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Drift macroalgae plays key roles in the ecology of many coastal systems, including the
Indian River Lagoon. In the lagoon, changes in the biomass of drift macroalgae may
have interacted with an unprecedented bloom of phytoplankton in 2011. Patterns in the
biomass of drift macroalgae were identified using new and original analyses of data from
several sampling programs collected between 1997 and 2019. All available data show a
relatively low biomass of drift macroalgae in 2010–2012, and surveys of fixed transects
and seining as part of a fisheries independent monitoring program also recorded low
biomass in 2016. Low light availability and potentially stressful temperatures appeared
to be the main influences as indicated by the results of incubations in tanks to determine
environmental tolerances and data on ambient conditions. Decreased biomass of
drift macroalgae had implications for cycling of nutrients because carbon, nitrogen,
and phosphorus not stored in the tissues of drift macroalgae became available for
uptake by other primary producers, including phytoplankton. The estimated 14–18%
increases in concentrations of these elements in the IRL could have promoted longer
and more intense phytoplankton blooms, which would have reduced light availability
and increased stress on algae and seagrasses. An improved understanding of such
feedback and the ecological roles played by drift macroalgae will support more effective
management of nutrient loads and the system by accounting for cycling of nutrients
among primary producers.

Keywords: abundance, physiological tolerance, nutrient content, nutrient cycling, habitat suitability

INTRODUCTION

Interactions among three key primary producers, phytoplankton, macroalgae, and rooted
macrophytes, represent influential processes in many estuaries (Duarte, 1995; Kinney and Roman,
1998; Viaroli et al., 2008). In the Indian River Lagoon (IRL), drift macroalgae (DMA) can dominate
the total biomass of submersed aquatic vegetation, and even during years when seagrass is
abundant, DMA contribute a significant proportion of the total primary productivity (Dawes et al.,
1974; Josselyn, 1977; Thompson, 1978; Virnstein and Carbonara, 1985; Jensen and Gibson, 1986).
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Beyond being an important primary producer, DMA also provide
habitat for small animals and a place to forage for predators
(Stoner, 1980; Kulczycki et al., 1981; Virnstein and Howard, 1987;
Holmquist, 1997).

As key primary producers in the IRL, DMA play an important
role in cycling of carbon, nitrogen, and phosphorus. The ability
of macroalgae to take up and store nutrients makes them
successful when nutrients are limiting or supplied in pulses,
which allows them to compete with phytoplankton for access to
elements in the water column (Marshall and Orr, 1949; Hanisak,
1983). However, DMA are less robust and persistent than rooted
macrophytes, so their death or lack of growth can add or leave
carbon, nitrogen, and phosphorus that become available for
uptake by fast-growing phytoplankton (Hanisak, 1983, 1993;
Lavery and McComb, 1991; Gao et al., 2013). In fact, shifts
from dominance by benthic primary producers to dominance
by phytoplankton have been observed in multiple systems with
negative impacts on seagrass assemblages and their associated
fauna (Jensen and Gibson, 1986; Duarte, 1995; Burkholder et al.,
2007; Duarte et al., 2010). Such a shift may have occurred in the
IRL because an unprecedented sequence of intense and long-
lasting blooms of phytoplankton has afflicted the system since
2011 (Phlips et al., 2010, 2011, 2015).

Although important in the IRL and elsewhere, DMA are
difficult to sample effectively and efficiently. The fact that DMA
are moved by currents complicates the choice of locations to
sample, and details regarding their movements in the IRL are
poorly known (Kulczycki et al., 1981; Virnstein and Carbonara,
1985; Jensen and Gibson, 1986; Hanisak, 2021). Additionally,
DMA occur across a wider range of depths than rooted
macrophytes because they have lower requirements for light
(Biber et al., 2004; Hily et al., 2004; McGlathery et al., 2007),
so the need to survey more area and deeper water makes
effective sampling more challenging. Drift macroalgae also are
relatively ephemeral, and changes in their abundance within
and between years, including ‘boom and bust cycles’ driven
by environmental conditions make the choice of temporal
intensity for sampling important (Virnstein and Carbonara, 1985;
McGlathery et al., 2007).

In spite of these challenges, the objectives of this paper are
to identify the presence, causes, and consequences of differences
and changes in the biomass of DMA across space and through
time in the IRL. Substantial and consistent patterns in the
biomass of DMA are elucidated from data collected at multiple
spatial and temporal scales, and those patterns are related
to environmental drivers that reflect physiological tolerances
identified in incubations. The implications of spatiotemporal
variation in biomass of DMA are translated into effects on cycling
of elements in the IRL via data on the carbon, nitrogen, and
phosphorus content of several species of DMA.

MATERIALS AND METHODS

Study Area
The IRL is a shallow, bar-built estuary along the east coast of
Florida comprising three, interconnected sublagoons: Mosquito

Lagoon, Banana River Lagoon, and Indian River Lagoon
(Figure 1). The average water depth in the sublagoons is 1.9 m,
and most of the system is microtidal (semidiurnal lunar tidal
amplitude range 0.2–18.1 cm), with more substantial changes
in water level driven by wind and the seasonal rise and fall
of the coastal ocean (Smith, 1987; Pitts, 1989; Steward et al.,
2005). Significant exchange with the coastal ocean is limited
to five inlets located primarily in the southern portion of the
IRL. This configuration contributes to residence times of over
a year in the portions of the system that are far from inlets
(Steward et al., 2005).

For this paper, the IRL was subdivided into reaches (Figure 1).
The reaches were delineated by evaluating similarities in
time series of water quality parameters (Lasi et al., this
volume). The first six reaches were within the St. Johns River
Water Management District. The remainder, reaches 7, 8, and
9, were within the boundary of the South Florida Water
Management District.

Biomass of Drift Macroalgae
Data generated by visual surveys of fixed transects, seines of
two sizes hauled as part of fisheries independent monitoring,
and hydroacoustic surveys were analyzed independently because
samples were taken at different frequencies, over different
areal extents, and across depths that may or may not overlap
(Supplementary Table 1). Given these variations, there was no
attempt to intercalibrate the data, and interpretations focused on
changes or differences that were consistent across methods.

A focus on consistent and substantial changes also resulted
from a lack of details on the taxonomic composition of
DMA. In surveys of transects, which focused on seagrass, and
seining, which focused on fish and macroinvertebrates, DMA
was considered bycatch; therefore, the biomasses of individual
species typically were not measured. Furthermore, hydroacoustic
surveys could not differentiate species. Nevertheless, widespread,
consistent, and statistically significant spatiotemporal patterns
provide valuable insights into the roles of DMA.

Fixed Transects
Fixed transects were surveyed at least twice a year (summer and
winter) approximating times of annual maximum and minimum
abundance of seagrasses (Figure 1; Virnstein and Morris, 1996).
The location of each transect was marked with poles, and the
path to be surveyed was delineated by a graduated line extending
perpendicularly from the shoreline out to the deep end of the
seagrass canopy. In summary, transects extended for 15–1,900 m
across depths to 1.8 m.

At pre-designated points along transects, a suite of
standardized, non-destructive measurements was taken within
a 1-m2 quadrat divided by strings into 100 cells, each 10 cm by
10 cm. The relevant measurement for DMA was a visual estimate
of the biomass of all species expressed as an index, which was
converted to biomass using empirically derived coefficients,
i.e., 0 = 0 g dry weight (DW) m−2, 1 = 0.35 g DW m−2,
2 = 1.98 g DW m−2, 3 = 21.37 g DW m−2, 4 = 47.74 g DW
m−2, 5 = 141.94 g DW m−2 (Morris et al., 2001). For this study,
we used data collected between 1998 and 2020.
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FIGURE 1 | Map showing the location of the Indian River Lagoon, five inlets,
nine reaches, fixed transects through seagrass, and water quality stations.

Fisheries Independent Monitoring
Larger and in some cases deeper areas were sampled as part
of long-term fisheries independent monitoring (FIM) conducted
by the Florida Fish and Wildlife Conservation Commission,
Fish and Wildlife Research Institute. The program sampled sites
selected without replacement using a stratified random sampling
design (FWC-FWRI, 2016), and we used data from sites sampled
between either 1997 or 1998 and 2019.

The FIM program employed multiple types of gear, and
we used data from two seines, a 21.3-m × 1.8-m center-bag
haul seine with 3.2-mm nylon mesh and a 183-m × 2.5-m
center-bag haul seine with 38-mm stretched nylon mesh. Seines
were deployed along estuarine shorelines to sample areas with
emergent vegetation, fringing mangroves, seawalls, and beaches
or on flats at least 5 m from the shoreline. The 21.3-m seine was
pulled for 9.1 m across a 15.5-m wide strip of bottom, resulting
in a sampling area of approximately 140 m2. Using a boat,
the 183-m seine was set in a rectangular shape adjacent to the
shoreline with a maximum depth of 2.5 m at the bag before being
retrieved by hand. The area sampled by the net (approximately
40 m × 103 m = 4,120 m2) was standardized by marking 40 m
from each end to designate the corners of the rectangular set.

