat more likely to change across periods, whereas the relationships

between fishes and temperature were more stable. Respectively, S. sagax, T.

symmetricus, S. japonicus, and E. mordax exhibited non-stationarity across

89%, 67%, 50%, and 50% of indicators. For all species except E. mordax, inter-

model variability had a larger impact on projected habitat suitability for larval
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.711522&domain=pdf&date_stamp=2022-08-25
mailto:aschr16@ecu.edu
https://doi.org/10.3389/fmars.2022.711522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.711522
https://www.frontiersin.org/journals/marine-science


Asch et al. 10.3389/fmars.2022.711522

Frontiers in Marine Science
fishes than differences between two climate change scenarios (SSP1-2.6 and

SSP5-8.5), implying that subtle differences in model formulation could have

amplified future effects. These results suggest that the widespread non-

stationarity in how fishes utilize their environment could hamper our ability

to reliably project how species will respond to climatic change.
KEYWORDS

species distribution models, small pelagic fish, forage fish, climate change
projections, non-stationarity, California Current
1 SPF refer to small-bodied fishes that live in the epipelagic zone (0-200

m), typically exhibit schooling behavior, and consume primarily a

planktivorous diet. The largest fisheries for SPF target species in the

order Clupeiformes, which includes sardines, anchovies, herrings,
1 Introduction

Marine fishes in many ecosystems have shifted their

distribution poleward and deeper as climate change has warmed

the oceans (Murawski, 1993; Perry et al., 2005; Hsieh et al., 2008;

Hsieh et al., 2009; Nye et al., 2009; Pinsky et al., 2013; Poloczanska

et al., 2013;Walsh et al., 2015). Many of these changes are occurring

at a rate faster than in terrestrial habitats (Sunday et al., 2012;

Poloczanska et al., 2013; Blowes et al., 2019; Pinsky et al., 2019).

Climate velocity, a measure of the rate of temperature change across

spatial gradients, has proven to be an accurate predictor of the

magnitude and direction of shifts in species distributions in many

ecosystems (Chen et al., 2011; Pinsky et al., 2013), although other

aspects of a species’ ecological niche also influence distribution

changes (McHenry et al., 2019). Throughout the 21st century,

climate models project that changes in species distribution will

continue unabated or further accelerate (Cheung et al., 2009;

Cheung et al., 2016b; Morley et al., 2018). Shifts in fish

distribution have implications for trophic interactions (Selden

et al., 2018), global biodiversity patterns (Cheung et al., 2009),

and food security (Golden et al., 2016; Free et al., 2019).

Many projections of changes in fish distribution, biomass, and

phenology under climate change are based on statistical models

referred to as species distribution models (SDMs), ecological niche

models, or bioclimate envelope models. These models link spatial

and temporal variations in organismal occurrence with

environmental variables (Elith and Leathwick, 2009). Based on

these empirical relationships, changes in environmental conditions

derived from climate models are used to project future shifts in

species occurrence or abundance. Due to the growing importance

of climate change, there has been a rise in studies using SDMs and

aligned models over the last 20 years (Figure 1).

A key assumption of SDMs is that the relationship between

organisms and environmental conditions is stationary and not

subject to changes due to variations in organismal abundance,

climate, or ecosystem state. Since statistically derived

relationship between a species and the environment form the

basis for SDM projections, non-stationarity in this relationship
02
could result in inaccurate projections of climate change impacts.

Assumptions about stationarity in relationships between fishes

and climatic variables have rarely been investigated (Litzow

et al., 2019), but it is imperative to do so to assess the

uncertainty associated with projections about how marine

conservation initiatives will fare under climate change. Among

planktonic organisms, such as dinoflagellates, diatoms, and

copepods, SDMs developed using data from one decade failed

to accurately project in species distribution during other decades

(Brun et al., 2016). This reflects the patchy distribution of

plankters, boom-bust cycles in abundance, and the potential

for advection of plankton by currents outside their preferred

habitat. Since projections made for copepods had greater model

skill than those for primary producers, SDMs may have

improved predictability for higher trophic level organisms,

such as fishes. Nonetheless, recent work suggests that non-

stationarity might be a common, albeit understudied, feature

among SDMs that project changes in fish distribution (Litzow

et al., 2018; Litzow et al., 2019; Puerta et al., 2019; Roberts et al.,

2019; Litzow et al., 2020; Muhling et al., 2020).

At least seven ecological, climatic, and statistical

mechanisms can lead to non-stationary fish-climate

relationships. First, non-stationarity could arise if key

variables influencing a species’ ecological niche are excluded

from an SDM. For example, many SDMs neglect to account for

interspecific relationships, such as predator-prey dynamics

(Fernandes et al., 2013). Second, over-parameterization of

models can lead to the appearance of non-stationarity if this

results in a relationship between an environmental variable and

fish distribution that is solely due to a statistical artifact. Third,

non-stationarity can result from density-dependent occurrence

patterns where a fish is found in its optimal habitat at low
menhadens, and shads.
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density but, as its abundance increases, spreads to additional

habitats to reduce interspecific competition (MacCall, 1990).

Such dynamics are especially common among small pelagic

fishes (SPF)1 (Barange et al., 2009). Fourth, overfishing can

truncate fish age structure, which can increase sensitivity to

climatic variables since younger and smaller fishes often exhibit

heightened sensitivity (Anderson et al., 2008). Fifth, at times,

fish distribution has been related to basin-scale climate indices,

such as the Pacific Decadal Oscillation (PDO), North Pacific

Gyre Oscillation, and North Atlantic Oscillation. Many of these

indices represent statistical compilations of several climatic

variables. If the relationship between these indices and local

climate variables changes over time (Joyce, 2002; Litzow et al.,

2018; Litzow et al., 2020), this can lead to non-stationarity

between species distribution and climate indices (Litzow et al.,

2018; Litzow et al., 2019; Puerta et al., 2019; Litzow et al., 2020).

Also, some species have been shown to react differently to

environmental conditions, such as temperature, depending on

the phase of climate oscillations likely due to the influence of

these oscillations on larval advection or interspecific

interactions (Roberts et al., 2019). Lastly, non-stationarity

across climate oscillations could occur because some climate

indices, such as the PDO, are detrended. Sixth, the distribution

of some species may be constrained by non-climatic factors,

such as depth, reliance on biogenic habitats, or lack of dispersal

corridors (Reglero et al., 2012; Asch et al., 2019). When such

constraints exist, organisms may be retained in their historical
Frontiers in Marine Science 03
habitats, even though the climate of those habitats has shifted.

This can result in a non-stationary relationship between

species and climate. Lastly, phenotypic plasticity, acclimation

to new conditions, or rapid adaptation could lead to changes in

how species distribution is related to climate (Donelson et al.,

2012; Anderson et al., 2013).

Despite numerous reasons why non-stationarity may occur,

there have been relatively few assessments of non-stationarity in

SDMs for marine fishes due to a paucity of spatially resolved,

long-term datasets that can be used to test historical changes in

how fish react to the environment. One such dataset that is well

suited to examine non-stationary, fish-climate relationships is

California Cooperative Ocean Fisheries Investigations

(CalCOFI). This program has surveyed ichthyoplankton along

six transects in its core region off southern California since 1951.

This region has been subject to several climate regime shifts that

affected living marine resources (McGowan et al., 2003; Di

Lorenzo et al., 2008; Peabody et al., 2018; Litzow et al., 2020),

making it a useful testbed for evaluating whether fishes react

differently to environmental variables during each phase of a

regime. Also, some of the fastest rates of species distribution

change in U.S. waters are projected to occur in this area (Morley

et al., 2018), making it an important region for studying

non-stationarity.

Our analysis of non-stationarity focuses on SPF since these

species account for approximately one-third of global fish catch

(Smith et al., 2011). Also, pelagic fishes are often more sensitive
FIGURE 1

Web of Science search examining the cumulative number of records in the scientific literature on species distribution models, habitat models,
ecological niche models, and bioclimate envelope models between 1970-2020. Five Web of Science searches were performed: (1) species AND
distribution AND model*; (2) habitat AND model*; (3) ecolog* AND niche AND model*; (4) environment* AND niche AND model*, and; (5)
bioclimate AND envelope AND model*. Results from the third and fourth search were combined in this figure.
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to climate-induced range shifts than demersal fishes (Murawski,

1993; Cheung et al., 2009; Walsh et al., 2015). SPF connect lower

trophic organisms in upwelling systems with higher trophic level

predators, such as piscivorous fishes, squid, seabirds, and marine

mammals (Cury et al., 2011; Pikitch et al., 2014; Kaplan et al.,

2017). Furthermore, their potential sensitivity to non-stationary

dynamics is likely since SPF exhibit boom-bust cycles of

abundance over multi-decadal periodicities (Schwartzlose

et al., 1999; Chavez et al., 2003; McClatchie et al., 2017).

More specifically, we focus on four species managed under

the Coastal Pelagic Species Fisheries Management Plan:

northern anchovy (Engraulis mordax), Pacific sardine

(Sardinops sagax), chub mackerel (Scomber japonicus), and

jack mackerel (Trachurus symmetricus) [PFMC (Pacific

Fishery Management Council), 2019]. Previous research has

shown that these species are sensitive to fluctuations in

oceanic conditions connected to climate variability and change

(Lluch-Belda et al., 1991; Checkley Jr et al., 2000; Reiss et al.,

2008; Rykaczewski and Checkley Jr, 2008; Weber and

McClatchie, 2010; Zwolinski et al., 2011; Weber and

McClatchie, 2012; Asch and Checkley Jr, 2013; Koslow et al.,

2013; Howard et al., 2020).

Non-stat ionary re la t ionships between SPF and

environmental conditions were observed in the California

Current System (CCS) in 2014-2017 when a marine heat

wave (MHW) resulted in sea surface temperature (SST)

anomalies exceeding three standard deviations above normal

conditions (Di Lorenzo and Mantua, 2016). Historically the

probability of adult S. sardinops occurrence declines when

temperature exceeds 18°C, but during this event the

probability of encountering S. sardinops peaked in some

areas warmer than >19°C (Muhling et al., 2020). While this

study did not detect similar incidents of non-stationarity when

examining data from 1980 through present, it was unclear

whether the rapid environmental change during the MHW was

the main cause for non-stationarity or if similar non-stationary

events might be observed if a longer time series were examined

(Muhling et al., 2020). We addressed the latter question by

determining if non-stationarity is prevalent in SDMs

developed for larval E. mordax, S. sardinops, S. japonicus,

and T. symmetricus between 1951-2015. This time series

emphasizes the period prior to the MHW. We first

determined if there were change points in time series of

climate indices, oceanic variables, and fish spawning stock

biomass (SSB). These change points are proxies for regime

shifts. For each period associated with a different regime, we

constructed a SDM for each species. Six metrics for identifying

non-stationarity were inspected to determine if the

relationships between fishes and oceanic conditions changed

across regimes. Lastly, we examined whether SDMs developed

under different regimes produce equivalent projections of

future changes in fish habitat suitability under low and high

greenhouse gas emissions.
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2 Materials and methods

2.1 Data sources

2.1.1 Larval fish data
CalCOFI has sampled E. mordax, S. sagax, S. japonicus, and

T. symmetricus larvae since 1951, with the highest concentration

of samples from a core region of southern California that

extends offshore from San Diego (33.0°N) to north of Point

Conception (35.1°N). CalCOFI data are publicly available from

the NOAA ERDDAP server.2 Data on oblique ring and bongo

net tows from January 1951 through April 2015 were

downloaded for CalCOFI lines 76-93.3. Study sites farther

offshore than CalCOFI Station 120 were filtered from this

dataset because these stations were sampled less consistently.

