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The role of eddies in the North Atlantic decadal variability is investigated in this study
by using two ocean reanalyses, including an eddy permitting (or eddy poor) reanalysis
with horizontal resolution of 0.25 degree and 75 vertical levels and an eddy resolving (or
eddy rich) reanalysis with horizontal resolution of 1/12 degree and 50 vertical levels. The
prominent mid-1990s warming and post-2005 cooling trend as part of the North Atlantic
decadal variability is well displayed in both reanalyses with no significant difference
between them. The main driver of the mid-1990s warming and post-2005 cooling trend
is the increase and reduction of the meridional ocean heat transport showing similar
patterns in both reanalyses. The relative contribution of the heat transport anomalies
from eddies to the total heat transport anomalies is slightly larger in eddy resolving than
in eddy permitting ocean reanalysis. However, the total mean ocean meridional heat
transport increases by 10% in eddy resolving reanalysis with respect to eddy permitting
reanalysis and is mainly due to the associated increase of the mean states (temperature
and velocity). Therefore, the increase of eddy population due to the increase of horizontal
resolution, found by comparing the two datasets, does not affect the MHT anomalies
significantly and, consequently, the North Atlantic decadal variability. It is found that the
importance of the model horizontal resolution for the North Atlantic decadal variability
depends on the interaction between the eddies (small scale) and the mean state (large
scale) at decadal time scales. Although the fast increase of computational power will
allow soon for eddy-resolving predictions, the need to use high resolution modeling
tools for decadal predictions depends on the importance of initialization methods and
the interaction between small scale and large-scale variabilities. This study has pivotal
implications for the development of North Atlantic decadal prediction systems.

Keywords: eddies, North Atlantic, decadal variability, reanalyses, meridional heat transport, eddy-large scale
interaction

INTRODUCTION

The North Atlantic is an important region displayed with prominent decadal variability
phenomena. Robson et al. (2016) show that the rapid warming in the mid-1990s and cooling from
2005 to 2016 in the eastern subpolar gyre region (SPG) are part of the decadal variability in the
North Atlantic. In terms of the mid-1990s rapid warming, several studies have been devoted to
study the oceanic and atmospheric processes that are responsible for this abrupt climate change
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by using observations, climate model simulations and decadal
prediction experiments (Robson et al., 2012, 2016; Yeager et al.,
2012; Delworth et al, 2016). Ocean reanalyses for the first
time are used to study the mid-1990s rapid warming by Yang
et al. (2016). The role of data assimilation is investigated
therein, showing that the ingestion of observations through data
assimilation improves the mean state of the North Atlantic, while
the mid-1990s rapid warming event is well represented in both
control run (without data assimilation) and ocean reanalysis.

The mechanisms that are responsible for the mid-1990s
warming have been proposed in an extensive body of studies
(Haituin et al., 2005; Bersch et al., 2007; Sarafanov et al., 2008;
Herbaut and Houssais, 2009; Hikkinen et al, 2011; Robson
et al., 2012, 2016; Yeager et al., 2012; Delworth et al.,, 2016;
Yang et al., 2016). One of the main drivers of Atlantic variability
is the North Atlantic Oscillation (NAO) showing an abrupt
change between winters of 1994/1995 and 1995/1996 from a
positive to a negative phase. The advection of warm water due
to the gyre circulation and the strengthening of the Atlantic
Meridional Overturning Circulation (AMOC) accompanied by
increasing Meridional Heat Transport (MHT) that results from
the change of the NAO are responsible for the mid-1990s rapid
warming in the SPG region (Haituin et al., 2005; Bersch et al.,
2007; Sarafanov et al., 2008; Robson et al., 2012, 2016; Yeager
et al., 2012; Delworth et al., 2016; Yang et al., 2016). A recent
study by Robson et al. (2016) shows a reversal in the North
Atlantic temperatures trend, turning from warming to cooling
around 2005, and the concomitant weakening of the ocean
circulation associated with a reduction of MHT due to the
occurrence of low-density surface waters in the Labrador Sea.
The mid-1990s warming and post 2005 cooling in the North
Atlantic are prominent manifestations of decadal variability in
the North Atlantic Ocean, where changes in the MHT play
a significant role. This prominent decadal variability is also
demonstrated in the sea level change in the North Atlantic
(Chafik et al, 2019). There is indeed evidence of significant
predictability in the North Atlantic sector displayed by decadal
prediction experiments, associated with the use of ocean analyses
as initialization products (Matei et al., 2012; Bellucci et al., 2013,
2015; Polkova et al., 2019a,b).