Bycatch of DMA was quantified to 0.1 gallons in the field, with
reliable data being quantities of all species due to the challenges
associated with identifying species visually. To convert these data

to wet weights and dry weights, samples were collected during
May and June 2012. Several species of DMA in quantities up
to 5 gallons were collected at several sites, transferred to mesh
bags, and spun to remove excess water. Mesh bags containing
DMA were weighed to yield wet weights per gallon. The algae
were dried at 80◦C and then weighed to yield dry weights per
gallon. A conversion factor was generated by fitting a linear
regression, forced through zero. This conversion factor and the
area sampled by the seine were combined to convert gallons of
DMA to g DW m−2.

Hydroacoustic Surveys
To quantify the abundance and distribution of DMA found
in deeper water, large-scale acoustic surveys were conducted
between April and June in 2008, 2010, 2012, 2014, and 2015.
While the surveys covered up to 288 km2, we focused analysis
of spatiotemporal variation on reaches 2, 3, and 4, which were
completed in all 5 years.

Hydroacoustic data were acquired with a BioSonics DT-
X echosounder and two multiplexed, single-beam digital
transducers with full beamwidths of 10◦ (38 kHz) and 6.4◦
(418 kHz), operated at 5-Hz and 0.4 ms pulse duration (Riegl
and Bushkirk, 2016; Foster et al., 2018). Surveys focused on
water deeper than approximately 1.3 m. The east–west survey
lines were spaced a minimum of 200 m and maximum of
400 m apart. Data were post-processed using BioSonics Visual
Bottom Typer (VBT; Foster et al., 2018). To estimate percent
cover of DMA, samples of algae and video were collected along
the line of the hydroacoustic surveys, and wet weights were
recorded. Based on these samples, the acoustic signals were
grouped into a supervised training catalog for bare substrate,
sparse algae, dense algae, and other vegetation. Using the
catalog and the estimated conversion factor, counts of the
acoustic signals in each class were used to estimate wet biomass,
and the conversion factor calculated for samples from seining
was used to estimate dry biomass (Riegl and Bushkirk, 2016;
Foster et al., 2018).

Analysis of Data
To evaluate differences in biomass, dry weights of macroalgae
generated by each of the methods were used in separate
permutation analyses of variance (PERMANOVAs, Anderson
et al., 2008). All the models included reach and years as fixed
factors, and models applied to data from transects and seines
included seasons as a random factor nested in years. Seasons
were defined based on the results of agglomerative hierarchical
clustering of water quality data, with a warm wet season running
from May to October and a cool dry season running from
November in 1 year through April of the following year (Lasi
et al., this volume). The PERMANOVAs were based on Bray–
Curtis distance measures calculated with a dummy variable of 1
to avoid undefined results.

Physiological Tolerances
To evaluate the effects of stress caused by extreme salinities,
extreme temperatures, low light levels, and combinations
of stressors, a series of incubations was conducted under
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controlled conditions in tanks holding 70 L of water (Hanisak,
2016). Incubations were conducted in batch cultures using
approximately 80 g wet weight of Gracilaria tikvahiae and
Crassiphycus secundus (formerly Hydropuntia secunda), which
are two of the most widespread and abundant rhodophytes
in the IRL (Hanisak, 2016, 2021). Data were collected weekly
over 35 days after 7 days of acclimation, and quantities of
macroalgae were adjusted to maintain ∼80 g wet weight. The
potential effects of macronutrient and trace metal limitation were
obviated by midday additions of 39.0 µM dissolved inorganic
nitrogen (i.e., 26 µM ammonium and 13 µM nitrate), 0.94 µM
orthophosphate, and trace metals at concentrations found in
F/2 medium. These additions achieved a nitrogen:phosphorus
ratio of ∼41, which paralleled ratios measured in the IRL (Lasi
unpublished data), and the ∼38 mg of nitrogen and ∼2 mg
of phosphorus was sufficient to support growth of G. tikvahiae
in past cultures (Hanisak, 1990). Salinities were maintained
within 1 psu of the target by diluting water from a saltwater
well. Temperatures were controlled within 1◦C of the targets by
chillers and heaters. Light was provided by 100W SOL 1 – LED
Grow Lights from 06:00 to 18:00.

Two types of incubations were conducted: single-factor
range finding incubations for salinity, temperature, and light
availability and incubations manipulating combinations of
factors. The factors that were not manipulated were held
at 25 psu, 25◦C, or 250 µmol m−2 s−1, as appropriate.
Incubations with varying salinity included 12, 18, 25, 35, 45,
and 50 psu. Temperatures of 7, 10, 17, 25, and 33◦C were
tested, and light levels of 0, 10, 30, 50, 100, 250, and 400 µmol
m−2 s−1 were examined. Algae were harvested each week,
and changes in wet weight were recorded. If incremental
growth occurred, it was removed so the initial stocking density
was returned to the tank. If biomass was lost, the decline
was recorded. Wet weights were converted to dry weights
using an empirical relationship derived from samples taken
at the beginning and end of the incubations. In addition,
samples taken each week were rinsed to remove excess salt,
dried at 80◦C, ground to a fine powder with a mortar and
pestle, and shipped to the University of Maryland’s Nutrient
Analytical Services Laboratory for analysis of carbon, nitrogen,
and phosphorus content (University of Maryland, 2022)1. The
resulting percentages were used to identify any data that were
affected by nutrient limitation.

Data on accumulation of biomass (growth) were extracted
from seven sets of incubations and analyzed with PERMANOVAs
based on Bray–Curtis distance measures with the addition of a
dummy variable set at 1. Where necessary, adding the minimum
to all values eliminated negative numbers. The design accounted
for the repeated measures nature of the incubations. Species and
the appropriate stressor or combination of stressors were fixed
factors. Tank was a random factor nested in the interaction of
species and treatment, and week was a random factor nested in
the interaction of species, treatment, and tank. To examine the
most extensive set of treatments, some data were used in more
than one analysis.

1http://umces.edu/nutrient-analytical-services-laboratory

Timing and Extent of Suitable Conditions
Based on the results from the evaluation of stressors, the timing
and extent of suitable conditions for growth of DMA were
predicted. The data to characterize stressors were drawn from
ongoing sampling of water quality in the lagoon (Lasi et al., this
volume) and existing bathymetry.

Salinities, water temperatures, and photosynthetically active
radiation (PAR) were measured monthly at 30 fixed stations in
reaches 1 through 6 (Figure 1). Measurements were taken with
multiparameter instruments that were calibrated and verified
with standards and procedures prescribed by state guidelines
(Florida Department of Environmental Protection, 2017). Light
availability was characterized by coefficients of attenuation for
PAR (Kd) as determined by applying Beer’s Law (Kirk, 1983) to
readings recorded simultaneously by three spherical quantum
sensors. Sensors were held 0.2 and 0.5 m below the water’s
surface, and a third sensor was held 0.3 m from the bottom in
water ≤ 1.8 m deep or 1.5 m below the surface in deeper water
(Morris et al., 2001). The resulting Kd values were combined
with data on solar radiation from the Florida Automated Weather
Network (FAWN2) (University of Florida, Institute of Food and
Agricultural Sciences, 2022) to calculate the depth that received
light above the threshold causing stress. Data from FAWN were
converted from Watts m−2 to µmol m−2 s−1 and daily means
were calculated from daytime data for 1998 through 2019. The
daily means were converted to irradiance (I0) immediately below
the surface of the water by reducing them by 6.6% to account
for surface reflectance (Kirk, 1983), and the resulting values
were combined with a threshold from the incubations (Iz) to
determine the depth (z) receiving sufficient light using:

z = −ln (IZ/I0)/Kd

The depths with sufficient light were translated to areal extent of
suitable habitat for DMA by combining them with bathymetric
data collected by Coastal Planning and Engineering (1997).
Depth soundings were taken throughout the IRL at 15.2-m
intervals along east–west transects that were separated by 150–
300 m. This survey resulted in over 230,000 depth measurements
that were referenced to North American Vertical Datum of 1988
(NAVD88) and adjusted to depth below mean water level (MWL).
From these data, isobaths were generated in 0.1-m increments
for reaches 1–6.

Stressful periods in each reach were identified by examining
months with salinities, temperatures, or light availability that
caused stress during the incubations. In addition, estimates of
light penetration combined with bathymetry identified the extent
of the lagoon with a suitable light regime.

Carbon, Nitrogen, and Phosphorus
Stored in Drift Algae
The carbon, nitrogen, and phosphorus contents of DMA were
determined from samples of common rhodophytes collected bi-
monthly from six sites in the Indian River and Banana River
lagoons (reaches 2, 3, and 4) between July 2014 and August

2https://fawn.ifas.ufl.edu/
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2015. Three replicate samples of the two most abundant species
were collected from beyond the deep edge of the seagrass beds,
typically in 1.5–2.0 m of water. The samples were transported
on ice to the laboratory where epiphytes and debris were
removed before the algae were rinsed to remove excess salt
and dried at 80◦C. Dried samples were ground to fine powder
and analyzed for carbon, nitrogen, and phosphorus content at
University of Maryland’s Nutrient Analytical Services Laboratory
(see Text Footnote 1).