These criteria resulted in selection of 18,899 net tows. Sample

collection occurred monthly during the 1950s, near monthly

during the 1960s, 1970s, and early 1980s, albeit with substantial

gaps during the 1970s, and quarterly since 1985. The methods

for collecting and processing bongo and ring net samples were

described in Kramer et al. (1972) and changes to sampling

methodology were documented in Ohman and Smith (1995)

and Thompson et al. (2017).

2.1.2 Oceanic data
Four environmental variables were selected for inclusion in

SDMs because they were measured since 1951 concurrently at

stations where CalCOFI ichthyoplankton samples were collected

and because these variables were previously shown to influence

target species (Checkley Jr et al., 2000; Lynn, 2003; Rykaczewski

and Checkley Jr, 2008; Weber and McClatchie, 2010; Zwolinski

et al., 2011; Weber and McClatchie, 2012; Asch and Checkley Jr,

2013; Weber et al., 2018; Howard et al., 2020). These variables

included potential temperature, salinity, dissolved oxygen (DO),

and mesozooplankton displacement volume (abbreviated as

ZDV for zooplankton displacement volume). Both salinity and

DO can be interpreted as indicators of water masses with distinct

characteristics (e.g., Pacific subarctic water has low temperature

and salinity, but high DO, whereas North Pacific Central water

has high temperature and salinity, with low DO; McClatchie,

2013). Low DO can also act as a stressor affecting the physiology,

distribution, and abundance of SPF (Howard et al., 2020).

Upwelling of hypoxic and anoxic waters on the inner shelf has

been observed in the northern CCS (Chan et al., 2008). In the

southern CCS where upwelling is less vigorous, hypoxic waters

do not frequently encroach into depths where SPF larvae reside

(Dussin et al., 2019), so we interpret variations in DO primarily

as an indicator of water mass properties. Temperature, salinity,

and DO from Niskin bottles were averaged over the upper 50 m.

This depth was selected because SPF eggs are most concentrated
frontiersin.org
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across this range (Curtis et al., 2007). Environmental data were

downloaded from ERDDAP between January 1951 and February

2015 and extending between 29.7-35.3° N and 117.2-125.8° W.

This area corresponded to transects selected for fish larvae.

Within these constraints, 18,925 environmental observations

were identified for analysis.

ZDV was obtained from the same bongo and ring nets as

larval fishes. We used displacement volumes where gelatinous

organisms with biovolumes >5 cm3 were removed (Kramer et al.,

1972). Bias corrections from Ohman and Smith (1995) were

applied to account for a change in tow depth (switch from 140 m

to 210 m) and net type (switch from a 550-mm silk mesh net to a

505-mm nylon mesh net) in 1969 and a second change in net

type (switch from a 1.0-m diameter ring net to a 0.71-m

diameter bongo net) in 1977. ZDV measurements were ln(x

+1) transformed prior to analysis. As a result, measurements of

ZDV are presented with units of the log of the zooplankton

volume measured in cm3 divided by the standardized volume of

seawater filtered during a plankton net tow (1,000 m3). 18,746

observations of ZDV were available for analysis.

Oceanic and biological data were matched based on the year,

month, transect, and station number. If multiple sets of

environmental variables were matched to a single tow, data

were averaged. After matching, a final sample size of 14,767

was obtained.

During initial SDM development, we considered including

month and station number (a proxy for distance from shore)

as independent variables. While these factors improved model

fit, we decided to exclude them because they would constrain

future shifts in species distribution and phenology. Since our

research goal was to assess model performance over a

multidecadal period as a proxy to better understand how

such models would perform when detecting future shifts in

species distribution and seasonal occurrence, including

independent variables that constrain such shifts would be

counter to achieving this objective. Also, since many

environmental variables in this ecosystem exhibit onshore-

offshore gradients (McClatchie, 2013), multicollinearity

between station number and environmental variables could

also influence our abil i ty to detect non-stat ionary

relationships. Similarly, latitude and longitude were not

included in SDMs as independent variables since they would

also constrain future shifts in species distribution. Previous

studies have shown that stock size can influence the amount of

suitable habitat occupied by our target species (Weber and

McClatchie, 2010; Weber and McClatchie, 2012; Muhling

et al., 2020). However, since earth system models (ESMs)

cannot directly project future stock size, this is not a covariate

that could be easily included in a model of future changes in

species distribution or phenology. Since our goal is to provide

a framework for assessing performance of such models, we did

not include stock size as a covariate here.
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2.2 Classification of change points in
ocean ecosystems

The term regime shift describes low-frequency and high-

amplitude changes in biological and physical conditions. However,

there are disagreements about key characteristics of regime shifts.

Different authors use this term to describe stochastic processes

characterized by red noise; non-linear, alternative stable states;

changes at multiple levels of ecological organization (e.g., species,

assemblage, community, ecosystem); and processes related to both

external perturbations and internal reorganization of ecological

communities (Collie et al., 2004; Overland et al., 2008). Due to

this multiplicity of definitions, we used three approaches to

determine if relationships between fish and the environment were

stable across different regimes. Since most of our regime shifts were

defined based on changes in time series, we use the terms regime

shift and change point synonymously.
2.2.1 Pacific Decadal Oscillation
The PDO is the first principal component of detrended

winter SST in the North Pacific (Hare et al., 1999). During the

latter half of the 20th century, this index exhibited decadal

variability characterized by predominantly negative values

during 1947-1976 and positive values during 1977-1998.

Negative (positive) PDO values correspond to cool (warm)

conditions in the southern CCS. The 1976/1977 shift in PDO

sign coincided with large changes in the abundance of marine

organisms across several trophic levels (Chavez et al., 2003;

McGowan et al., 2003). In the CalCOFI region, this shift was

associated with a 1.0°C increase in temperature over the upper

50 m of the water column and a ZDV decline of 68.4 cm3/1,000

m3 (Figure S1). Statistically significant, albeit smaller, changes in

mean salinity and DO coincided with this regime shift (Figure

S1). Since 1998, the PDO has displayed oscillations at an

interannual rather than decadal scale (Peterson, 2009).

Furthermore, the PDO has recently exhibited a decreased

correlation with North Pacific climatic and ecological

indicators (Puerta et al., 2019; Litzow et al., 2020).

Consequently , we assessed whether non-stat ionary

relationships between fish and environmental variables were

evident across the 1976/1977 shift but did not consider years

after 1998.
2.2.2 Change points in oceanic variables
Beyond the PDO, we took an empirical approach to identify

change points associated with regime shifts in times series of

environmental variables and SSB. First, we estimated change

points separately for temperature, salinity, DO, and ZDV. To

accomplish this, we performed a principal component analysis

(PCA) on each variable to identify its dominant mode of
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temporal variability. Since PCA cannot be performed on datasets

with missing observations, we binned data into seven groups

that represented an onshore-offshore gradient. Our seven bins

were based on the following CalCOFI stations: ≤40 (closest to

shore), 40-50, 50-60, 60-70, 80-90, 90-100, and ≥100 (farthest

offshore). Stations in each bin were annually averaged. In cases

when no observations were available in a bin for a year, linear

interpolation across the onshore-offshore gradient was used to

fill this gap. The years 1951, 1984, and 1982 were removed due to

persistent gaps in coverage. Such gaps were more widespread for

DO than other variables, which necessitated removal of

additional years (1953-1955, 1957, 1960, 1967, 1975, 1980-

1981). PCA was performed after these data processing steps.

Change point analysis was applied to the first principal

component of each environmental variable using the Bayesian

change point detection algorithm developed by Ruggieri (2013).

Change point analysis was performed in MATLAB (version

R2017a). The Ruggieri (2013) algorithm detected changes in

time series mean, variance, or slope. We used uninformative

priors. Algorithm parameters were set such that a maximum of

three change points could be detected over a time series and

change points needed to be separated by ≥10 years. Other

parameters were set following guidance from Ruggieri (2013)

(k0 = 0.01, n0 = 2, and s 2
0 =observed variance). 500 iterations of

this algorithm were run for each time series to generate posterior

probability distributions. Subsequent analyses examining non-

stationarity across regimes were based on the number of change

points with the highest posterior probability and years with the

highest probability of a change point. In a sensitivity test,

parameters related to maximum number of change points and

minimum regime duration were varied between 2-4 and 8-12

years, respectively. This was found to affect the years of some

change points by ±3 years or less.

2.2.3 Change points in SSB
Change point analysis was also applied to assess whether

habitat use among SPF varied as a function of stock size. For this

analysis, we used stock assessment data from Thayer et al. (2017)

for 1951-2015 for E. mordax and Crone and Hill (2015) for

1983-2014 for S. japonicus. For S. sagax, we combined data from

three stock assessments to obtain information for 1951-1963

(Jacobson and MacCall, 1995), 1981-2008 (Hill et al., 2008), and

2009-2015 (Hill et al., 2018). No stock assessment was available

for T. symmetricus, so this species was excluded from this

analysis. SSB was log transformed prior to analysis since

histograms indicated SSB had a log-normal distribution.

Change point detection parameters were the same as listed

above, except the minimum duration for a regime was set to

five years for S. sagax and S. japonicus since shorter SSB time

series were available. For S. sagax, results were not sensitive to

the choice of the minimum regime duration or to the use of only

the more recent stock assessments by Hill et al. (2008; 2018).
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2.3 Species distribution modeling

We used generalized additive models (GAMs) to assess non-

stationarity across change points. While a variety of SDMs exists,

GAMs were selected because this technique has been widely used

in fisheries science (e.g., Bell et al., 2015; Morley et al., 2018;

McHenry et al., 2019). GAMs were run separately for each

species and period associated with a change point to determine if

there were differences in model characteristics across regimes.

Since our goal was to examine environmental influences on

species distribution, presence/absence of larvae was used as the

response variable. Independent variables included temperature,

salinity, DO, and log-transformed ZDV. Any bongo and ring net

tows that did not have a full suite of environmental variables

associated with them were removed from analysis. GAMs were

formulated using the binomial family and logit link. GAMs were

parameterized to have a maximum of four knots to prevent

overfitting (Weber and McClatchie, 2010; Lindegren and Eero,

2013; Tommasi et al., 2015). This step was important because an

overparameterized model is more likely to be non-stationary

when that model is applied to a different period. The decision to

limit the number of knots was a conservative choice aimed at

decreasing the likelihood of detecting non-stationarity. For each

species and regime, 16 GAMs with different combinations of

environmental variables were run. The Akaike Information

Criteria (AIC) was minimized to select which of these models

was the most parsimonious and determine the number of knots

to include in that model. If the AIC for several models differed

by ≤2, we used a multi-model approach including results from

several models (Burnham and Anderson, 2002). Akaike weights

(wi) for the selected models were examined to assess the degree

of confidence in the selection process.