Along with numerical and technological developments, the
spatial and temporal resolution of climate models has been
increasing (Haarsma et al., 2016), allowing the delivery of eddy-
resolving (e.g., 1/12 degree resolution) global datasets for large
scale climate studies. The primary question we would like
to address in this study is the relative role of eddies in the
North Atlantic decadal climate variability. More specifically we
investigate the contribution of mesoscale ocean eddies to the
MHT variability, which in turn drives the decadal climate changes
recently observed in the North Atlantic.

The contribution of eddies to the ocean MHT has been
investigated in several studies (Roemmich and Gilson, 2001;
Jayne and Marotzke, 2002; Qiu and Chen, 2005; Aoki et al,
2013; Treguier et al,, 2017; Zhao et al., 2018; Docquier et al,,
2019; Sun et al., 2019; Delman and Lee, 2020). For example, a
latest estimation using Argo and altimetry observations shows
that the eddy heat transport is mainly located within the top

1,000 m and accounts for half of the total heat transport at
45°S and one third at 35°N (Sun et al., 2019). Model studies
show that with the increase of model resolution the total MHT
increases (Treguier et al., 2012; Grist et al, 2018; Docquier
et al,, 2019), mainly due to the change of time-mean circulation
rather than the eddy component (Treguier et al., 2012). However,
previous studies have mainly focused on the role of eddies in
the climatology of the total MHT at a certain time period.
The impact of model resolution on the MHT variability that is
responsible to the North Atlantic decadal variability has been
overlooked to the best of the authors” knowledge. Additionally,
the eddy MHT has been explored by using either observations
or numerical model simulations. In this study our goal is to
investigate the role of eddies in the Atlantic MHT variability
by using ocean reanalyses at different model resolutions (1/4
and 1/12 degree).

Ocean reanalyses have been used in several climate studies
(Storto et al, 2016; Yang et al, 2016) and climate change
monitoring owing to their temporal and spatial consistency
of data coverage and dynamically consistent estimates of
the ocean states compared to either observations or climate
models. Complementing ocean general circulation models with
data assimilation has indeed shown to greatly improve the
representation of eddies (population, life and extension) with
respect to free-run models even in eddy-permitting comparisons
in the North Atlantic (Cipollone et al., 2017). Likewise, transports
representation has been demonstrated to be better reproduced
than in ocean simulations (Jackson et al., 2016, 2018). This study
will shed light on the importance of eddy-induced MHT in the
large-scale climate variability.

DATA AND METHODS

In this study we use two sets of global ocean reanalyses produced
by Mercator Ocean International including the Global Ocean
Reanalysis 2 version 4 (GLORYS2V4, hereafter G4, Storto et al.,
2019) at '/s degree (eddy permitting), and the Global Ocean
Reanalysis 12 version 1 (GLORYS12V1, hereafter G12, Lellouche
etal, 2021) at 1/12 degree horizontal resolution (eddy resolving),
both covering the period from 1993 to 2016. A robust validation
of these products can be found in quality information documents
(Garric and Parent, 2017; Dreévillon et al., 2021a).

The details of the production of G4 are given in Garric and
Parent (2018). Here we provide a brief introduction of G4. The
ocean dynamic model of the G4 is the Nucleus for European
Models of the Ocean version 3.1 (NEMO 3.1, Madec, 2008)
coupled with the thermodynamic-dynamic Louvain-la Neuve Sea
Ice Model version 2 (LIM2, Fichefet and Morales Maqueda,
1997). The horizontal grid of NEMO is based on a tripolar grid
with !/s degree of horizontal resolution and 75 depth levels.
The momentum, heat and freshwater fluxes driving the ocean
are calculated based on Large and Yeager (2004) bulk formulas
by using atmospheric variables from the ECMWEF ERA-Interim
atmospheric reanalysis (Dee et al., 2011). The initial conditions
are from the United Kingdom Met office EN4 objective analyses
(Good et al.,, 2013) version 4.0.2 for temperature and salinity
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FIGURE 1 | The mean climatology of top 700 m (T700) temperature computed for the 1993-2016 period (A) in G4, (B) in G12, (C) in EN4, (D) the difference
between G12 and G4, (E) the difference between G4 and EN4, (F) the difference between G12 and EN4, (G) The T700 averaged in the box area shown in panel (A).
Areas with differences that do not pass t-test 95% confidence interval are marked with light gray crosses.
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and the sea ice initial conditions come from National Snow and
Ice Data Center (NSDIC) bootstrap products (Comiso, 2000).
The data assimilation scheme is the reduced order Kalman filter
based on the SEEK formulation (Pham et al., 1998), named
as Systeme d’Assimilation Mercator version 2 (SAM2) and a