The resulting data on carbon, nitrogen, and phosphorus
content were used to gain insights into changes in the quantities
of these elements stored in DMA. Median elemental contents
were multiplied by DMA biomass per square meter from
transects and surveys with seines to evaluate changes in cycling
of key elements.

RESULTS

Patterns in Biomass of Drift Macroalgae
The biomass of the DMA assemblage varied significantly in
space and through time according to analyses of data from
surveys of transects, deployment of two different seines, and
hydroacoustic surveys (Table 1). Biomasses from the transects
and seines varied among combinations of reach and season
within year, and biomasses detected with hydroacoustics varied
significantly among years.

Higher values for the biomass of DMA observed during
surveys of transects or as bycatch from seining did not reveal
consistent and ecologically meaningful patterns across reaches
or among years (Figures 2A–D). However, data from surveys
of transects indicated that 70% of the biomasses above the
90th percentile were recorded in the warmer, wetter months
of summer, and monthly data from seining indicated that the
biomass of drift algae tended to be higher from March through
July (means± standard error for 21.3-m seine= 1.7± 0.2 g m−2

and 183-m seine = 2.6 ± 0.2 g m−2) than in August–February
(means± standard error for 21.3-m seine= 1.0± 0.1 g m−2 and
183-m seine= 1.2± 0.1 g m−2).

In contrast, relatively low biomass was recorded by multiple
methods during two periods. Low biomass was documented
consistently along the transects and in the seines from late 2010
through 2011–2012 in reaches 1–7, but the same pattern was
not obvious in reaches 8 and 9 where the abundance of drift
algae was lower (Figures 2A,B). Additionally, biomass detected
by hydroacoustic surveys was lowest in 2012 (Figure 2E). Thus,
multiple lines of evidence point to 2010–2012 as one period with
little drift algae. In addition, drift algal biomass along transects
and in the seines was consistently low in reaches 1–6 in 2016
(Figures 2A,C,D).

Physiological Tolerances
Evidence suggested that macroalgae were not limited by
carbon, nitrogen, or phosphorus during the 35-day incubations.
Cumulative growth of macroalgae over 35 days represented
less than 2% of the 80 g incubated, so growth rates were
unlikely to exhaust the nutrients, which were replenished

daily. In addition, elemental contents from all incubations
were consistent, which indicated that the algae received
sufficient carbon, nitrogen, and phosphorus throughout
the incubations. The mean content ± standard error was
28.169% ± 0.075% for carbon, 3.504% ± 0.026% for nitrogen,
and 0.389%± 0.004% for phosphorus.

Incubations with salinities that spanned 12–50 psu did not
identify significant effects on cumulative growth or elemental
contents (Table 2). On average for each of the salinities, G.
tikvahiae accumulated 5.1± 1.4 g to 10.2± 1.2 g of biomass over
35 days, and C. secundus accumulated 4.6 ± 0.8 g to 9.2 ± 1.4 g
of biomass. Given these results, the effect of salinity was not
explored further.

The two species had differing responses to the varying
temperatures used in a range finding incubations (Table 2).
At all temperatures, G. tikvahiae accumulated more biomass
over 35 days (Figure 3A). Both G. tikvahiae and C. secundus
accumulated slightly more biomass at 25◦C, although growth
at 33◦C was similar (Figure 3A). On average, C. secundus lost
biomass at 7◦C and only gained 0.8± 0.1 g at 10◦C.

Light availability characterized by PAR affected the growth
of G. tikvahiae and C. secundus similarly as shown by the lack
of a significant interaction between species and amount of PAR
(Table 2). Unlike C. secundus, G. tikvahiae did not survive in
0 µmol m−2 s−1. Both species consistently accumulated biomass
over 35 days only when provided with 250 or 400 µmol m−2

s−1 of PAR (Figure 3B). On average, G. tikvahiae accumulated
2.5 ± 1.2 g of biomass, and C. secundus accumulated 3.7 ± 0.7 g
of biomass. Given the greater and less variable accumulation of
biomass, C. secundus appeared to cope with low light better than
G. tikvahiae.

Two sets of results combined differing temperatures and
differing amounts of light, with some data for G. tikvahiae used
in two PERMANOVAs (Table 2). In the first set of results, G.
tikvahiae and C. secundus were incubated at 7, 10, 17, 25, and
33◦C under 10, 50, and 100 µmol m−2 s−1 of PAR, and in
the second set, only G. tikvahiae was available to be incubated
at 7, 10, 17, 25, and 33◦C under 10, 50, 100, and 250 µmol
m−2 s−1 of PAR. The two species exhibited differing responses
to combinations of temperature and PAR (Table 2). For both
species, there was loss or accumulation of <2 g of biomass over
35 days at 10 µmol m−2 s−1 of PAR (Figures 3C–E). At 50 µmol
m−2 s−1 of PAR over 35 days, G. tikvahiae gained 2–3 g of
biomass at all temperatures except 25◦C, and C. secundus gained
about 2 g of biomass at 17 and 33◦C (Figures 3C–E). At 100 µmol
m−2 s−1 of PAR over 35 days, G. tikvahiae gained 2–6 g of
biomass, with the maximum gain at 25◦C (Figures 3C,E). At
100 µmol m−2 s−1 of PAR, C. secundus lost biomass at 7 and
10◦C and gained approximately 3 g over 35 days at 17, 25, and
33◦C (Figure 3D). Only G. tikvahiae was subjected to differing
temperatures at 250 µmol m−2 s−1, and it gained a maximum of
9.1± 0.7 g of biomass over 35 days at 25◦C, with gains decreasing
to 3.4± 0.8 g of biomass at 7◦C and 7.5± 1.2 g of biomass at 33◦C
(Figure 3E). Both species tended to lose biomass when subjected
to less than 50 µmol m−2 s−1 of PAR although they survived
the 35-day incubations. Loss of biomass was more common at
temperatures of 7 or 10◦C. Overall, the results indicated that light
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TABLE 1 | Permutation analyses of variance for biomass of drift macroalgae sampled with four methods.

Survey Source df SS MS Pseudo-F ratios p Unique permutations

Transects Rch 8 457,970 57,246 24.58 0.001 997

Yr 20 266,800 13,340 3.32 0.003 998

Seas(Yr) 21 84,399 4,019 3.05 0.001 998

Rch × Yr 160 463,520 2,897 1.24 0.063 997

Rch × Seas(Yr) 168 391,780 2,332 1.77 0.001 995

Res 2,723 3,582,500 1,316

Total 3,100 5,450,000

21.3-m seine Rch 4 103,030 25,758 27.02 0.002 500

Yr 20 72,398 3,620 2.53 0.012 500

Seas(Yr) 21 30,131 1,435 3.25 0.002 500

Rch × Yr 80 99,741 1,247 1.28 0.108 499

Rch × Seas(Yr) 84 82,110 978 2.21 0.002 499

Res 8,341 3,681,100 441

Total 8,550 4,086,600

183-m seine Rch 3 132,610 44,204 28.27 0.001 998

Yr 22 173,380 7,881 2.77 0.007 999

Seas(Yr) 23 65,587 2,852 3.63 0.001 999

Rch × Yr 66 123,870 1,877 1.19 0.241 996

Rch × Seas(Yr) 69 108,950 1,579 2.01 0.001 995

Res 5,005 3,930,000 785

Total 5,188 4,602,700

Hydroacoustics Rch 2 1,081 540 1.90 0.127 998

Yr 4 2,655 664 2.34 0.047 998

Rch × Yr 8 2,985 373 1.32 0.250 999

Res 40 11,348 284

Total 54 24,267

Rch, reach; Yr, year; Seas, season; Res, residual.

availability was a dominant influence on growth, with an effect
of temperature appearing more strongly when the algae received
over 100 µmol m−2 s−1 of PAR. In those conditions, optimum
temperatures appeared to be 25◦C for G. tikvahiae and 17–33◦C
for C. secundus.