GAMs can be fit using either the gam or mgcv package in R

(version 4.1.1). The latter uses a Bayesian approach for variance

estimation, which results in smaller confidence intervals than

those from the gam package (Wood, 2006). Since smaller

confidence intervals may increase the likelihood of detecting

differences across regimes, we used the gam package since it

would provide more conservative results regarding non-

stationarity. Nonetheless, a comparison of the gam and mcgv

packages for E. mordax produced similar models. Tests for

multicollinearity between independent variables, spatial

autocorrelation, and inspection of GAM residuals for outliers

are described in the Supplementary Material 1.1, Table S1 and

Figure S2.
2.4 Indicators for detecting
non-stationarity

We used six metrics to assess non-stationarity across

regimes. These metrics evaluated whether there were changes
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in: 1) variables included in SDMs; 2) linearity of partial

environmental variable responses in SDMs; 3) relative

importance of environmental variables; 4) response curve

shape; 5) degree of responsiveness of fishes to a variable, and;

6) the range of conditions associated with maximum larval

occurrence. Changes in any metrics between regimes was

interpreted as an indicator of non-stationarity. In cases where

multiple models were selected for a regime, differences needed to

be observed amongst the full suite of candidate models for

periods to be classified as non-stationary.

Each non-stationarity metric has pros and cons but when

viewed together they provide a complementary and

comprehensive picture of the occurrence of non-stationary

environmental relationships. For example, some metrics are

quantitative and can be evaluated for statistical significance,

whereas other metrics are qualitative (e.g., response curve

shape). Some metrics principally detect large changes in model

formulation, such as the lack of significance of a previously

important variable, whereas others identify subtler changes, such

as a shift in the relative ranking of variables affecting fishes. By

considering multiple metrics, one can avoid the pitfalls

associated with any one metric. For example, changes in

maximal larval occurrence or degree of responsiveness are

more likely to be affected by extrema. Shifts in rank

importance of environmental variables could be due to a small

change among two variables with similar effect sizes (Planque

et al., 2007). When using a combination of metrics, biases

affecting a single metric can be avoided, producing more

reliable results. Details on how each metric was calculated are

provided below.

2.4.1 Inclusion of variables in SDMs
Model selection was based on AIC minimization.

2.4.2 Linearity
Selected model(s) could include an environmental variable

with either one, two, or three equivalent degrees of freedom (edf)

in its partial response function. An edf of 1 was indicative of a

linear model, whereas increasing edfs indicated greater non-

linearity (Hastie, 1991). Changes in edf between regimes were

used to assess changes in linearity.

2.4.3 Relative importance of variables
To assess the relative importance of environmental variables,

we compared the change in deviance (DD) in GAM outputs

between a full model and models when one variable was

removed. DD was compared across variables to assess the rank

importance of variables. Changes in ranking between regimes

were interpreted as a qualitative indicator of non-stationarity.

This is a qualitative indicator because at times changes in rank

can reflect small differences in DD among nearly equally

ranked variables.
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2.4.4 Response curve shape
Response curve shape refers to the graphical relationship

between an environmental variable and the probability of fish

occurrence. The y-axis of response curves was presented on a

logit scale. Response curve shape was assessed in a semi-

quantitative manner in two stages. First, we qualitatively

inspected shifts in shape. This step went beyond looking at

changes in linearity, maximum value of the response curve, and

response curve amplitude. Secondly, we inspected the 95%

confidence intervals of response curves to evaluate overlap

between different periods. If the confidence intervals had a

substantial amount of overlap, periods were classified as

similar to each other regardless of qualitative differences in

response curve shape. In contrast, if confidence intervals did

not overlap in entirety and response curve shape also differed,

this was interpreted as an indication of non-stationarity.

2.4.5 Degree of responsiveness
The degree of responsiveness of a fish to an environmental

variable was estimated based on the amplitude of the SDM

response curve. A larger amplitude suggested that a fish was

more responsive to a variable. To assess whether this metric

differed between periods, we ran a bootstrap analysis in which

observations were selected randomly with replacement 1,000

times for each species and regime (Efron and Tibshirani, 1998).

The number of observations randomly selected during each

bootstrap iteration was the same as the sample size for each

SDM (Table S2). No spatio-temporal weighting was used when

resampling data during bootstrap analysis. GAMs were

recalculated for each dataset and response curves were plotted.

We performed this analysis only for the most parsimonious

model(s) selected with the AIC. Bootstrap permutations were

used to develop 95% confidence intervals for response curve

amplitude. In cases where multiple models were selected based

on AIC scores, bootstraps were run separately for each model

and confidence intervals were constructed jointly across models

by weighting each model based on wi. A lack of overlap between

confidence intervals across regimes was an indication of

non-stationarity.

2.4.6 Range of environmental variables
associated with maximum larval occurrence

The sixth non-stationarity metric was the range of an

environmental variable that maximized the probability of fish

occurrence. A bootstrap was used to determine environmental

conditions associated with maximum larval occurrence across

1,000 SDM realizations. For each bootstrap iteration, we

identified the maximum value of the response curve and the

corresponding value of the environmental variable at this

maximum. These values were sorted from smallest to largest

and we identified the lower 2.5th and upper 97.5th percentiles of

this empirical distribution. These 95% confidence intervals were
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used to assess whether the range of conditions associated with

maximum larval habitat suitability differed between regimes.

Weighted means of confidence intervals were used in cases

where multiple models were selected for a regime.
2.5 Future projections

An ESM was used to make future projections of habitat

suitability. ESM projections focused specifically on quantifying

uncertainty associated with ecological and climatic change

points and determining their importance compared to other

sources of projection uncertainty. ESM output was obtained

from the World Climate Research Programme’s Coupled Model

Intercomparison Project – Phase 6 (CMIP6). CMIP6 output is

publicly available from Lawrence Livermore National

Laboratory.3 Our criteria for model selection from the CMIP6

ensemble were that ensemble members needed to contain output

on all environmental variables used in SDMs for a historical

simulation (1980-1999) and two future simulations (2080-2099).

The historical period was selected to be 100 years earlier than the

period used for future simulations. The two future climate

change scenarios considered were Shared Socioeconomic

Pathways (SSP) 5-8.5 and 1-2.6, which corresponded,

respectively, to a high-end greenhouse gas emissions scenario

and a climate change mitigation scenario consistent with the

Paris Agreement (O’Neill et al., 2016). When data were

downloaded from the CMIP6 archive (18 December 2019),

only one ESM had full data available for all four variables, all

three simulations, and both 20-year periods. This model, known

as CNRM-CERFACS-ESM2.1 (abbreviated name: CNRM-

ESM2), was developed by the French National Centre for

Meteorological Research and couples the CNRM-CM6-1

atmosphere-ocean general circulation model with the

PISCESv2-gas ocean biogeochemistry model (Séférian et al.,

2019). The ESM has an approximately 100-km latitudinal/

longitudinal resolution and 75 depths. PISCESv2-gas tracks 26

biogeochemical state variables and four plankton functional

groups (diatoms, nanophytoplankton, microzooplankton,

and mesozooplankton).

Monthly CNRM-ESM2 data on environmental variables

were extracted from the core CalCOFI region (29.8-35.2°N

and 117.3-125.9°W). This included 63 model grid cells,

resulting in a similar number of grid cells to the number of

CalCOFI stations. CNRM-ESM2 included 19 depth layers over

the upper 50 m of the water column. Shape-preserving piecewise

cubic interpolation was used to calculate the temperature,

salinity, and DO exactly at 50 m by interpolating between the

18th and 19th model depth layers. We computed the mean of

each variable over the upper 50 m, weighting this average by the
3 https://esgf-node.llnl.gov/projects/cmip6/
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width of each depth layer. Units of DO and mesozooplankton

concentration differed between CNRM–ESM2 and CalCOFI.

Unit conversions were applied to allow CNRM-ESM2 output

to be used as independent variables in GAMs developed for SPF

species (Supplementary Material 1.2).

Many ESMs overestimate coastal temperatures and

underestimate primary production in Eastern Boundary

Upwelling Systems (Stock et al., 2011; van Oostende et al.,

2018). To compensate for this, we performed a bias correction

on variables from CNRM-ESM2 using the delta method (Hare

et al., 2012). Biases were estimated using the monthly mean

climatology from CalCOFI observations for 1980-1999. Next

separate GAMs were run for each species and regime using

CNRM-ESM2 data as independent variables. Projections were

made for 1980-1999 and 2080-2099 with the SSP5-8.5 and SSP1-

2.6 scenarios. Mean habitat suitability for SPF species was

computed for each grid cell and month, with 95% confidence

intervals based on variations between years during each period.

In this context, habitat suitability is equivalent to the modeled

probability of larval occurrence and has a range between 0 (larval

absence) and 1 (larval presence). Spatio-temporally integrated

habitat suitability (IHS) for a given year was also calculated by

summing suitability scores across CRNM-ESM2 grid cells

during spring (i.e., the peak season for occurrence of most SPF

species, Supplementary Material 1.2). IHS is unitless and its

value is dependent on the number of grid cells and months in the

integration. In cases where multiple models were selected, IHS

was calculated based on the weighted means of models. A two-

way crossed ANOVA assessed whether SSP scenario and GAM

model period had a significant effect on IHS. The mean

coefficient of variation (CV) was calculated for the historical

and SSP5-8.5 scenarios to assess if variations in IHS were

projected to increase under unmitigated climate change. Mean

CVs were calculated as a function of species, regime shift type,

environmental variables, and indicators of non-stationarity. For

environmental variables and non-stationarity indicators, CV

calculations only included GAMs where there was some

indication of non-stationarity for a particular variable or

metric. Instances of non-stationarity associated with the rank

importance of variables were not included in CV calculations

since it was not possible to attribute changes to a single

environmental variable.
3 Results

3.1 Change point detection

3.1.1 Oceanic variables
Across all oceanic variables, the first principal component

(PC1) of their time series accounted for 63.3-91.2% of variance,

whereas the second principal component (PC2) accounted for a

reduced percentage of variance (4.9-17.2%; Table 1). PC1
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captured region-wide variations in temperature, salinity, DO,

and ZDV at an interannual scale. PC2 was characterized by

onshore-offshore differences where nearshore and offshore

stations exhibited PCA loadings in different directions. This

pattern was consistent across PC2 for all variables.