three-dimensional variational (3D-Var) bias correction scheme
is used to correct large-scale temperature and salinity biases
(Lellouche et al., 2018). The surface observations assimilated
into G4 include satellite-based sea level anomaly and SST and
temperature and salinity profiles from CORA 4.1 in situ database
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FIGURE 2 | Top 700 temperature (T700) linear trend (unit: °C per decade) (A) from 1993-2004 in G4, (B) from 2005 to 2016 in G4, (C) from 1993-2004 in G12, (D)
from 2005 to 2016 in G12, (E) from 1995-2016 in EN4, (F) from 2005-2016 in EN4 and (G) T700 anomaly respect to 1993-2016 mean averaged in the boxed
regions (35 N-65 N. 10 W-50 W) shown in panel (A) for G4 (black), G12 (red) and EN4 (green). In panels (A-F) regions that do not pass t-test 95% confidence
interval are marked with light gray cross.
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FIGURE 3 | Eddy kinetic energy (EKE) climatology (1993-2016) in (A) G4 and (B) G12 at the surface, (C) the surface EKE difference between G12 and G4, (D) EKE
at 40°W in G4, (E) EKE at 40°W in G12 (F) the difference between G12 and G4 from surface to 1,200 m at 40°W. The analysis is based on monthly data. In panels
(E,F) areas with values that do not pass t-test 95% confidence interval are indicated with light gray crosses (Unit: log m2/s2 for EKE and m2/s2 for EKE differences).

provided by the Copernicus Marine Environment Monitoring
Service (CMEMS) (Szekely et al., 2015). Sea ice concentrations
from IFREMER/CERSAT products (Ezraty et al., 2007) are
also assimilated.

The main difference between G12 and G4 is the resolution
of the ocean model. As G4, the ocean model of GI12 is
based on NEMO 3.1 but with the horizontal resolution of
1/12 degree and 50 vertical levels. Further to the resolution,
the two reanalyses differ for the precipitation dataset toward
which the atmospheric fluxes are corrected (PMWC and
GPCPV2.2 for G4 and G12, respectively). The initial conditions
and restoring climatology for Gibraltar and Bab-El-Mandeb
straits come from EN4.2.0 for G12 and EN4.0.2 for G4
respectively. Details of the G12 configuration are described in

Drevillon et al. (2021a) and the detailed differences between G4
and G12 are described in Drevillon et al. (2021b).

The method to calculate the eddy component of MHT follows
the traditional scale separation approach, as schematized below:

v=v4+7v (1)

)

in which T represents ocean temperature and v represents ocean
meridional velocity. The ¥ and T are time mean of v and T for the
whole time period (1993-2016); and v and T’ are the deviation
from the time mean. We follow Crosnier et al. (2001), and use 5-
day fields, in order to secure an accurate estimate of MHT. The

Frontiers in Marine Science | www.frontiersin.org

February 2022 | Volume 9 | Article 781788


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Yang et al.

Eddies in the North Atlantic

—— - -

G2 Vi — G12.V'T

FIGURE 4 | Total mean meridional heat transport (v7, black lines) and decomposition ﬁ blue lines and v/ T’ red lines) in G4 (dashed lines) and G12 calculated with

5-day data.

Latitude

decomposition of vT for calculating MHT is as follows:
VI = VT +vT+5T +VT 3)

Therefore, the total MHT and decomposition of MHT are
calculated according to Equation 4:

0 AE 0 A
poCp / / vTdxdz = poCp / / vTdxdz
—HJny —H

0 \E , 0 A
+p()Cp/ / vT dxdz + p()Cp/ / V' Tdxdz
—HJwy —HJny

0 NE
+poCp / / VT dxdz (4)
—H oy

The quantities pg and C, are seawater density (1, 020 kgm=3)
and heat capacity (4,000 Jkg~'C™1), respectively.v and T are
the meridional velocity and ocean temperature as stated in
Equation 1. H is the ocean depth, and A and Ay are
the longitude of the eastern and western boundaries of the
ocean basin. On the right-hand side of Equation 1, the first
term (vT) represents the contribution of the mean advection
of mean temperature, the second term (v'T) represents the
anomalous advection of mean temperature, the third term (vT”)is
the mean advection of temperature anomalies and the last
term (V'T') is the contribution of co-variation of anomalous
current and anomalous temperature (eddy covariance) to the
total ocean MHT.