Timing and Extent of Suitable Conditions
Salinity did not stress either G. tikvahiae or C. secundus, but
incubations in the laboratory indicated that low temperatures
(below 17◦C), high temperatures (above 25–33◦C), and reduced
light availability (less than 100 µmol m−2 s−1) had the potential
to reduce growth or cause mortality. Stressful periods for each
reach were identified by coding monthly mean Kd values higher
than the 90th percentile of all values (>1.6 m−1), monthly mean
temperatures above the 90th percentile (>30.3◦C), and monthly
mean temperatures below the 10th percentile (<17.8◦C) as zero
and all other values as one to produce a heatmap (Figure 4).
Mean temperatures exceeded the 90th percentile in summers of
all years, and temperatures dropped below the 10th percentile
in multiple winters. The period with the most spatially and
temporally extensive distribution of all stressors was 2009–2011,
which corresponded with multiple records of low abundance for
DMA (Figure 2). In samples taken with the 21.3-m seine from
June 2010 through May 2012, the mean biomass of DMA in all
reaches was below the 10th percentile of all values 67% of the

time and below the 25th percentile of all values 88% of the time.
Similarly, in samples taken with the 183-m seine from August
2010 through October 2012, the mean biomass of DMA in all
reaches was below the 10th percentile of all values 56% of the
time and below the 25th percentile of all values 78% of the time.
High Kd values that translated into low light availability also were
noted in 2016 and 2018 along with warm temperatures, which
again corresponded with low abundance of DMA, especially in
reaches 3–6 (Figures 2A,C,D). In samples taken with the 21.3-
m seine from August 2015 through November 2016, the mean
biomass of DMA in all reaches was below the 10th percentile of all
values 12% of the time and below the 25th percentile of all values
50% of the time. For the 183-m seine, the mean biomass of DMA
recorded in all reaches from September 2016 through December
2016 was below the 10th percentile of all values 50% of the time
and below the 25th percentile of all values 100% of the time.

The incubations to identify tolerances highlighted PAR below
100 µmol m−2 s−1 as a key influence on the growth of DMA;
therefore, depths receiving ≥100 µmol m−2 s−1 were associated
with 0.1-m isobaths to identify the extent of suitable habitat in
hectares (Figure 5 and Supplementary Figure 1). The extent of
suitable habitat varied through time for each reach, and when
compared to the background extent from 1998 to 2009, reaches
2–6 had more substantial losses of suitable habitat in 2010–
2011 and in 2016–2018, which would translate to changes in
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FIGURE 2 | Mean biomass of drift macroalgae sampled along transects through seagrass (A,B), in a 21.3-m seine (C, reaches 2–6), in a 183-m seine (D, reaches
3–6), and via hydroacoustic surveys (E). 1–9 = reaches, 98–19, 1998–2019; W, winter; S, summer. See Table 1 for relevant statistics.

the amounts of carbon, nitrogen, and phosphorus stored in
DMA (Figure 6 and Supplementary Table 2). These results were
consistent with other evaluations of the abundance of DMA.

Carbon, Nitrogen, and Phosphorus
Stored in Drift Algae
Five species of DMA were collected from the field, Acanthophora
spicifera, Agardhiella subulata, G. tikvahiae, C. secundus, and
Hypnea spinella. A series of PERMANOVAs using elemental

compositions of the three species collected multiple times, A.
subulata, G. tikvahiae, and C. secundus, identified significant
variation among the combination of species and sampling
event for mean percent carbon (p10,212 = 0.001), nitrogen
(p10,212 = 0.001), and phosphorus (p10,212 = 0.002). Mean carbon
content ±SE varied from 16.6 ± 0.6% for A. subulata in July
2014 to 33.9 ± 0.4% for C. secundus in April 2015, mean
nitrogen content ± SE varied from 1.5 ± 0.1% for A. subulata
in August 2015 to 3.6 ± 0.1% for C. secundus in April 2015, and
mean phosphorus content ± SE varied from 0.04 ± 0.003% for
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TABLE 2 | Permutation analyses of variance for accumulation of biomass by drift macroalgae subjected to differing stressors in the laboratory.

Stressor Source df SS MS Pseudo-F ratios p Unique permutations

Sal Spp 1 705 705 1.64 0.213 999

Sal 5 2,486 497 1.15 0.392 999

Spp × Sal 5 4,795 959 2.23 0.082 999

Tnk(Spp × Sal) 12 5,169 431 1.50 0.115 999

Wk[Tnk(Spp × Sal)] 72 20,728 288 No test

Total 95 33,883

Temp Spp 1 6,825 6,825 40.33 0.001 998

Temp 3 9,137 3,046 18.00 0.001 999

Spp × Temp 3 3,868 1,289 7.62 0.001 997

Tnk(Spp × Temp) 18 3,046 169 0.59 0.975 999

Wk[Tnk(Spp × Temp)] 78 22,211 285 No test

Total 103 43,492

PAR Spp 1 5,400 5,400 22.79 0.001 999

PAR 5 15,172 3,035 12.81 0.001 999

Spp × PAR 5 2,011 402 1.70 0.119 998

Tnk(Spp × PAR) 12 2,843 237 0.53 0.981 999

Wk[Tnk(Spp × PAR)] 72 32,462 451 No test

Total 95 57,889

Temp × PAR Spp 1 1,056 1,056 34.47 0.001 999

Temp 4 2,276 569 18.57 0.001 998

PAR 2 3,143 1,572 51.30 0.001 999

Spp × Temp 4 2,220 555 18.11 0.001 999

Spp × PAR 2 698 349 11.39 0.001 999

Temp × PAR 8 3,396 425 13.86 0.001 999

Spp × Temp × PAR 8 873 109 3.56 0.001 998

Tnk(Spp × Temp × PAR) 62 1,900 31 0.38 1.000 995

Wk[Tnk(Spp × Temp × PAR)] 276 22,470 81 No test

Total 367 38,282

Temp × PAR Temp 4 1,886 471 7.32 0.001 999

PAR 3 8,438 2,813 43.68 0.001 999

Temp × PAR 12 4,257 355 5.51 0.001 998

Tnk(Temp × PAR) 44 2,834 64 0.63 0.994 997

Wk[Tnk(Temp × PAR)] 192 19,778 103 No test

Total 255 39,914

Sal, salinity; Temp, temperature; PAR, amount of light; Spp, species; Tnk, tank; Wk, week.

C. secundus in April 2015 to 0.2 ± 0.006% for G. tikvahiae in
August 2014 (Supplementary Table 3). These results pointed to
the value of expanded surveys to determine temporal, spatial, and
interspecific variation in elemental compositions of DMA. These
data can be used to make multiple estimates of changes in the
amounts of carbon, nitrogen, and phosphorus stored in DMA,
and as an example to illustrate the importance of such changes,
the overall median percent compositions were multiplied by the
relevant dry weights.

Carbon
(
g
)
= DMA biomass

(
g DW m−2)

× 0.2840

Nitrogen
(
g
)
= DMA biomass

(
g DW m−2)

× 0.0224

Phosphorus
(
g
)
= DMA biomass

(
g DW m−2)

× 0.0008

Based on mean annual biomass of DMA along transects,
all reaches had less carbon, nitrogen, and phosphorus stored
in DMA tissues in 2020 when compared to the amounts

documented from 1998 to 2009 (Table 3). The losses of biomass
ranged from 21% in reach 9 to 93% in reach 4 (Table 3).
The decreases suggested that carbon, nitrogen, and phosphorus
became available for uptake by other primary producers, such
as phytoplankton.

DISCUSSION

Biomass of DMA varied significantly in space and through time,
widespread decreases in biomass were related to thresholds for
environmental tolerances as determined by incubations in the
laboratory and field data, and less DMA translated into less
carbon, nitrogen and phosphorus being stored in DMA. High
biomass was recorded in different seasons, years, and reaches by
the different methods, but low biomass was recorded by multiple
sampling methods during 2010–2012 and in 2016, especially
in reaches 1 through 6 where DMA was more common and
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FIGURE 3 | Box plots showing results of incubating Gracilaria tikvahiae (A–C,E) and Crassiphycus secundus (A,B,D) in tanks at different temperatures, different
amounts of photosynthetically active radiation, and different combinations of temperature and amounts of photosynthetically active radiation. 7, 10, 17, 25, and
33 = temperatures in ◦C, points indicate extreme values, whiskers indicate the values in the lower 25% or upper 25% of all values, boxes indicate the 75th and 25th
percentiles, horizontal line indicates the median, X indicates the mean.

abundant. Both these reductions in biomass of DMA followed
periods of low light availability, and the 2010–2012 change
also followed periods with potentially stressful low and high
temperatures. Incubations indicated that light availability was a
dominant influence, with less than ∼100 µmol m−2 s−1 leading
to stress, and based on this threshold, there were widespread
decreases in suitable habitat in 2010–2012, 2016, and 2018.
During these periods, less carbon, nitrogen, and phosphorus were
stored in DMA, with more of these elements likely to be available
for uptake by other primary producers.

Although the biomass of DMA in the lagoon did not vary
consistently between seasons in most years, it tended to be

more abundant in March–July, and given the differences in
sampling intensity and methodology, these results correspond
well with previous surveys in the Indian River Lagoon (Benz
et al., 1979; Kulczycki et al., 1981; Virnstein and Carbonara,
1985; Hanisak, 2021). Differences among the reports tended to
occur in the cooler months, which was not unexpected given
interannual variability in water temperatures. This temporal
pattern was disrupted in 2010–2012 and 2016, with reduced light
availability and stressful temperatures being apparent influences.
The decreased availability of light coincided with phytoplankton
blooms that increased light attenuation coefficients above the
90th percentiles for 6–8 months in all reaches during the
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FIGURE 4 | Heatmap with red bars identifying periods of stress (years and months) for drift macroalgae due to high temperatures (>90th percentile of all
values = 30.3◦C), low temperatures (<10th percentile of all values = 17.8◦C), and high light attenuation coefficients or Kd values (>90th percentile of all
values = 1.6), black boxes highlight periods of widespread increased stress. See Table 2 for relevant statistics.