Each oceanic variable’s principal component time series

exhibited distinct temporal patterns (Figure 2). PC1 for

temperature was primarily negative at the start of the time

series, exhibited mainly positive values during the warm phase

of the PDO between 1977-1998, displayed anomalies centered

around zero during much of the 2000s and early 2010s, and rose

sharply at the end of the time series in 2014-2015 coincident
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with MHW onset (Figure 2A; Di Lorenzo and Mantua, 2016). In

contrast, PC1 of salinity was less closely correlated with the

PDO, as has also been shown by Di Lorenzo et al. (2008).

Instead, this PC exhibited greater variability at the interannual

rather than decadal scale (Figure 2B). PC1 for DO was

characterized by heightened variability at the start of the time

series, with greater stability in more recent years (Figure 2C).

Similar to the results for temperature, the PDO seemed to have a

substantial influence on the zooplankton PC1 (Pearson

correlation coefficient r=-0.49, p=0.0001, d.f. = 54).

Zooplankton PC1 was characterized primarily by positive

anomalies up until the mid-to-late 1970s and experienced a
B

C D

A

FIGURE 2

Time series of the first principal component of (A) temperature, (B) salinity, (C) dissolved oxygen (DO) concentration, and (D) mesozooplankton
displacement volume from the southern California Current System. Note that there are some gaps in DO measurements during the early years
of the CalCOFI time series. Horizontal, dashed lines indicate principal component scores of zero, while thick, vertical lines represent the timing
of break points identified in time series. Gray bars show the posterior probability of a change point occurring each year in the time series of
each oceanic variable. The winter Pacific Decadal Oscillation (PDO) is included as a blue line in (A) and its inverse is included as a turquoise line
in (D) to illustrate correlations among principal components and this regional climate index.
TABLE 1 Principal components analysis (PCA) performed on environmental variables binned by onshore-offshore strata.

CalCOFI station numbers

Principal Component (PC) Variance explained (%) ≤40 40-50 50-60 60-70 70-80 80-90 >90

Temperature PC1 72.6 0.389 0.366 0.383 0.359 0.370 0.382 0.397

Temperature PC2 14.4 -0.230 -0.445 -0.320 -0.005 0.004 0.163 0.788

Salinity PC1 73.8 0.335 0.295 0.315 0.429 0.420 0.443 0.381

Salinity PC2 11.1 -0.506 -0.522 -0.237 -0.005 0.113 0.330 0.542

Oxygen PC1 63.3 0.415 0.261 0.452 0.362 0.386 0.373 0.369

Oxygen PC2 17.2 0.393 0.671 0.188 -0.306 -0.376 -0.333 -0.117

Zooplankton PC1 91.2 0.355 0.377 0.379 0.391 0.404 0.393 0.343

Zooplankton PC2 4.9 -0.576 -0.408 -0.182 0.102 0.181 0.296 0.579
frontiers
Data on the percent variance explained by each principal component (PC) and loadings of the PC on each stratum are presented above.
Strata are indicated by station numbers from California Cooperative Ocean Fisheries Investigations (CalCOFI).
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period dominated by negative anomalies after the PDO entered

its warm phase (Figure 2D).

The change point detection algorithm did not identify any

regime shifts in the PC1 time series of temperatures, salinity, or

DO. There was a 93.6% probability of zero change points

detected in the temperature time series, 99.3% probability of

zero salinity change points, and 63.7% probability of zero DO

change points. In contrast, the posterior probability distribution

indicated a 75.8% probability of two change points in the

zooplankton PC1 time series, with 24.2% chance of one

change point. The highest probabilities of change points were

detected in 1968 and 1983. Prior to 1968, the PC1 time series for

ZDV consistently exhibited positive anomalies (Figure 2D).

During 1969-1983, ZDV was characterized by highly variable

and declining abundance, while after 1983 this time series was

fairly stable with anomalies close to zero.
3.1.2 SSB
With a posterior probability of 78.1%, one change point was

detected in the time series of E. mordax SSB (Figure 3A). This

change occurred in 1963, separating a period of low, but

recovering SSB from a period when this species was fairly

abundant. A decline in E. mordax biomass was observed at the

end of this time, but there was only a 21.9% posterior probability

that this decline was associated with a second change point.

For S. sagax, there was a 99.9% probability that its time series

contained two change points, which were detected in 1963 and

1997 (Figure 3B). The 1963 change was associated with a decline

in S. sagax biomass and its subsequent recovery. The precise date

of this change is uncertain because of a discontinuity in the S.

sagax time series due to a lack of stock assessments between

1964-1980. However, the fact that E. mordax also exhibited a

change point during 1963 bolsters confidence in this result for S.

sagax and suggests asynchronous dynamics between species. The

second change point for S. sagax detected in 1997 was associated

with stable, high fish biomass, with some declines near the time

series end.

Log-transformed S. japonicus SSB was in decline throughout

most of the period when biomass estimates were available

(Figure 3C). With a posterior probability of 92.5%, no change

points were detected for S. japonicus.
3.2 Non-stationarity detection
using GAMs

Assessment of non-stationarity in models of all four species

for each of the three types of regime shifts is described in the

Supplementary Material 2.1-2.3 and Figures S3-11. Here we

provide an in-depth, illustrative summary for one species as a

case study and then compare general trends across all species

and regime shift types.
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3.2.1 Case study – changes points in
S. sagax SSB

For each SSB regime, a single model was selected for S. sagax

where the selected GAM had an Akaike weight >0.8 (Table S3).

This indicated a >80% likelihood that the selected model was the

most parsimonious choice of the candidate models.

Evidence of non-stationarity in how S. sagax relates to

oceanic variables was found across all indicators. For the first

indicator (inclusion of different variables in the selected GAM),

non-stationarity was indicated by the fact that the model

formulation changed across regimes. During the first two SSB

regimes (1951-1963 and 1964-1997), temperature, salinity, and

ZDV were included in the selected model, but DO was excluded

(Table S2). In contrast, during the regime from 1998-2015, ZDV

was excluded from the model.

The second indicator of non-stationarity was related to changes

in whether fishes had linear or non-linear relationships with oceanic

variables. In most models, the best-fit GAM included non-linear

terms, with an edf of 3 (Table S2). Evidence of non-stationarity was

observed since salinity initially had a linear relationship with larvae

occurrence, which later became non-linear (Table S2; Figure 4).

Non-stationarity changes in the ranked importance of oceanic

variables were also observed. Ranking of salinity declined over time,

while DO ranking increased (Figure 5J). Temperature and ZDV

exhibited variability in their ranking, but without long-term trends.

Changes in response curve shape was the fourth indicator of

non-stationarity. Temperature response curves had a negative,

parabolic shape during the 1951-1963 and 1964-1997 regimes.

During 1998-2015, the temperature response curve had a flatter

shape, and a higher probability of encountering S. sagax larvae at

low temperatures was observed (Figure 4). The flattened

response curve shape during the third regime may indicate a

reduced influence of temperature on sardine distribution, which

is also consistent with changes in the relative ranking of

temperature during this regime (Figure 5J). S. sagax were most

frequently encountered at higher salinities throughout all

periods, but the salinity response curve shape changed across

periods. During 1951-1963, this species had a positive, linear

relationship with salinity; during 1964-1997, this relationship

had a negative, parabolic form; from 1998-2015, S. sagax

distribution was less responsive to variations in salinity as

indicated by a flattened response curve (Figure 4). Less change

in response curve shape was observed for ZDV since it exhibited

a negative, parabolic response curve during both periods when

included in GAMs (Figure 4). Changes in curve shape could not

be assessed for DO, since this variable was only included in the

selected model during the third SSB regime.

Changes in the amplitude (or range) of the response curve

was the fifth indicator of non-stationarity. A decrease in

response curve amplitude is suggestive of a reduced influence

of a variable on larval fishes. For temperature, response curve

range was significantly larger during 1964-1997 than 1998-2015

(Figure 6I). The period when S. sagax was most sensitive to
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FIGURE 3

Time series of the natural log transformed spawning stock biomass (SSB) of (A) (E) mordax, (B) S. sagax, and (C) S. japonicus. No SSB data are
available for T. symmetricus. Dashed line indicates the time period of low S. sagax biomass when no stock assessments were conducted to
estimate this species’ SSB. Gray bars show the posterior probability of a change point in the SSB time series occurring each year. Black, vertical
lines indicate the timing of break points identified in each time series.
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temperature based on this indicator coincided with low biomass

of this species (Figure 3B). No significant changes were seen in

response curve range for salinity and ZDV. Changes could not

be assessed for DO since it was only included in the selected

model during a single regime.

Significant changes in the sixth indicator of non-stationarity

(shifts in the peak of the response curve) were observed for

several oceanic variables. For temperature, S. sagax was most

commonly found in areas with significantly cooler temperatures

during 1998-2015 compared to prior periods (Figure 7I). The

maximum likelihood of detecting larvae occurred at significantly

lower salinities in 1964-1997 than 1951-1963 (Figure 7J). Sardine

larvae were found in areas with significantly less zooplankton

during 1964-1997 than 1951-1963 (Figure 7L). Since the former

period was characterized by reduced ZDV (Figure S1), this

might reflect a change in the availability of zooplankton rather

than an active shift in habitat selection.

3.2.2 Comparisons across species and regime
shift types

Every combination of species and regime type exhibited at

least one indication of non-stationarity, implying that non-

stationarity is ubiquitous across SPF in the CCS. A summary

of patterns observed across non-stationarity indicators, oceanic

variables, species, and regime types is included below.
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A change in oceanic variables included in GAMs was

observed across 60% of the combinations of species and

regime shifts (Table 2). Nearly half of the selected of the

selected models contained all four environmental variables, but

in several cases the most parsimonious model(s) excluded DO or

ZDV (Table S2). In a smaller number of cases, a simplified

model containing 1-2 environmental variables was selected.

Changes in the linearity of the relationship between fishes

and environmental variables also occurred across 60% of the

combinations of species and regime shifts (Tables 2, S2). Salinity

and DO were the most common variables to exhibit changes

in linearity.

Changes in the ranked importance of oceanic variables

were very common, with evidence of non-stationarity

occurring across all species (Figure 5). Temperature and

salinity were frequently ranked as having the greatest or

second greatest influence on fish larvae, with lower rankings

more common among DO and ZDV. Among S. sagax and T.

symmetricus, the relative ranking of DO increased during

recent periods.

Changes in response curve shape were observed across 80%

of species and regime combinations (Table 2). The only cases

where pronounced changes in response curve shape were not

detected was among shifts between PDO phases for E. mordax

and S. japonicus (Figures S3, S5). Of the four oceanic variables,
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FIGURE 4

Generalized additive model (GAM) response curves for S. sagax during three different spawning stock biomass (SSB) change points: 1951-1963
(A-D; blue), 1964-1997 (E-H; green), and 1998-2015 (I-K; red). Dashed lines indicate that 95% confidence intervals for each response curve.
Missing subplots (log zooplankton during 1998-2015 and oxygen in 1951-1963 and 1964-1997) are indicative that a particular oceanic variable
was not included in the most parsimonious GAM. Rug plots are displayed at the bottom of each subplot.
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temperature was the least likely to have a change in response

curve shape, usually displaying a negative, parabolic shape

(Figures 4, S3-S11). Like temperature, ZDV often exhibited a

negative, parabolic response curve shape, especially at the start

or mid-point of time series. In many cases (e.g., Figures S6-S8,

S11), ZDV response curves displayed a flatter shape during later

periods, indicating a reduced influence of this variable. The

response curves for salinity and DO usually displayed wide

confidence intervals at extrema, indicating reduced certainty in

how fishes respond to these variables under conditions deviating

from the mean. Lastly, compared to other species, S. sagax

displayed a greater propensity for changes in response curve

shape (Figures 4, S4, S8).