For simplicity, we omit the integration symbols in the heat
transport equation (Equations 5-7). The mean meridional heat
transport for the whole time period (1993-2016) vT is composed
of ¥T and v/ T’, described as below:

vI = v+ VT (5)

The anomaly MHT respect to the mean for the period of 1993-
2016 and the decomposition becomes:

VI —vT = vI+vT +vT+vT — (T +vT +VT+vVT) (6)

in which the first term on the right side is canceled by the
fifth term, and the sixth and seventh terms are 0. Then for the
anomalies we have

VI —vT = 3T +vT+ G T —VT) ?)
The eddy explained variances (EEV) are calculated as

var(MHTT) — var(MHT7)
var(MHT'T)

EEV = (8)
in which MHT'r indicates the total Meridional Heat Transport
(MHT), MHT]|,

means the MHT contributed by large scale processes and var
is the variance function.

RESULTS

The North Atlantic Decadal Variability

First, we calculated the climatology (Figure 1) of the upper 700 m
averaged temperature (T700) in the North Atlantic Ocean in
two ocean reanalyses G4 (1/4 degree horizontal resolution), G12
(1/12 degree horizontal resolution) and EN4 objective analysis
(EN4.2.1, 1 degree resolution). EN4 objective analysis is from
United Kingdom Met Office (Good et al., 2013). Climatological
maps of T700 show that in the North Atlantic Ocean, the upper
ocean is generally warmer in G12 than in G4 (Figure 1D).
Meanwhile, the mean climatology of T700 in G4 and GI2
(Figures 1E,F) is warmer than EN4. Due to the prominent
decadal signal in the eastern SPG region, we have calculated
the time series of T700 in all three datasets over the box
(35°N-65°N, 10°W-50°W) following Robson et al. (2016) for
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FIGURE 5 | Meridional heat transport anomaly vT — vT and decomposition v'T,v T, (V' T — v'T’) in G4 (A,D,G,J) and in G12 (B,E,H,K) calculated with 5-day data.
(unit: PW) The differences between G12-G4 are shown in panels (C,F,L), and areas with values that pass t-test 95% confidence interval are indicated in thick
contours.

the period 1993-2016. It shows that in the eastern SPG region yearly data. The time series of the annual mean T700 anomaly
T700 is warmer in G12 than G4 by 0.16°C and EN4 by 0.27°, (Figure 2G), computed with respect to the 1993-2016 baseline
respectively (Figure 1G). and basin averaged over the (35°N-65°N, 50°W-10°W) box

The linear trend associated with the T700, calculated over in the subpolar gyre (as indicated in Figures 2A-F), shows
for the (1993-2004) and (2005-2016) periods from G4, G12 a consistent linear warming before 2005 and cooling trend
and EN4, are shown in Figures 2A-F. A prominent warming after 2005. G4 and G12 show consistent results with EN4, an
trend during the period of 1993-2004 and a cooling trend during  observation-only estimates, which has been used in previous
the period of 2005-2016 in the eastern North Atlantic subpolar studies (see Robson et al, 2016) in terms of temperature
gyre region is evident in both G4 and G12 reanalyses, and as variability in the North Atlantic Ocean. The distribution of
well as in EN4. Here the linear trend of T700 is based on warming and cooling signals is slightly different in G12, G4,
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and EN4 mainly due to the representation of eddy features
of the ocean state. However, the temporal variability is very
similar in G12, G4 and EN4 (Figures 1G, 2G). The increase of
horizontal resolution alters the mean state of the ocean in terms
of temperature (Figure 1) most likely due to better representation
of the eddy features in high resolution reanalyses.

In order to have a more in-depth view on the impact of the
resolution, we analyzed the eddy kinetic energy (EKE) in G4 and
G12 (Figure 3). At the surface, the mean EKE displays a larger
amplitude in G12 than in G4. The eddy active areas in G12 extend
further north and east compared to G4 and the amplitude of EKE
is stronger in the North Atlantic current pathway in G12 than
in G4 (Figure 3C). In order to inspect the subsurface structure
of EKE in the two reanalyses (Figure 3) we select a meridional
section at 40°W, a region where the surface signature of the
EKE shows a wide latitudinal extent in both G4 and G12. The
subsurface EKE in G12 is stronger and its signature penetrates
deeper than in G4 (Figure 3F). As for the temperature, the

average EKE in the box shown in Figure 2 (35°N-65°N, 10°W-
50°W) for the top 700 m shows that EKE increases by 30% in G12
compared to G4 (not shown here). The EKE difference in G12
and G4 implies that the model resolution has an impact on the
eddy activity (increasing of EKE) in contrast to the minor impact
on the T700 variability.