28 months from July 2010 to October 2012 and 6–12 months
in reaches 1, 2, and 3 during the 18 months from July 2015
to December 2016 (Phlips et al., 2021; Lasi et al., this volume).
A similar response to reductions in light availability caused by
phytoplankton was noted in the coastal waters off Denmark
(Nielsen et al., 2002).

The tolerances identified in incubations in the laboratory
agreed with previous reports for various species of Gracilaria
and species labeled as Hydropuntia. For example, five species
of Gracilaria grew or photosynthesized in salinities ranging
from <20 to >40 psu (Lapointe and Hanisak, 1985; Engledow
and Bolton, 1992; Yokoya et al., 1999; Orduña-Rojas et al.,
2013; de Paiva Alves et al., 2021), but Gracilaria textorii and
Gracilaria vermiculophylla from Japan did not survive in 10 or
15 psu (Raikar et al., 2001) so adaptation to local conditions
may have been an important influence. Similarly, growth or net
photosynthesis typically was recorded across a broad range of
temperatures (8–42◦C) for fourteen species of Gracilaria and
two species of Hydropuntia, with most species doing best at
20–30◦C (Lapointe et al., 1984; Lapointe and Hanisak, 1985;
Hanisak, 1987; Engledow and Bolton, 1992; Yokoya and Oliveirã,
1992; Dawes et al., 1998; Yokoya et al., 1999; Raikar et al., 2001;
Abreau et al., 2011; Nejrup et al., 2013; Orduña-Rojas et al.,
2013; Vo et al., 2015; Castro and Yokoya, 2019). Growth and
photosynthesis also varied with available light for six species of
Gracilaria and two species of Hydropuntia, with algae surviving
when held at <40 µmol m−2 s−1, exhibiting little increase in

growth rate or photosynthetic rate above ∼100 µmol m−2 s−1,
and displaying an ability to cope with more extreme temperatures
when sufficient light was available (Lapointe et al., 1984; Lapointe
and Hanisak, 1985; Hanisak, 1987; Engledow and Bolton, 1992;
Dawes et al., 1998; Yokoya et al., 1999; Abreau et al., 2011;
Nejrup et al., 2013; Orduña-Rojas et al., 2013; Vo et al., 2015;
Castro and Yokoya, 2019).

Decreases in the biomass of DMA reduced storage of carbon,
nitrogen, and phosphorus in this pool, and these elements
should have become available to other primary producers. As
an example, the amounts stored in DMA were calculated by
multiplying the total amount of biomass in reaches 2–6 as
estimated from the 2015 hydroacoustic survey (16,000 MT
dry weight) by the conversion factors derived from samples
of DMA. These calculations yielded estimates of 4,400 MT
of carbon, 410 MT of nitrogen, and 13 MT of phosphorus
stored in DMA. Applying the mean change in the biomass
of DMA along transects in reaches 2–6 calculated for 2019
(−38%; Table 3) to these values indicated that 2,800 MT
of carbon, 260 MT of nitrogen, and 8 metric tons of
phosphorus would have become available. Given the volumes
of reaches 2–6 and an assumption of no uptake, concentrations
of carbon, nitrogen, and phosphorus in the water column
would have increased by 1.419, 0.132, and 0.004 mg L−1,
respectively. These changes represented 14, 14, and 18% of
the mean concentrations of dissolved organic carbon, dissolved
nitrogen, and dissolved phosphorus in reaches 2–6 from 1997
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FIGURE 5 | Extent of suitable light regime for drift macroalgae in a portion of reaches 1 and 2, with the minimum extent from 1998 to 2020, background extent from
1998 to 2009, and maximum extent from 1998 to 2020 displayed. Topographic map source: ESRI, USGS, contour lines represent 0.1-m isobaths.

to 2009, respectively (St. Johns River Water Management
District, unpub. data). Thus, DMA played an important role
in the cycling of elements in the lagoon that managers
should consider.

Given that DMA play an important role in cycling of
elements in the lagoon, managers could consider harvesting
DMA to remove nitrogen and phosphorus and prevent shading
of seagrass (Virnstein and Carbonara, 1985; Sfriso et al.,
2020). Such an action demands careful consideration because
removing DMA may increase the quantities of carbon, nitrogen,
and phosphorus available to phytoplankton, but this issue

could be addressed by timing the harvest to the period
following maximum growth (Braun, 2020). In addition, less
DMA translates into less structural habitat in the lagoon (Gore
et al., 1981; Kulczycki et al., 1981; Virnstein and Howard,
1987; Holmquist, 1997; Monagail et al., 2017). For example,
evidence has suggested that loss of DMA reduces refuge
from predation for many macroinvertebrates (Heck, 1979;
Heck and Thoman, 1981; Stoner, 1985; Stoner and Lewis,
1985; Edgar, 1987) and alters the composition of assemblages
of benthic invertebrates due to species specific responses
(Norkko et al., 2000).
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FIGURE 6 | Annual percent change in the extent of suitable light regime for drift macroalgae compared to the background light regime (1998–2009) for reaches 1
through 6 (A–F).

TABLE 3 | Estimated carbon (C), nitrogen (N), and phosphorus (P) found in drift macroalgae along transects.

Period Parameter Reach

1 2 3 4 5 6 7 8 9

1998–2009 Mean C (g m−2) 1.562 3.364 2.480 1.963 1.891 2.875 4.747 1.927 0.848

Mean N (g m−2) 0.123 0.265 0.196 0.155 0.149 0.227 0.374 0.152 0.067

Mean P (g m−2) 0.004 0.009 0.007 0.006 0.005 0.008 0.013 0.005 0.002

2020 Mean C (g m−2) 1.127 1.618 0.263 0.133 0.698 2.223 1.570 0.497 0.669

Mean N (g m−2) 0.089 0.128 0.021 0.010 0.055 0.175 0.124 0.039 0.053

Mean P (g m−2) 0.003 0.005 0.001 0.000 0.002 0.006 0.004 0.001 0.002

Change (%) −28 −52 −89 −93 −63 −23 −67 −74 −21
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Overall, management of the lagoon would be improved by
a better understanding of the ecological roles played by DMA
and attached macroalgae. Beyond elucidating its roles in cycling
of elements and as a habitat, regular surveys that document the
distribution, abundance, and diversity of DMA, experiments to
elucidate the drivers of changes in the distribution and abundance
of DMA more fully, and experiments to untangle the relationship
between DMA and seagrass would supply valuable information
to decision makers. In all cases, effort needs to be expanded
to additional species of DMA and due consideration should be
given to attached macroalgae. For example, DMA in reaches 2
and 4 during 2014–2015 were dominated by Chaetomorpha sp.,
large blooms of this green alga have blanketed seagrass in other
locations (Pulich et al., 1997; Kennish et al., 2010; Gao et al.,
2013), and approximately 35% of drift algae in parts of the lagoon
are not Gracilaria (Hanisak, 2021). An increased likelihood
of such blooms could be driven by climate change because
green algae tolerated relatively high temperatures (Menéndez and
Comín, 2000). Furthermore, blooms of DMA have been shown to
shade seagrasses or self-shade, which increased concentrations of
nutrients in the water column due to decomposition (Holmquist,
1994, 1997; Hauxwell et al., 2001; Cummins et al., 2004; Gao
et al., 2013; Foster et al., 2018). Additionally, Fox et al. (2008)
stated that Cladophora vagabunda and G. tikvahiae in locations
with higher nitrogen loads from their watersheds stored up to
250% of the annual load. Similar roles may be played by attached
algae. For example, Caulerpa prolifera has been documented as
the dominant vegetation in the northern Indian River Lagoon
and in deeper areas in Banana River Lagoon (White and
Snodgrass, 1990; Provancha and Scheidt, 2000), and this species
has demonstrated an ability to take up significant amounts of
ammonium (Alexandre and Santos, 2020) so its role in cycling
of nutrients should be considered.

In conclusion, reduced light availability and extreme
temperatures in the IRL likely contributed to decreased growth
or mortality of DMA. In turn, less DMA likely promoted
phytoplankton blooms because more carbon, nitrogen, and
phosphorus became available. The presence of DMA in the
IRL has been recognized for decades (Thompson, 1978), but
an increased understanding of its roles will support improved
management of the system.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

All authors contributed to designing components of
the study. MH conducted the incubations to determine
tolerances and generated data on elemental composition.
RP and BR provided valuable biomass data. CJ
performed statistical analysis. LH and LM drafted
the manuscript.

FUNDING

Parts of this research were funded by contracts from the St. Johns
River Water Management District.