The amplitude of response curves, which is an indicator of

sensitivity to oceanic variables, displayed non-stationarity across

four of the ten combinations of species and regime shifts

(Table 2). Only one significant change in this indicator was

observed across PDO and SSB regimes, whereas deviations from

stationarity were more common among zooplankton regimes

(Figure 6). Deviations from stationarity for this indicator were

most common among S. sagax.

Shifts in peak habitat use tied other indicators for the

second most incidences of non-stationarity. This indicator
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refers to changes in the range of environmental variables

associated with maximum larval occurrence. For 80% of

species and regime shift combinations, at least one oceanic

variable exhibited non-stationarity for this indicator (Table 2).

Multiple species exhibited changes in the temperature and

salinity at which their response curve peaked (Figure 7), but

no overarching pattern of change between periods was

identified amongst these variables. In contrast, whenever

there was a significant change in peak DO use, fishes tended

to occur in areas with higher DO in more recent years

(Figures 7G, K). In four out of five cases where there was a

significant change in peak use of ZDV, fishes occurred in areas

with less ZDV during more recent years (Figures 7D, H, L).

This may be related to long-term declines in ZDV in this

ecosystem (Roemmich and McGowan, 1995; Lavaniegos and

Ohman, 2007). Compared to other species, S. sagax was most

likely to display significant changes in this indicator.

When integrating across all indicators, S. sagaxwas the species

whose relationship with oceanic variables displayed the most signs

of non-stationarity (Table 2). S. japonicus and E. mordax

displayed the fewest indications of non-stationarity, even though

some non-stationarity was detected for them across >50% of the

indicators and regime shift types. Non-stationarity was most
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FIGURE 5

Rank order comparison between the influence of each oceanic variable on the presence/absence of larvae of E. mordax, S. sagax, S. japonicus,
and T. symmetricus. Results are shown for change points designated based on changes in the sign of the Pacific Decadal Oscillation (PDO;
A-D); break points in the mesozooplankton volume time series (E-H; the abbreviation “zoop” is used when labeling the title of these subplots),
and; break points in the time series of E. mordax and S. sagax spawning stock biomass (SSB; I, J). Unless otherwise specified, time periods for
each type of change point are the same across all species. Only the start year of a particular regime is listed here. Oceanic variables are
abbreviated as follows: T – temperature, S – salinity, O2 – dissolved oxygen concentration, Z – mesozooplankton volume. Comparisons
between variables are based on the change in deviance (DD) when one variable is removed relative to the deviance of the full model. The scale
for DD is shown in the lower, right corner of the figure. Note that DD is influenced by sample size so this metric is comparable across from a
single regime, but not across multiple regime types due to variations in sample size. The rank order of different environmental variables for each
period is shown based on circle size and color: green – 1st rank, turquoise – 2nd rank, blue – 3rd rank, purple – 4th rank.
frontiersin.org

https://doi.org/10.3389/fmars.2022.711522
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Asch et al. 10.3389/fmars.2022.711522
FIGURE 6

Changes between periods in the response curve range from generalized additive models (GAMs). Response curve range is defined as the difference
between the maximum and minimum value in a GAM response curve and is indicative of how strongly an environmental variable influences larval fish
occurrence. Median values and 95% confidence intervals from bootstrap analysis are shown. Results are shown for change points designated based on
changes in the sign of the Pacific Decadal Oscillation (PDO; A-D); break points in the mesozooplankton volume time series (E-H), and; break points in
the time series of E. mordax and S. sagax spawning stock biomass ( SSB; I-L). GAM results for different periods are displayed in groups, with the first
period represented by the left most bar in a group (dark blue color) and the last period displayed to the right (light lavendar color). Intermediate periods
are displayed in the middle of each group. Stars (*) indicate that periods are significantly different from each other for a given species and environmental
variable based on non-overlapping 95% confidence intervals. White squares indicate that a particular variable was not included in the best fit GAM
model(s). Numbers shown in some subplots indicate the maximum response curve range in a few cases where the maximum value exceeds the y-axis
limit of a graph. Species names are abbreviated based on the first letter of the genus and the first letters of the species name: Em, Engraulis mordax; Ss,
Sardinops sagax; Sj, Scomber japonicus; Ts, Trachurus symmetricus.
FIGURE 7

Changes between periods in the peak value of generalized additive model (GAM) response curves. The peak in response curves is indicative of the
environmental conditions that maximize the likelihood of occurrence of E. mordax, S. sagax, S. japonicus, and T. symmetricus. Median values and 95%
confidence intervals from bootstrap analysis are shown. Results are shown for change points designated based on changes in the sign of the Pacific
Decadal Oscillation (PDO; A-D); break points in the mesozooplankton volume time series (E-H), and; break points in the time series of E. mordax and S.
sagax spawning stock biomass (SSB; I-L). Bar colors, symbols, and species name abbreviations are the same as in Figure 6.
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common among salinity and DO, whereas the relationship

between fish presence/absence, temperature, and ZDV exhibited

slightly more stability. Among different regimes, non-stationarity

was observed most frequently for SSB regimes when integrated

across indicators (Table 2).
3.3 Future projections

CNRM-ESM2 was used to produce end of the 21st century

projections of suitable habitat for larval fishes and assess whether

these projections differed significantly depending on which

ecological or climatic regime was used to parameterize

projection models. For E. mordax, S. sagax, and S. japonicus,

habitat suitability declined during future projections, with a

steeper loss in suitable habitat under SSP5-8.5 (Figure 8). For

this scenario, decreases in mean IHS varied between 40.5-90.8%

relative to the historical baseline. Under SSP1-2.6, declines in

suitable habitat never exceeded 53.1% for any species or regime.

In contrast to other species, T. symmetricus habitat suitability

was projected to increase under SSP1-2.6 and SSP5-8.5 during

spring (Figures 8D, H).
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Two-way ANOVAs indicated that GAMmodel choice had a

significant effect on habitat suitability in most cases (Table 3).

The two exceptions to this occurred among E. mordax during

regimes defined by PDO and SSB changes. For most species and

regime shift types, F statistics from ANOVAs were larger for the

GAM effect than the SSP effect, implying that the period used to

parameterize the GAM had a larger impact on habitat suitability

than SSP scenario. Furthermore, most species exhibited

significant interactions between SSPs and GAMs from different

regimes. One common pattern among interaction terms was that

GAMs parameterized during periods with greater habitat

suitability tended to undergo larger changes under future

climate scenarios.

Changes in the mean CV between the historical and SSP5-

8.5 scenarios were assessed to determine if variability in suitable

habitat may increase under climate change. Increased variability

was observed for all species, except T. symmetricus, under SSP5-

8.5 (Table 4A). Variance in IHS was greater under regimes

defined by changes in ZDV than other types of regimes

(Table 4B). Regimes characterized by non-stationarity in

salinity and ZDV exhibited greater variability than regimes

with non-stationarity in temperature and DO (Table 4C).

However, many regimes exhibited concurrent non-stationarity

across multiple environmental variables, making it challenging

to partition these effects among variables. The largest increases

in variability under climate change were observed when there

was non-stationarity associated with shifts in which variables

were included in GAMs and changes in response curve

amplitude (Table 4D).
4 Discussion

Non-stationary relationships between organismal

distribution and climate can result in inaccurate projections of

how species respond to climate change, but this subject has not

been widely investigated across ecosystems (Litzow et al., 2019).

We found that indications of non-stationarity were nearly

ubiquitous among SPF species when models were constructed

for three types of regime shifts. Non-stationarity most frequently

resulted in changes in response curve shape, shifts in the peak

range of conditions where larvae occurred, and changes in the

relative importance of oceanic variables. Non-stationarity was

most frequently associated with changes in ecological

conditions, such as shifts in fish SSB or ZDV, rather than

changes in the PDO. Relationships between fishes and

temperature were more stable than other environmental

variables. This might partially reflect greater uncertainty in

relationships between fish distribution, salinity, and DO,

which is indicated by the large confidence intervals associated

with these variables’ response curves. For several combinations

of regimes and species, DO had a greater influence on
TABLE 2 Percent incidence of non-stationarity by indicator metric,
species, oceanic variable, and change point type for generalized
additive models (GAMs).

(A) Percent incidence of non-stationarity by metric

Variables included in model 60%

Degree of non-linearity 60%

Rank order of deviance explained 70%

Response curve shape 80%

Degree of responsiveness 40%

Peak environmental range 80%

(B) Percent incidence of non-stationarity by species

Engraulis mordax 50%

Sardinops sagax 89%

Scomber japonicus 50%

Trachurus symmetricus 67%

(C) Percent incidence of non-stationarity by oceanic variable

Temperature 25%

Salinity 33%

Dissolved oxygen 37%

Zooplankton volume 33%

(D) Percent incidence of non-stationarity by type of change point

PDO 58%

Zooplankton volume 67%

SSB 75%
In (a), (b), and (d), non-stationarity is assessed at the model level, whereas in (c) it is
assessed across each oceanic variable included in a model.
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distribution in recent years (Figures 5, 7). Often the effects of

non-stationarity on larval habitat suitability were larger than

changes projected under high and low greenhouse gas emissions.
4.1 Non-stationary fish-environment
relationships

Among fishes , non-stat ionar i ty can affect how

environmental factors influence species distribution,

recruitment, and fisheries productivity. Here we integrate our

discussion across these types of non-stationarity. While non-

stationarity has not been frequently considered in the scientific

literature, when it has been investigated, results are similar to

ours in that changes in organismal-environmental relationships

are widespread. In studies comparing whether fish and

invertebrate density, biomass, recruitment, and catch can be

best modeled with stationary or non-stationary models, there is a

pattern where the best fit model is usually non-stationary

(Ciannelli et al., 2007; Lindegren and Eero, 2013; Beggs et al.,

2014; Litzow et al., 2018; van der Sleen et al., 2018; Puerta et al.,

2019). Similar results have been seen among non-marine taxa.
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For example, among British butterflies, changes in distribution

in response to warming were not consistent across periods (Mair

et al., 2012).

Among SPF, non-stationarity has been observed in multiple

ecosystems and may be related to the boom-bust cycles of

abundance common to this functional group. In the

Northwest Atlantic, Atlantic menhaden (Brevoortia tyrannus)

occurrence has a non-stationary relationship with temperature

modulated by the North Atlantic Oscillation (Roberts et al.,

2019). Changes in sardine (S. sagax) and anchovy (E.

encrasicolus) spawning habitat preferences in the southern

Benguela could be partially, but not fully, explained by

warming, suggesting non-stationarity relationships occur

among these stocks (Mhlongo et al., 2015). Among Japanese

anchovy (E. japonicus), temperature where fish occurred as eggs

and larvae differed between 1978-1991 and 1992-2004, which is

suggestive of non-stationarity (Takasuka et al., 2008).

It is unclear whether SPF are more likely to exhibit non-

stationary dynamics than other fishes. SPF are adapted to

environments with a high degree of climate variability

(Checkley et al., 2017), which could be indicative of

resilience to fluctuating conditions. Conversely, SPF are

more subject to population collapse than other fishes (Pinsky
B C D
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FIGURE 8

Integrated habitat suitability (IHS) for larval fishes during spring months based on projections from the CNRM Earth System Model (CNRM-ESM-2-1).
Annual mean IHS scores (± 95% confidence intervals) are shown for a historical simulation for the years 1980-1999 (abbreviated as Hist) and two
future simulations (SSP1-2.6 and SSP5-8.5) for the years 2080-2099. Using the climate forcing from each CNRM-ESM-2-1 simulation, habitat
suitability was projected based on generalized additive models (GAMs) parameterized with data from different regimes and species. Results are
shown for change points designated based on changes in the sign of the Pacific Decadal Oscillation (PDO; A-D); break points in the
mesozooplankton volume time series (E-H; abbreviated as Zoop), and; break points in the time series of E. mordax and S. sagax spawning stock
biomass (SSB; I, J). GAM results for different periods are displayed in groups, with the first period represented by the left most bar in a group (green
color) and the last period displayed to the right (white color). Intermediate periods are displayed in the middle of each group (pale green color). In
cases where multiple models were selected for a particular regime, separate bars are shown for each model using the color coding described
above.
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and Byler, 2015), suggesting highly non-linear and unstable

dynamics. Fernandes et al. (2020) showed that SDMs have a

reduced capacity to predict the normalized biomass of pelagic

species compared to benthic species. However, the mechanism

behind this observation is unclear and could be due to either

greater non-stationarity among pelagic fishes or differences in

sampling efficacy.
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4.1.1 Non-stationarity in the California
Current System

Within the CCS, evidence has previously suggested that non-

stationarity may be common among S. sagax, but much less

research has investigated dynamics of other SPF. One early

publication indicating that S. sagax has a variable relationship

with environmental conditions is Lynn (2003) who found that
TABLE 3 Two-way crossed analysis of variance (ANOVA) examining interactions between shared socioeconomic pathway (SSP) simulations and
projections from generalized additive models (GAMs) trained during different ecological and climatic regimes.

Term Sum of squares d.f. Mean squares F p

PDO regime shifts – E. mordax

GAM 174.0 1 174.0 0.8 0.3823

SSP 98,191.9 2 49,096.0 217.1 <0.0001

GAM*SSP 47.7 2 23.8 0.1 0.9001

PDO regime shifts – S. sagax

GAM 11,829.7 1 11,829.7 366.9 <0.0001

SSP 9,735.6 2 4,867.8 151.0 <0.0001

GAM*SSP 4,363.3 2 2,181.6 67.7 <0.0001

PDO regime shifts – S. japonicus

GAM 1,723.5 1 1,723.5 265.5 <0.0001

SSP 681.7 2 340.8 52.5 <0.0001

GAM*SSP 361.7 2 180.9 27.9 <0.0001

PDO regime shifts – T. symmetricus

GAM 21,853.1 1 21,853.1 393.3 <0.0001

SSP 6,135.2 2 3,067.6 55.2 <0.0001

GAM*SSP 723.9 2 361.9 6.5 0.0021

Mesozooplankton volume regime shifts – E. mordax

GAM 5,140.4 2 2,570.2 14.5 <0.0001

SSP 112,616.6 2 56,308.3 316.6 <0.0001

GAM*SSP 7,600.6 4 1,900.2 10.7 <0.0001

Mesozooplankton volume regime shifts – S. sagax

GAM 9,920.9 2 4,960.4 943.7 <0.0001

SSP 2,697.0 2 1,348.5 256.5 <0.0001

GAM*SSP 2,011.0 4 502.8 95.6 <0.0001

Mesozooplankton volume regime shifts – S. japonicus

GAM 9,842.1 2 4,921.1 225.0 <0.0001

SSP 2,637.9 2 1,318.9 60.3 <0.0001

GAM*SSP 2,943.3 4 735.8 33.6 <0.0001

Mesozooplankton volume regime shifts – T. symmetricus

GAM 47,321.5 2 23,660.7 411.3 <0.0001

SSP 6,621.6 2 3,310.8 57.6 <0.0001

GAM*SSP 3,343.8 4 835.9 14.5 <0.0001

SSB regime shifts – E. mordax

GAM 445.5 1 445.5 2.7 0.1025

SSP 68,597.3 2 34,298.7 208.6 <0.0001

GAM*SSP 1,194.7 2 597.3 3.6 0.0295

SSB regime shifts – S. sagax

GAM 1,337.2 2 668.6 33.9 <0.0001

SSP 8,009.1 2 4,004.6 202.9 <0.0001

GAM*SSP 670.3 4 167.6 8.5 <0.0001
frontie
The ANOVA response variable is the habitat suitability for larval fish species integrated over each year of the 20-year period examined by each SSP simulation.
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SST delimits the northern extent of S. sagax spawning habitat,

but that the specific limit differs between years. Several studies

have documented that the relationship between temperature and

S. sagax recruits per spawner is sensitive to time period and

source of temperature data (Jacobson and MacCall, 1995;

McClatchie et al., 2010; Lindegren and Checkley, 2012;

Zwolinski and Demer, 2019). Muhling et al. (2020) found

indications of non-stationarity for S. sagax during the 2014-
Frontiers in Marine Science 18
2017 MHW when fish occurred at temperatures warmer than

projected by SDMs. Our results expand upon Muhling et al.

(2020) by identifying changes in the sensitivity of S. sagax to

environmental variables during earlier periods, indicating that

non-stationarity during the MHW was not solely due to the

inability of S. sagax to avoid unfavorable habitats during rapid

change. Our results also confirm that non-stationarity among S.

sagax can occur in absence of novel environmental conditions,
TABLE 4 Mean coefficient of variation (CV) for GAM model projections of annual integrated habitat suitability (IHS) under the historical and SSP5-
8.5 climate scenarios.

(A) Species

E. mordax S. sagax S. japonicus T. symmetricus
Historical scenario

Mean
CV

0.24 0.67 0.96 0.54

SSP5-8.5

Mean
CV

0.61 0.88 1.04 0.50

(B) Change point type

PDO Zooplankton
volume

SSB

Historical scenario

Mean
CV

0.59 0.69 0.29

SSP5-8.5

Mean
CV

0.71 0.88 0.58

(C) Environmental variables

Temperature Salinity Dissolved oxygen Zooplankton volume

Historical scenario

Mean
CV

0.55 0.68 0.51 0.65

SSP5-8.5

Mean
CV

0.71 0.83 0.72 0.87

(D) Non-stationarity metric

Metric 1 (variables in
GAM)

Metric 2
(linearity)

Metric 3 (rank
order)

Metric 4 (response curve
shape)

Metric 5 (response curve
range)

Metric 6 (peak
value)

Historical scenario

Mean
CV

0.56 0.66 0.62 0.58 0.58 0.55

SSP5-8.5

Mean
CV

0.79 0.80 0.78 0.75 0.82 0.71
In (C) and (D), only models for which there is some evidence of non-stationary are included in the means.
Mean CVs are presented by (A) species, (B) change point type, (C) environmental variable, and (D) non-stationary metric.
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such as those associated with an MHW. Instead, non-

stationarity likely emerges due to interplay between multiple

factors (e.g., variations in population size, prey availability,

interactions between oceanic conditions, shifts in where and

when fish spawn).

Our results help explain some contradictions between earlier

publications on SPF spawning habitat. There is generally a

consensus that the northern stock of S. sagax spawns at 12-16°

C, with several publications indicating peak spawning at

temperatures around 13-14° C (Checkley Jr et al., 2000; Lynn,

2003; Reiss et al., 2008; Zwolinski et al., 2011; Asch and Checkley

Jr, 2013). Our results are consistent with this consensus,

although there are variations between periods in how quickly

optimal spawning habitat declines at temperatures moving away

from this peak. E. mordax generally spawn at 12-18° C, but the

exact range of temperatures occupied by this species varies

between studies, which may reflect variations in the rate at

which response curves decline moving away from peak

temperatures (Fiedler, 1983; Lluch-Belda et al., 1991; Checkley

Jr et al, 2000; Reiss et al., 2008; Weber and McClatchie, 2010;

Asch and Checkley Jr, 2013). Checkley Jr et al. (2000) and Asch

and Checkley Jr (2013) found that S. sagax eggs were most

frequently observed at intermediate salinities of 33.0-33.4 psu,

whereas Weber and McClatchie (2010) identified a

monotonically decreasing relationship between S. sagax larvae

and salinity. This contradiction likely reflects the fact that each

study considered a different period since the shape of salinity

response curves is sensitive to the years used to parameterize

SDMs. In contrast, all previous research including ours indicate

that E. mordax spawn at higher salinities in the southern CCS

(Checkley Jr et al., 2000; Weber and McClatchie, 2010; Asch and

Checkley Jr, 2013). However, given that this species resides in the

Columbia River freshwater plume in the northern CCS

(Kaltenberg et al., 2010), phenotypic plasticity or local

adaptation might influence E. mordax larval occurrence with

regard to salinity. Different studies have identified positive and

negative relationships between S. sagax and zooplankton

concentration (Checkley Jr et al., 2000; Lynn, 2003; Agostini

et al., 2007). While this might reflect differences in the life stage

of S. sagax studied, variations in zooplankton species

composition, or spurious correlations, non-stationary

relationships provide an alternative explanation.

Less research has been conducted on the relationship

between SPF and DO in the southern CCS. Koslow et al.

(2013) suggested that there was a positive relationship between

DO and S. sagax larvae, which is consistent with our results

across the majority, but not all, regimes. Howard et al. (2020)

indicated that the distribution of E. mordax is sensitive to DO,

especially at high temperatures, which is comparable to our

results from recent years, although other patterns are seen early

in the CalCOFI time series. These two papers mainly focused

mid-water column depths because projected declines in DO

concentration under climate change are maximized across this
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range (Dussin et al., 2019). Our research focused on

environmental conditions in the upper 50 m of the water

column coincident with the peak vertical distribution of SPF

eggs and larvae. Since hypoxic conditions at these depths only

occur during extreme upwelling, the reaction of SPF larvae to

DO in our study is more representative of the influence of DO as

an indicator of water mass characteristics rather than as a

physiological stressor.