ACKNOWLEDGMENTS

The authors thank field crews from the St. Johns River Water
Management District, Florida Fish and Wildlife Conservation
Commission, South Florida Water Management District,
NASA Environmental Consultants, Florida Department of
Environmental Protection Fort Pierce Office of the Indian
River Aquatic Preserve, Loxahatchee River District, and
Marine Discovery Center. A special thank you to Greg
Foster for his expertise with acoustic surveys, Whit Green
for his work on designing the incubations to determine
tolerances, Paul Wills and Chris Robinson for their work
on the incubations, and John Hart for his assistance with
incubations and field collections of DMA for analysis of
elemental composition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2022.767440/full#supplementary-material

Supplementary Figure 1 | Extent of suitable habitat for drift macroalgae in
hectares based on mean depths receiving 100 µmol m−2 s−1. Note
different scales.

Supplementary Table 1 | Metadata for each method of sampling biomass of
drift macroalgae.

Supplementary Table 2 | Estimates of carbon, nitrogen, and phosphorus found
in drift macroalgae along transects extrapolated to extent of suitable habitat
and reach volume.

Supplementary Table 3 | Elemental contents of common rhodophytes collected
between July 2014 and August 2015.

REFERENCES
Abreau, M. H., Pereira, R., Sousa-Pinto, I., and Yarish, C. (2011). Ecophysiological

studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta)
and its abundance patterns in Ria de Aveiro lagoon, Portugal. Eur. J. Phycol. 46,
453–464. doi: 10.1080/09670262.2011.633174

Alexandre, A., and Santos, R. (2020). High nitrogen and phosphorous acquisition
by belowground parts of Caulerpa prolifera (Chlorophyta) contribute to the

species’ rapid spread in Ria Formosa Lagoon, southern Portugal. J. Phycol. 56,
608–617. doi: 10.1111/jpy.12988

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). PERMANOVA+
for PRIMER: Guide to Software and Statistical Methods. Plymouth:
PRIMER-E.

Benz, M. C., Eiseman, N. J., and Gallaher, E. E. (1979). Seasonal occurrence and
variation in standing crop of a drift algal community in the Indian River,
Florida. Bot. Mar. 22, 413–420. doi: 10.1515/botm.1979.22.7.413

Frontiers in Marine Science | www.frontiersin.org 13 February 2022 | Volume 9 | Article 767440

https://www.frontiersin.org/articles/10.3389/fmars.2022.767440/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.767440/full#supplementary-material
https://doi.org/10.1080/09670262.2011.633174
https://doi.org/10.1111/jpy.12988
https://doi.org/10.1515/botm.1979.22.7.413
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-767440 January 26, 2022 Time: 12:23 # 14

Hall et al. Biomass of Drift Macroalgae

Biber, P. D., Harwell, M. A., and Cropper, W. P. Jr. (2004). Modeling the dynamics
of three functional groups of macroalgae in tropical seagrass habitats. Ecol.
Model. 175, 25–54. doi: 10.1016/J.ECOLMODEL.2003.10.003

Braun, G. E. (2020). Cost-benefit Analysis of Macroalgal Harvesting for Nitrogen
Abatement. Master’s thesis. Cambridge, MA: Harvard University.

Burkholder, J. M., Tomasko, D. A., and Touchette, B. W. (2007). Seagrasses and
eutrophication. J. Exp. Mar. Biol. Ecol. 350, 46–72. doi: 10.1016/j.jembe.2007.
06.024

Castro, J. Z., and Yokoya, N. S. (2019). Growth and biochemical responses
of tropical and subtropical strains of Gracilaria domingensis (Gracilariales,
Rhodophyta) to temperature and irradiance variations. J. Appl. Phycol. 31,
607–613. doi: 10.1007/s10811-018-1520-4

Coastal Planning & Engineering (1997). Indian River Lagoon Bathymetric Survey.
Boca Raton, FL: Coastal Planning & Engineering.

Cummins, S. P., Roberts, D. E., and Zimmerman, K. D. (2004). Effects of the
green macroalga Enteromorpha intestinalis on macrobenthic and seagrass
assemblages in a shallow coastal estuary. Mar. Ecol. Prog. Ser. 266, 77–87.
doi: 10.3354/MEPS266077

Dawes, C. J., Mathieson, A. C., and Cheney, D. P. (1974). Ecological studies
of Floridian Eucheuma (Rhodophyta, Gigartinales). I. Seasonal growth and
reproduction. Bull. Mar. Sci. 24, 235–273.

Dawes, C. J., Orduña-Rojas, J., and Robledo, D. (1998). Response of the tropical
red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl.
Phycol. 10, 419–425. doi: 10.1023/A:1008021613399

de Paiva Alves, J., Bessa, A. P. Jr., and Henry-Silva, G. G. (2021). Salinity tolerance
of macroalgae Gracilaria birdiae. Ciênc. Rural 51:e20190958. doi: 10.1590/0103-
8478cr20190958

Duarte, C. M. (1995). Submerged aquatic vegetation in relation to different
nutrient regimes. Ophelia 41, 87–112. doi: 10.1080/00785236.1995.104
22039

Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón,
C., et al. (2010). Seagrass community metabolism: assessing the carbon sink
capacity of seagrass meadows. Glob. Biogeochem. Cycles 24, 1–8. doi: 10.1029/
2010GB003793

Edgar, G. J. (1987). Dispersal of faunal and floral propagules associated with
drifting Macrocystis pyrifera plants. Mar. Biol. 95, 599–610. doi: 10.1007/
BF00393104

Engledow, H. R., and Bolton, J. J. (1992). Environmental tolerances in culture
and agar content of Gracilaria verrucosa (Hudson) Papenfuss (Rhodophyta,
Gigartinales) from Saldanha Bay. S. Afr. J. Bot. 58, 263–267. doi: 10.1016/S0254-
6299(16)30845-6

Florida Department of Environmental Protection (2017). Department of
Environmental Protection Standard Operating Procedures for Field Activities,
DEP-SOP-001/1. Tallahassee, FL: Florida Department of Environmental
Protection.

Foster, G., Riegl, B. M., Morris, L. J., and Foster, K. A. (2018). Reproducible
multi-parameter acoustic detection of seasonal drift macroalgae in the Indian
River Lagoon, Florida. J. Coast. Conserv. 22, 587–604. doi: 10.1007/s11852-018-
0593-1

Fox, S. E., Stieve, E., Valiela, I., Hauxwell, J., and McClelland, J. (2008). Macrophyte
abundance in Waquoit Bay: effects of land-derived nitrogen loads on seasonal
and multi-year biomass patterns. Estuaries Coasts 31, 532–541. doi: 10.1007/
s12237-008-9039-6

FWC-FWRI (2016). Fisheries-Independent Monitoring Program Procedure Manual.
St. Petersburg, FL: Florida Fish and Wildlife Research Institute.

Gao, L., Zhang, L., Hou, J., Wei, Q., Fu, F., and Shao, H. (2013). Decomposition
of macroalgal blooms influences phosphorus release from sediments and
implications for coastal restoration in Swan Lake, Shandong, China. Ecol. Eng.
60, 19–28. doi: 10.1016/j.ecoleng.2013.07.055

Gore, R. H., Gallaher, E. E., Scotto, L. E., and Wilson, K. A. (1981). Studies on
decapod crustacea from the Indian River Region of Florida: XI. Community
composition, structure, biomass and species-areal relationships of seagrass and
drift algae-associated macrocrustaceans. Estuar. Coast. Shelf Sci. 12, 485–508.
doi: 10.1016/S0302-3524(81)80007-2

Hanisak, M. D. (1983). “The nitrogen relationship of marine macroalgae,” in
Nitrogen in the Marine Environment, eds E. J. Carpenter and D. G. Capone
(New York, NY: Academic Press), 699–730. doi: 10.1016/B978-0-12-160280-
2.50027-4

Hanisak, M. D. (1987). “Cultivation of Gracilaria and other macroalgae in Florida
for energy production,” in Seaweed Cultivation for Renewable Resources, eds
K. T. Bird and P. H. Benson (New York, NY: Elsevier), 191–218.

Hanisak, M. D. (1990). The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta)
as a model system to understand the nitrogen nutrition of cultured seaweeds.
Hydrobiologia 204, 79–87. doi: 10.1007/BF00040218

Hanisak, M. D. (1993). Nitrogen release from decomposing seaweeds: species and
temperature effects. J. Appl. Phycol. 5, 175–181. doi: 10.1007/BF00004014

Hanisak, M. D. (2016). Algal Bloom Investigation: Analysis of Submersed Aquatic
Vegetations Tissue Nutrient Content and Response of Drift Macroalgae to
Extreme Levels of Salinity, Temperature, and Light. Final Report Contract 27857.
Palatka, FL: St. Johns River Water Management District, 1–108.

Hanisak, M. D. (2021). Macroalgal biodiversity of the Indian River Lagoon:
updating the puzzle. Fla. Sci. 84, 92–118.