Less research has been conducted on environmental

influences on the species distribution of S. japonicus and T.

symmetricus in the southern CCS. Our results are consistent with

prior studies of the influence of temperature and salinity on their

spawning distribution (Weber and McClatchie, 2012; Asch and

Checkley Jr, 2013). However, this is less so for ZDV. For S.

japonicus, Weber and McClatchie (2012) found that larvae were

most likely to be present at intermediate ZDVs of ~5-7 log cm3

1,000 m-3. While we observed a similar relationship between

ZDV and S. japonicus larvae during 1951-1968 (Figure S9), this

pattern was not apparent in other periods. Asch and Checkley Jr

(2013) identified the highest probability of T. symmetricus eggs

at low ZDV. The current study identified a similar pattern

during 1984-2015, which coincides with years examined by

Asch and Checkley Jr (2013). However, differing relationships

between T. symmetricus distribution and ZDV were observed

during earlier periods.

T. symmetricus was the only species to experience a projected

increase in IHS under SSP1-2.6 and SSP5-8.5. We hypothesize

that this increase in suitable habitat is related to a shift in

spawning phenology of T. symmetricus under climate change.

Future projections were made for March-May since an empirical

formula for converting between mesozooplankton carbon

biomass from CNRM-ESM2 to ZDV was only available for

this season (Supplementary Material 1.2). While these months

coincided with the seasonal peak in larval concentration for E.

mordax, S. sagax, and S. japonicus, maximum concentrations of

T. symmetricus are observed in June (Moser et al., 2001). Asch

(2015) identified T. symmetricus as belonging to a group offishes

whose phenology has become earlier in recent decades in

response to warming. The projected future increase in habitat

suitability for T. symmetricus during March-May likely

represents a continuation of this shift towards earlier

spawning phenology.

Since fish-environmental relationships change over time,

this emphasizes the importance of accurately detecting timing

of regime shifts. Our study analyzed change points associated

with the 1976/1977 PDO phase change, 1968/1969 and 1983/

1984 shifts in ZDV, changes in S. sagax and E. mordax SSB in

1963/1964, and a second shift in S. sagax SSB in 1997/1998. No

change points were detected in time series of temperature,

salinity, and DO, which may reflect that biological time series

often have more non-linear dynamics than physicochemical

variables (Hsieh et al., 2005). The change points detected were

well supported by other studies of the southern CCS. The 1976/
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1977 PDO transition was associated with reduced survival

young-of-year E. mordax (Nishikawa et al., 2019). The

presence of a mid-1960s regime shift was consistent with an

analysis of 35 species of CCS ichthyoplankton (Peabody et al.,

2018). Other ichthyoplankton studies have identified faunal

shifts during 1983/1984 and the late 1990s (Miller and

McGowan, 2013; Peabody et al., 2018; Thompson et al.,

2019a), which approximately coincide with our change points

in ZDV and S. sagax SSB, respectively. Unlike previous studies,

we did not detect a 1989/1990 regime shift (Miller and

McGowan, 2013; Koslow et al., 2015; Peabody et al., 2018).

This might reflect that this change point seems to be principally

associated with shifts among a few highly abundant taxa in the

southern CCS (Peabody et al., 2018). Our Bayesian change point

algorithm indicated that there was some uncertainty in the exact

year of transitions (Figures 2, 3). This uncertainty may reflect

gaps in CalCOFI time series coverage, discontinuities in stock

assessments, the decision to log-transform SSB prior to change

point detection, and uncertainty related to parameter choice

during change point detection (Overland et al., 2008; Peabody

et al., 2018). For instance, the choice of minimum regime length

affects detection of recent ecological shifts, such as the crash and

subsequent recovery of E. mordax (Thayer et al., 2017;

Thompson et al., 2019b).
4.2 Mechanisms responsible for
non-stationary dynamics

Currently there is limited capacity for predicting the

occurrence of non-linear ecosystem regime shifts. A meta-

analysis of 4,600 global change impacts concluded that such

shifts were rarely detectable in advance (Hildebrand et al., 2020).

While many regime shifts are characterized by increased time

series variance (Lenton, 2011), this signal can be obscured by

small variations in organismal responses (Hildebrand et al.,

2020). Similarly, Field et al. (2009) concluded that fluctuations

in SPF abundance in paleo-ecological time series were

characterized by red noise that was not predictable. When

combined with novel environmental conditions and changes

in how fish react to oceanic variables across regimes, these

factors challenge the ability of empirically derived models to

make accurate future projections needed for management.

However, models that incorporate physiological principles and

mechanistic ecological understanding may fare better.

While our study did not directly investigate mechanisms

responsibility for non-stationarity, some insights can be attained

and may help generate hypotheses for future research. Given the

greater amount of literature on S. sagax and E. mordax, more

hypotheses exist to explain non-stationary dynamics among

these species. Previous studies suggested that the relationships

between these fishes and SST may be a proxy for other

environmental factors (e.g., prey availability) that more
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directly influence population dynamics (Fiedler, 1983;

Jacobson and MacCall, 1995). This could lead to non-

stationarity if relationships between SST and the direct

influences on a species become decoupled. However, this

seems unlikely to explain the non-stationarity observed here

because the relationship between temperature and larval habitat

exhibited greater stationarity than other variables. Previous

studies have indicated that DO in the CCS is correlated with

variations in nutrient and chlorophyll concentration, water mass

characteristics, and geostrophic flow (Weber and McClatchie,

2010; Koslow et al., 2013). Since the relationship between DO

and larval presence/absence was subject to greater non-

stationarity, changes in the strength of these correlations could

be possibly responsible for this non-stationarity.

Changes in modes of climate variability and trophodynamic

relationships have also been hypothesized to be mechanisms

responsible for non-stationarity in SDMs (Litzow et al., 2019).

We observed slightly more non-stationarity across zooplankton

regime changes than PDO shifts, suggesting support for

trophodynamic changes as an underlying cause of non-

stationarity. Related to this point, it must be noted that an

environmental variable needs to exceed an organism’s tolerance

range to affect its distribution. Under modes of climate

variability that are favorable to an organism, this tolerance

range might not be exceeded. However, values outside of their

tolerance may be experienced by fishes during the opposite

phase of climate variability or as the climate continues to

change. This mechanism could lead to the appearance of non-

stationarity when using SDMs parameterized with data from

different periods.

Additional mechanisms for explaining non-stationarity are

related to migration and dispersal. Since larvae are subject to

advection, they do not have complete control over habitats

occupied, which could increase the likelihood of non-

stationarity (Brun et al., 2016). Conversely, movement by

adults can help fishes track favored environmental conditions

whereas less migratory species may be unable to follow such

conditions (Reglero et al., 2012). This would imply that less

migratory species may be subject to greater non-stationarity.

However, migratory species may be equipped to face a greater

variety of conditions encountered along migration pathways,

implying that their distribution may be less tightly coupled with

oceanic conditions. S. sagax displays greater seasonal migratory

behavior than E. mordax (Zwolinski et al., 2011) and exhibited a

greater incidence of non-stationarity. This suggests the latter

idea (i.e., migratory behavior is associated with fewer

environmental distribution constraints) has more support

based on our data. Our results are also consistent with

Planque et al. (2007); Weber and McClatchie (2010), and

Muhling et al. (2020) who found that E. mordax distribution

could be better fit by SDMs than S. sagax. S. sagax tends to

exhibit greater variability in distribution than E. mordax at

interannual-to-decadal scales, expanding its distribution
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offshore and northward when abundant (MacCall, 1990). This

expansion, hypothesized to be driven by density-dependent

habitat use, may be responsible for greater non-stationarity

among S. sagax.

Beyond migratory behavior, there are at least two other

hypotheses that could explain the high degree of non-

stationarity among S. sagax. This species is known to undergo

demographic changes as its abundance fluctuates. S. sagax

reaches maturity at age 1 under low biomass and matures at

age 2 at high biomass (Hill et al., 2008). Such demographic

changes can increase the sensitivity of species to environmental

variability (Anderson et al., 2008), which could generate non-

stationarity. Another potential explanation could be related to

intermixing between the U.S. and southern Baja California

stocks of S. sagax, which use distinct thermal habitats (Lynn,

2003; Dorval et al., 2011). Nonetheless, the thermal history of

habitat occupancy recorded in S. sagax otoliths from the

southern CCS suggests intermixing of stocks is somewhat rare

(Dorval et al., 2011).
4.3 Non-stationarity among
oceanic variables

Climate change projections for marine organisms may be

improved by focusing on oceanic variables less likely to exhibit

non-stationarity. Of the variables considered, temperature most

frequently exhibited stable relationships with larvae distribution

(Table 2). This reflects that temperature has a direct influence on

biological processes as diverse as gene expression, enzyme

kinet ics , metabolism, consumption, and growth in

poikilotherms (Hare et al., 2012). Most marine fishes do not

change their mean temperature of occurrence over time (Nye

et al., 2009) and track climate velocity by shifting their

distribution and depth to reflect changing temperatures

(Pinsky et al., 2013). Rates of evolution of thermal niches are

projected to be much slower than rates of future environmental

change, leading to niche conservatism (Jezkova and Wiens,

2016). Consequently, SDMs driven by thermal preferences

may be more reliable for making future projections than those

with substantial influences from other variables. Nonetheless,

multivariate SDMs generally are better at predicting historical

distribution than univariate models (McHenry et al., 2019).

Salinity and ZDV exhibited an intermediate-to-high amount

of non-stationarity. Species were often less responsive to these

variables during recent regimes as indicated by exclusion of these

variables from models, flattened response curves, or decreases in

their ranking (e.g., Figures 4, 5). For ZDV, in some cases, fishes

were less likely to display a unimodal response curve in recent

years. Some non-stationarity observed among these variables

may be related to the fact that their response curves had wider

confident intervals near the minima and maxima of observed

conditions. Due to wide confidence intervals, it was not always
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possible to determine whether changes in response curves

between regimes represented changes in larval occurrence or

solely a lack of capacity to precisely quantify responses to

infrequently observed states. Brun et al. (2016) obtained

similar results where SDMs displayed decreased skill near the

edges of a species range where conditions were more extreme. It

is important to understand how species react to such extremes

since they are projected to occur more frequent under climate

change (Frölicher et al., 2018). Laboratory experiments may be

useful since they allow for replication of extremes observed

infrequently in nature.

DO often exhibited a greater influence on SPF during recent

regimes (Figures 5, 6, S2). Under climate change, DO in the CCS

is projected to decline due to reduced solubility of oxygen in

warmer water, increased stratification, changes in deep-water

circulation causing reduced ventilation, and changes in

upwelling strength (Rykaczewski and Dunne, 2010; Dussin

et al., 2019). These changes have been documented to

influence the historical abundance of mesopelagic fishes in the

southern CCS (Koslow et al., 2011) and are projected to affect the

future persistence of E. mordax in the region (Howard et al.,

2020). Our findings are consistent with these patterns.
4.4 Projection uncertainty

For climate change impacts to be considered in fisheries

management, uncertainty in future projections must be

quantified. This is because managers will need to contemplate

both best- and worst-case scenarios in the planning process

(Cheung et al., 2016a). In ecological models, uncertainty can

result from incomplete observational records, different

approaches to conceptual and numerical model formulation,

parameter estimation, model selection, choice of spatiotemporal

scale, and adaptability of living systems (Planque et al., 2011).

Future research should consider non-stationarity in fish-

environmental relationships as another source of model

uncertainty. Here we showed that the period used to

parameterize SDMs can have a substantial impact on future

projections due to non-stationarity, with the magnitude of this

effect sometimes exceeding the effect of different climate

scenarios. One understudied area with respect to climate

change uncertainty is whether there might be interactions

between different sources of uncertainty. We found that an

interaction exists between uncertainty due to non-stationarity

and SSP scenario, with an increasing effect of non-stationarity at

higher emissions.

As with most SDMs, there are a number of qualifications

that may affect our results. To take advantage of the multi-

decadal CalCOFI time series, our analysis focused on the

southern CCS, which does not encompass the full range of

target species. Nonetheless, given the pronounced onshore-

offshore gradients sampled by CalCOFI, this dataset covers
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several oceanic water masses exhibiting different conditions

(McClatchie, 2013). Also, previous research has used CalCOFI

to understand how environmental change affects fish

distribution despite the dataset’s limited spatial extent (Hsieh

et al., 2008; Hsieh et al., 2009; Howard et al., 2020; Muhling et al.,

2020). A second qualification is that some of the changes in how

fishes respond to the environment could be related to

interactions between multiple variables influencing fish

distribution. Changes in response curve shape may reflect the

fact that partial responses from GAMs depend on the partial

response of a species to other variables. For example, the extent

to which DO is a stressor depends on temperature (Howard

et al., 2020). GAMs often do not account for such interactions,

but other SDMs do. We evaluated non-stationarity across

periods with change points in S. sagax SSB using a second

model that accounts for such interactions (the non-parametric

probabilistic ecological niche model; Beaugrand et al., 2011; R.G.

Asch unpublished data). Since non-stationarity was also

common when using this alternative SDM, the high incidence

of non-stationarity in the GAMs cannot be explained solely by

multivariate interactions. Our models purposely did not include

SSB as an independent variable because it is unlikely that future

SSB would be precisely known when projecting climate change

impacts. However, SSB can influence S. sagax and S. japonicus

larval distribution (Weber and McClatchie, 2010; Weber and

McClatchie, 2012). Models may display fewer incidences of non-

stationarity due to density dependence if different SSB scenarios

are included in long-range projections. Another critique of

SDMs is that they do not typically allow for acclimation or

adaptation to changing conditions. However, it is also unclear

how important these processes are for fishes since thermal

niches evolve slowly (Jezkova and Wiens, 2016). Also, fishes

may migrate towards preferred conditions prior to acclimation

(Habary et al., 2016).
4.5 Recommendations for improving
SDM projections for marine fishes

Moving forward, it is important to determine if the high

incidence of non-stationarity detected here is widespread or

mainly a characteristic among SPF larvae in upwelling systems.

For populations likely subject to non-stationary environmental

relationships, we recommend validating SDMs with

independent datasets whenever possible. Cross-validation with

a subset of the original dataset can result in potential

overestimation of model skill due to temporal and spatial

autocorrelation or overfitting (Araújo et al., 2005; Planque

et al., 2011). Some measures of model skill, such as the true

skill statistic, perform similarly regardless of the time lag

between datasets used for model development and testing

(Brun et al., 2016). Wider use of the true skill statistic could

help realistically assess model skill when an independent dataset
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is unavailable for validation. Since variables exhibiting

indications of non-stationarity were more likely to have SDM

response curves with wide confidence intervals, we recommend

that response curve confidence intervals be more frequently

reported. Nonetheless, some climate-envelope models may

underestimate confidence intervals associated with the

centroid of species distribution (Thorson, 2018).

Another suggestion for guarding against non-stationarity

and improving confidence in SDM projections is to compare

model-derived environmental niches against those from

physiological experiments (Asch and Erisman, 2018; Muhling

et al., 2020). Alternatively, physiologically based thermal

tolerances can be used to parameterize SDMs (Hare et al.,

2012). However, it is not unusual to see discrepancies between

laboratory-derived and field-based estimates of thermal niche

due to differences between fundamental and realized niches

(Henderson, 2019). Related to this, fishes may not fully occupy

suitable habitat within their realized niche during low

abundance (Planque et al., 2007), which can lead to non-

stationary relationships. Using thresholds GAMs where a

threshold is prescribed based on fish biomass is a common

way to mitigate against such dynamics (Lindegren and Eero,

2013; Beggs et al., 2014; van der Sleen et al., 2018).

Obtaining reliable projections of fish species distribution,

phenology, and population dynamics is important, because it

allows fisheries managers to better engage in adaptive

management. Networks of marine protected areas and the

timing of seasonal fishing closures may need adjustment as

fishes undergo range shifts or phenological changes (McLeod

et al., 2009; Peer and Miller, 2014). Fisheries independent

surveys can be made more efficient when relationships

between fish distribution and the environment are used to

adaptively adjust sampling (Zwolinski et al., 2011). Most stock

assessments assume population processes affecting fisheries are

stationary, which can create retrospective bias in estimates of

population parameters if there has been a change in fishery

productivity (Szuwalski and Hollowed, 2016). Stock assessments

may be improved by incorporating environmentally variable

recruitment, growth, mortality, or catchability into assessments

(Adams et al., 2015; Pershing et al., 2015; Tommasi et al., 2017).

If the productivity of stocks changes as a function of climate, it

may be necessary to adjust acceptable biological catch to meet

management objectives (Vert-pre et al., 2013). Alternative

approaches to dealing with non-stationarity when setting

management targets include adopting targets that harvest a

constant fraction of the stock and only considering the most

recent regime when parameterizing stock assessments (Vert-pre

et al., 2013; Szuwalski and Hollowed, 2016). Management

strategy evaluation also relies on robust assessments of climate

change impacts on fishes when assessing which strategies

produce resilient fisheries (Szuwalski and Hollowed, 2016).

Non-stationary relationships that create greater uncertainty in

future projections may reduce the reliability of these
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management strategies for adapting to change. However, this

challenge only further underscores the importance of adaptive

management to account for the non-stationary reactions

of fishes.

In conclusion, we determined that non-stationary

relationships between larval occurrence and environmental

variables were nearly ubiquitous in the CCS, occurring across

multiple types of indicators, regime shifts, oceanic variables, and

species. This has implications for the robustness of future

projections of species distribution changes since most

projections rely on statistical models that assume stationary

relationships. Differences between alternative projections

became amplified under climate change, suggesting this source

of uncertainty may become increasingly important in the future.

Nonetheless, the relationship between temperature and larval

occurrence was more stable than other variables, likely due to

effects of temperature on fish physiology. Non-stationarity was

especially pronounced when examining regime shifts defined by

biological changes, such as shifts in SSB and ZDV. This suggests

that density dependence and prey availability may play key roles

modulating how fishes react to oceanic conditions.
Data availability statement

Publicly available datasets were analyzed in this study. These

data can be found here: NOAA ERDDAP server: https://

coastwatch.pfeg.noaa.gov/erddap/index.html; CMIP6: https://

esgf-node.llnl.gov/projects/cmip6/.
Ethics statement

Ethical review and approval was not required for animal use

in this study because this manuscript solely uses historical data

that were not gathered by the authors and were archived in

online databases.
Author contributions

RGA designed the research. RGA, JS, and KC performed the

research and analyzed the data. RGA wrote the first draft of the
Frontiers in Marine Science 23
manuscript. All authors contributed to the manuscript revision,

read, and approved the final version.
Funding

RGA was supported by Nippon Foundation-Nereus Program,

Alfred P. Sloan Foundation Research Fellowship Program, and

NSF OCE award number 2049624. JS and KC received support

from the High Meadows Environmental Institute.
Acknowledgments

We thank the CalCOFI program and CMIP6 for making

available observational data and earth system model output. We

would also like to thank the two reviewers and associate editor

whose suggestions helped to improve this manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fmars.2022.711522/full#supplementary-material
References
Adams, C. F., Miller, T. J., Manderson, J. P., Richardson, D. E., and Smith, B. E.
(2015). Butterfish 2014 stock assessment (Woods Hole, MA: National Marine
Fisheries Service, Northeast Fisheries Science Center).

Agostini, V. N., Bakun, A., and Francis, R. C. (2007). Larval stage controls on
Pacific sardine recruitment variability: High zooplankton abundance linked to
poor reproductive success. Mar. Ecol. Prog. Ser. 345, 237–244. doi: 10.3354/
meps06992
Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J., and Laidre, K. L. (2013).
Modeling climate change impacts on phenology and population dynamics of
migratory marine species . Ecol . Model . 264, 83–97. doi : 10.106/
j.ecolmodel.2013.03.009

Anderson, C. N. K., Hsieh, C. H., Sandin, S. A., Hewitt, R., Hollowed, A.,
Beddington, J., et al. (2008). Why fishing magnifies fluctuations in fish abundance.
Nature 452, 835–839. doi: 10.1038/nature06851
frontiersin.org

https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.711522/full#supplementary-material
https://doi.org/10.3354/meps06992
https://doi.org/10.3354/meps06992
https://doi.org/10.106/j.ecolmodel.2013.03.009
https://doi.org/10.106/j.ecolmodel.2013.03.009
https://doi.org/10.1038/nature06851
https://doi.org/10.3389/fmars.2022.711522
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Asch et al. 10.3389/fmars.2022.711522
Araújo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M. (2005). Validation of
species-climate impact models under climate change. Glob. Change Biol. 11, 1504–
1513. doi: 10.1111/j.1365-2486.2005.01000.x

Asch, R. G. (2015). Climate change and decadal shifts in the phenology of larval
fishes in the California Current Ecosystem. Proc. Nat. Acad. Sci. U.S.A. 112 (30),
E4065–E4074. doi: 10.1073/pnas.1421946112

Asch, R. G., and Checkley, ,. D. M.Jr. (2013). Dynamic height: A key variable for
identifying the spawning habitat of small pelagic fishes. Deep-Sea Res. I 71, 79–91.
doi: 10.1016/j.dsr.2012.08.006

Asch, R. G., and Erisman, B. (2018). Spawning aggregations act as a bottleneck
influencing climate change impacts on a critically endangered reef fish. Divers.
Distrib. 24 (12), 1712–1728. doi: 10.1111/ddi.12809

Asch, R. G., Stock, C. A., and Sarmiento, J. L. (2019). Climate change impacts on
mismatches between phytoplankton blooms and fish spawning phenology. Glob.
Change Biol. 25, 2544–2559. doi: 10.1111/gcb.14650

Barange, M., Coetzee, J., Takasuka, A., Hill, K., Gutierrez, M., Oozeki, Y., et al.
(2009). Habitat expansion and contraction in anchovy and sardine populations.
Prog. Oceanogr. 83, 251–260. doi: 10.1016/j.pocean.2009.07.027

Beaugrand, G., Lenoir, S., Ibañez, F., and Manté, C. (2011). A new model to
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