Hauxwell, J., Cebrián, J., Furlong, C., and Valiela, I. (2001). Macroalgal canopies
contribute to eelgrass (Zostera marina) decline in temperate estuarine
ecosystems. Ecology 82, 1007–1022. doi: 10.2307/2679899

Heck, K. L. (1979). Some determinants of the composition and abundance of motile
macroinvertebrate species in tropical and temperate turtlegrass (Thalassia
testudinum) meadows. J. Biogeogr. 6, 183–200. doi: 10.2307/3038051

Heck, K. L., and Thoman, T. A. (1981). Experiments on predator-prey interactions
in vegetated aquatic habitats. J. Exp. Mar. Biol. Ecol. 53, 125–134. doi: 10.1016/
0022-0981(81)90014-9

Hily, C., Connan, S., Raffin, C., and Wyllie-Echeverria, S. (2004). In vitro
experimental assessment of the grazing pressure of two gastropods on Zostera
marina L. epiphytic algae. Aquat. Bot. 78, 183–195. doi: 10.1016/j.aquabot.2003.
10.001

Holmquist, J. G. (1994). Benthic macroalgae as a dispersal mechanism for fauna:
influence of a marine tumbleweed. J. Exp. Mar. Biol. Ecol. 180, 235–251. doi:
10.1016/0022-0981(94)90069-8

Holmquist, J. G. (1997). Disturbance and gap formation in a marine benthic
mosaic: influence of shifting macroalgal patches on seagrass structure and
mobile invertebrates. Mar. Ecol. Prog. Ser. 158, 121–130. doi: 10.3354/
meps158121

Jensen, P. R., and Gibson, R. A. (1986). Primary production in three subtropical
seagrass communities: a comparison of four autotrophic components. Fla. Sci.
49, 129–141.

Josselyn, M. N. (1977). Seasonal changes in the distribution and growth of
Laurencia poitei (Rhodophyceae, Ceramiales) in a subtropical lagoon. Aquat.
Bot. 3, 217–229. doi: 10.1016/0304-3770(77)90024-9

Kennish, M. J., Haag, S. M., and Sakowicz, G. P. (2010). “Seagrass decline in
New Jersey coastal lagoons: a response to increasing eutrophication,” in Coastal
Lagoons: Critical Habitats of Environmental Change, eds M. J. Kennish and
H. W. Paerl (Boca Raton, FL: Taylor and Francis Publishers), 167–201. doi:
10.1201/EBK1420088304

Kinney, E. H., and Roman, C. T. (1998). Response of primary producers to nutrient
enrichment in a shallow estuary. Mar. Ecol. Prog. Ser. 163, 89–98. doi: 10.3354/
meps163089

Kirk, J. T. O. (1983). Light and Photosynthesis in Aquatic Ecosystems. Canberra,
ACT: Cambridge University Press.

Kulczycki, G. R., Virnstein, R. W., and Nelson, W. G. (1981). The relationship
between fish abundance and algal biomass in a seagrass-drift algae community.
Estuar. Coast. Shelf Sci. 12, 341–347. doi: 10.1016/S0302-3524(81)80130-2

Lapointe, B. E., and Hanisak, M. D. (1985). “Productivity and nutrition of marine
biomass systems in Florida,” in Proceedings of the Symposium Papers. Energy
from Biomass and Wastes IX: Lake Buena Vista, Florida, January 28–February 1,
1985, ed. D. L. Klass (Chicago, IL: Institute of Gas Technology), 111–126.

Lapointe, B. E., Tenore, K. R., and Dawes, C. J. (1984). Interactions between
light and temperature on the physiological ecology of Gracilaria tikvahiae
(Gigartinales: Rhodophyta) I. Growth, photosynthesis and respiration. Mar.
Biol. 80, 161–170. doi: 10.1007/BF02180183

Lavery, P. S., and McComb, A. J. (1991). Macroalgal-sediment nutrient interactions
and their importance to macroalgal nutrition in a eutrophic estuary. Estuar.
Coast. Shelf Sci. 32, 281–295. doi: 10.1016/0272-7714(91)90021-3

Marshall, S. M., and Orr, A. P. (1949). Further experiments in the fertilization
of a sea loch (Loch Craiglin). The effect of different plant nutrients on
the phytoplankton. J. Mar. Biol. Assoc. U.K. 27, 360–379. doi: 10.1017/
s002531540002542x

Frontiers in Marine Science | www.frontiersin.org 14 February 2022 | Volume 9 | Article 767440

https://doi.org/10.1016/J.ECOLMODEL.2003.10.003
https://doi.org/10.1016/j.jembe.2007.06.024
https://doi.org/10.1016/j.jembe.2007.06.024
https://doi.org/10.1007/s10811-018-1520-4
https://doi.org/10.3354/MEPS266077
https://doi.org/10.1023/A:1008021613399
https://doi.org/10.1590/0103-8478cr20190958
https://doi.org/10.1590/0103-8478cr20190958
https://doi.org/10.1080/00785236.1995.10422039
https://doi.org/10.1080/00785236.1995.10422039
https://doi.org/10.1029/2010GB003793
https://doi.org/10.1029/2010GB003793
https://doi.org/10.1007/BF00393104
https://doi.org/10.1007/BF00393104
https://doi.org/10.1016/S0254-6299(16)30845-6
https://doi.org/10.1016/S0254-6299(16)30845-6
https://doi.org/10.1007/s11852-018-0593-1
https://doi.org/10.1007/s11852-018-0593-1
https://doi.org/10.1007/s12237-008-9039-6
https://doi.org/10.1007/s12237-008-9039-6
https://doi.org/10.1016/j.ecoleng.2013.07.055
https://doi.org/10.1016/S0302-3524(81)80007-2
https://doi.org/10.1016/B978-0-12-160280-2.50027-4
https://doi.org/10.1016/B978-0-12-160280-2.50027-4
https://doi.org/10.1007/BF00040218
https://doi.org/10.1007/BF00004014
https://doi.org/10.2307/2679899
https://doi.org/10.2307/3038051
https://doi.org/10.1016/0022-0981(81)90014-9
https://doi.org/10.1016/0022-0981(81)90014-9
https://doi.org/10.1016/j.aquabot.2003.10.001
https://doi.org/10.1016/j.aquabot.2003.10.001
https://doi.org/10.1016/0022-0981(94)90069-8
https://doi.org/10.1016/0022-0981(94)90069-8
https://doi.org/10.3354/meps158121
https://doi.org/10.3354/meps158121
https://doi.org/10.1016/0304-3770(77)90024-9
https://doi.org/10.1201/EBK1420088304
https://doi.org/10.1201/EBK1420088304
https://doi.org/10.3354/meps163089
https://doi.org/10.3354/meps163089
https://doi.org/10.1016/S0302-3524(81)80130-2
https://doi.org/10.1007/BF02180183
https://doi.org/10.1016/0272-7714(91)90021-3
https://doi.org/10.1017/s002531540002542x
https://doi.org/10.1017/s002531540002542x
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-767440 January 26, 2022 Time: 12:23 # 15

Hall et al. Biomass of Drift Macroalgae

McGlathery, K. J., Sundbäck, K., and Anderson, I. C. (2007). Eutrophication in
shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar.
Ecol. Prog. Ser. 348, 1–18. doi: 10.3354/meps07132

Menéndez, M., and Comín, F. A. (2000). Spring and summer proliferation of
floating macroalgae in a Mediterranean coastal lagoon (Tancada Lagoon, Ebro
Delta, NE Spain). Estuar. Coast. Shelf Sci. 51, 215–226. doi: 10.1006/ecss.2000.
0637

Monagail, M. M., Cornish, L., Morrison, L., Araújo, R., and Critchley, A. T. (2017).
Sustainable harvesting of wild seaweed resources. Euro. J. Phycol. 52, 371–390.
doi: 10.1080/09670262.2017.1365273

Morris, L. J., Hall, L. M., and Virnstein, R. W. (2001). Field Guide for Fixed Seagrass
Transect Monitoring in the Indian River Lagoon. Palatka, FL: St. Johns River
Water Management District.

Nejrup, L. B., Staehr, P. A., and Thomsen, M. S. (2013). Temperature- and
light-dependent growth and metabolism of the invasive red algae Gracilaria
vermiculophylla – a comparison with two native macroalgae. Eur. J. Phycol. 48,
295–308. doi: 10.1080/09670262.2013.830778

Nielsen, S. L., Sand-Jensen, K., Borum, J., and Geertz-Hansen, O. (2002). Depth
colonization of eelgrass (Zostera marina) and macroalgae as determined by
water transparency in Danish coastal waters. Estuaries 25, 1025–1032. doi:
10.1007/BF02691349

Norkko, J., Bonsdorff, E., and Norkko, A. (2000). Drifting algal mats as an
alternative habitat for benthic invertebrates: species specific responses to a
transient resource. J. Exp. Mar. Biol. Ecol. 248, 79–104. doi: 10.1016/s0022-
0981(00)00155-6

Orduña-Rojas, J., García-Rodríguez, L. D., López-Meyer, M., and Riosmena-
Rodríguez, R. (2013). Photosynthetic and respiratory responses of Gracilaria
parvispora from the southeastern Gulf of California. J. Appl. Phycol. 25, 1855–
1861. doi: 10.1007/s10811-013-0010-y

Phlips, E. J., Badylak, S., Christman, M. C., and Lasi, M. A. (2010). Climatic
trends and temporal patterns of phytoplankton composition, abundance and
succession in the Indian River Lagoon, Florida, USA. Estuaries Coasts 33,
498–512. doi: 10.1007/s12237-009-9166-8

Phlips, E. J., Badylak, S., Christman, M., Wolny, J., Brame, J., Garland, J., et al.
(2011). Scales of temporal and spatial variability in the distribution of harmful
algae species in the Indian River, Florida, USA. Harmful Algae 10, 277–290.
doi: 10.1016/j.hal.2010.11.001

Phlips, E. J., Badylak, S., Lasi, M., Chamberlain, R., Green, W., Hall, L., et al.
(2015). From red tides to green and brown tides: bloom dynamics in a restricted
subtropical lagoon under shifting climatic conditions. Estuaries Coasts 38,
886–904. doi: 10.1007/s12237-014-9874-6

Phlips, E. J., Badylak, S., Nelson, N. G., Hall, L. M., Jacoby, C. A., Lasi, M.
A., et al. (2021). Cyclical patterns and a regime shift in the character of
phytoplankton blooms in a restricted sub-tropical lagoon, Indian River Lagoon,
Florida, United States. Front. Mar. Sci. 8:730934. doi: 10.3389/fmars.2021.
730934

Pitts, P. A. (1989). Upwind return flow in a coastal lagoon: seasonal-scale
barotropic transport. Estuaries 12, 92–97. doi: 10.2307/1351500

Provancha, J. A., and Scheidt, D. M. (2000). “Long-term trends in seagrass beds
in the Mosquito Lagoon and northern Banana River, Florida,” in Seagrasses:
Monitoring, Ecology, Physiology and Management, ed. S. A. Bortone (Boca
Raton, FL: CRC Press), 177–193. doi: 10.1201/9781420074475.ch14

Pulich, W., Blair, C., and White, W. A. (1997). Current Status and Historical Trends
of Seagrasses in the Corpus Christi Bay National Estuary Program study area.
Austin, TX: Texas Natural Resource Conservation Commission, 1–56.

Raikar, S. V., Iima, M., and Fujita, Y. (2001). Effect of temperature, salinity and light
intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from
Japan, Malaysia and India. Indian J. Mar. Sci. 30, 98–104.

Riegl, B., and Bushkirk, B. (2016). Mapping the Distribution and Abundance of
Macroalgae in the Indian River Lagoon. Final Report Contract 27793. Palatka,
FL: St. Johns River Water Management District, 1–29.

Sfriso, A., Mistri, M., Munari, C., Buosi, A., and Sfriso, A. A. (2020). Management
and exploitation of macroalgal biomass as a tool for the recovery of transitional
water systems. Front. Ecol. Evol. 8:20. doi: 10.3389/fevo.2020.00020

Smith, N. P. (1987). An introduction to the tides of Florida’s Indian River Lagoon.
I. Water levels. Fla. Sci. 50, 49–61.

Steward, J. S., Virnstein, R. W., Morris, L. J., and Lowe, E. F. (2005). Setting seagrass
depth, coverage, and light targets for the Indian River Lagoon system Florida.
Estuaries 28, 923–935. doi: 10.1007/bf02696020

Stoner, A. W. (1980). The role of seagrass biomass in the organization of benthic
macrofaunal assemblages. Bull. Mar. Sci. 30, 537–551.

Stoner, A. W. (1985). Penicillus capitatus: an algal island for macrocrustaceans.
Mar. Ecol. Prog. Ser. 26, 279–287. doi: 10.3354/meps026279

Stoner, A. W., and Lewis, F. G. (1985). The influence of quantitative and qualitative
aspects of habitat complexity in tropical sea-grass meadows. J. Exp. Mar. Biol.
Ecol. 94, 19–40. doi: 10.1016/0022-0981(85)90048-6

Thompson, M. J. (1978). Species composition and distribution of seagrass beds in
the Indian River Lagoon, Florida. Fla. Sci. 4, 90–96.

University of Florida, Institute of Food and Agricultural Sciences (2022). Florida
Automated Weather Network. Available online at: https://fawn.ifas.ufl.edu/
(accessed April 2020).

University of Maryland (2022). Nutrient Analytical Services Laboratory. Available
online at: http://umces.edu/nutrient-analytical-services-laboratory (accessed
January 2022).

Viaroli, P., Bartoli, M., Giordani, G., Naldi, M., Orfanidis, S., and Zaldivar, J. M.
(2008). Community shifts, alternative stable states, biogeochemical controls and
feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conserv. Mar.
Freshw. Ecosyst. 18, S105–S117. doi: 10.1002/aqc.956

Virnstein, R. W., and Carbonara, P. A. (1985). Seasonal abundance and distribution
of drift algae and seagrasses in the mid-Indian River Lagoon, Florida. Aquat.
Bot. 23, 67–82. doi: 10.1016/0304-3770(85)90021-X

Virnstein, R. W., and Howard, R. K. (1987). Motile epifauna of marine macrophytes
in the Indian River Lagoon, Florida. II. Comparisons between drift algae and
three species of seagrasses. Bull. Mar. Sci. 41, 13–26.

Virnstein, R. W., and Morris, L. J. (1996). Seagrass Preservation and Restoration:
A Diagnostic Plan for the Indian River Lagoon. Technical Memorandum No. 14.
Palatka, FL: St. Johns River Water Management District, 1–43.

Vo, T. D., Nishihara, G. N., Kitamura, Y., Shimada, S., Kawaguchi, S., and Terada,
R. (2015). The effect of irradiance and temperature on the photosynthesis
of Hydropuntia edulis and Hydropuntia eucheumatoides (Gracilariaceae,
Rhodophyta) from Vietnam. Phycologia 54, 24–31. doi: 10.2216/14-
61R1.1

White, C., and Snodgrass, J. W. (1990). Recent changes in the distribution of
Caulerpa prolifera in the Indian River Lagoon, Florida. Fla. Sci. 53, 85–88.

Yokoya, N. S., and Oliveirã, E. C. (1992). Temperature responses of economically
important red algae and their potential for mariculture in Brazilian waters.
J. Appl. Phycol. 4, 339–345. doi: 10.1007/BF02185791

Yokoya, N. S., Kakita, H., Obika, H., and Kitamura, T. (1999). Effects of
environmental factors and plant growth regulators on growth of the red alga
Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398,
339–347. doi: 10.1023/A:1017072508583

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor is currently organizing a Research Topic with one
of the authors CJ.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hall, Morris, Chamberlain, Hanisak, Virnstein, Paperno, Riegl,
Ellis, Simpson and Jacoby. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 15 February 2022 | Volume 9 | Article 767440

https://doi.org/10.3354/meps07132
https://doi.org/10.1006/ecss.2000.0637
https://doi.org/10.1006/ecss.2000.0637
https://doi.org/10.1080/09670262.2017.1365273
https://doi.org/10.1080/09670262.2013.830778
https://doi.org/10.1007/BF02691349
https://doi.org/10.1007/BF02691349
https://doi.org/10.1016/s0022-0981(00)00155-6
https://doi.org/10.1016/s0022-0981(00)00155-6
https://doi.org/10.1007/s10811-013-0010-y
https://doi.org/10.1007/s12237-009-9166-8
https://doi.org/10.1016/j.hal.2010.11.001
https://doi.org/10.1007/s12237-014-9874-6
https://doi.org/10.3389/fmars.2021.730934
https://doi.org/10.3389/fmars.2021.730934
https://doi.org/10.2307/1351500
https://doi.org/10.1201/9781420074475.ch14
https://doi.org/10.3389/fevo.2020.00020
https://doi.org/10.1007/bf02696020
https://doi.org/10.3354/meps026279
https://doi.org/10.1016/0022-0981(85)90048-6
https://fawn.ifas.ufl.edu/
http://umces.edu/nutrient-analytical-services-laboratory
https://doi.org/10.1002/aqc.956
https://doi.org/10.1016/0304-3770(85)90021-X
https://doi.org/10.2216/14-61R1.1
https://doi.org/10.2216/14-61R1.1
https://doi.org/10.1007/BF02185791
https://doi.org/10.1023/A:1017072508583
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Spatiotemporal Patterns in the Biomass of Drift Macroalgae in the Indian River Lagoon, Florida, United States
	Introduction
	Materials and Methods
	Study Area
	Biomass of Drift Macroalgae
	Fixed Transects
	Fisheries Independent Monitoring
	Hydroacoustic Surveys
	Analysis of Data

	Physiological Tolerances
	Timing and Extent of Suitable Conditions
	Carbon, Nitrogen, and Phosphorus Stored in Drift Algae

	Results
	Patterns in Biomass of Drift Macroalgae
	Physiological Tolerances
	Timing and Extent of Suitable Conditions
	Carbon, Nitrogen, and Phosphorus Stored in Drift Algae

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