The North Atlantic Meridional Ocean
Heat Transport

As previous studies have shown, decadal variability in the
North Atlantic Ocean (including episodes such as the mid-1990s
warming and the post-2005 cooling in the subpolar gyre region)
is largely associated with changes in the meridional ocean heat
transport (Robson et al., 2016; Yang et al., 2016).

First, we have investigated the total mean MHT in G12 and
G4 for the whole time period (1993-2016). The total mean
MHT (vT) (Figure 4) in G12 is larger than in G4 especially
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at eddy active latitudinal bands (35°N-40°N), where the eddy
heat transport is the largest (Treguier et al., 2017), implying that
with the increase of spatial horizontal resolution, the total mean
MHT vT increases (Figure 4, black lines). The increase of total
mean MHT is not only located at the eddy active regions but
over the whole North Atlantic basin (here 30°N-60°N). The
decomposition of the total mean MHT shows that the main
contributor to the increase in G12 comes from the time mean
field (vT) for all latitude bands. The mean contribution of the

mean field for the time period 1993-2016 (calculated as vT)

to the total MHT (vT) shows a 10% increase from 669 TW
in G4 to 738 TW in GI12 at 40°N. The differences between
G12 and G4 in terms of the attribution to the eddy covariance
contribution to the total MHT plays a minor role (red lines),
and the mean eddy covariance contribution (calculated as v/T")
to the total MHT at 40°N for the whole time period (1993-2016)
increases from 43 + 6 TW in G4 to 46 + 10 TW in G12. This
finding is consistent with previous studies (Hecht and Smith,
2008; Treguier et al., 2012) showing that the total mean MHT
increases with enhanced horizontal resolution due to the change
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of the time mean field instead of the change of eddy component
and the change of representation of bathymetry, air-sea flux with
resolution contribute to the change of the mean state. As shown in
Figure 1, the mean T700 in G12 is warmer than in G4, supporting
that the time-mean field (T) difference is one of the main factors
that is responsible for the total increase of MHT.

The impact of the resolution on the mean state of the
meridional mass transport in terms of meridional velocity (v)
is assessed through first Atlantic Meridional Overturning
Circulation (AMOC) stream function. Supplementary
Figures 1, 2 shows that the mean AMOC in G12 is stronger than
in G4. Observations from the 26°N RAPID array (Srokosz and
Bryden, 2015) for the 2005-2016 period yield a 16.8 Sv estimate,
while G4 and G12 display a 16.3 Sv and 17.4 Sv amplitude,
respectively. The mean gyre circulation (diagnosed via the
barotropic stream function) slightly strengthens (Supplementary
Figure 3) with the increase of horizontal resolution, meaning that
the mean meridional velocity field (v) increases with horizontal
resolution along with mean temperature field (T) increases
corroborating the evidence that the time mean ocean states (»T)
increase is the main factor for the total MHT increases.

The MHT anomalies that drive the mid-1990s warming and
post-2005 cooling trend in the North Atlantic Ocean in G4 and
G12 are calculated by subtracting the mean climatology from
1993-2016 and the decomposition of the MHT anomalies is
shown in Figure 5. A prominent increase and reduction of MHT
in G4 and G12, consistent with the mid-1990s warming and
post-2005 cooling trend of T700 in the North Atlantic Ocean, is
evident. The decline of the MHT in G4 begins around year 2005,
in the 45°N-50°N latitude range and extends to the subtropical
regions with time. In G12, instead, the reduction of MHT starts
around year 2007 in the mid-latitudes and has a sharper decrease
around 2008/2009, extending to the subtropical region. The
difference between MHT anomalies in G12 and G4 shows that
MHT anomalies have a stronger variability in G12 compared
to G4. The decomposition (Figure 5) of the MHT evolution
reveals that the anomalous advection of mean temperature (v/T)
is the main contributor to the MHT anomalies in both G4 and
G12. The advection of temperature anomalies due to the mean
flow (vT") plays a minor role in the MHT variability in both
reanalyses. Despite the smaller contribution to the total MHT
variability compared with the change of ocean circulation, the
eddy-eddy correlation term (v'T’) shows similar variability to the
total MHT change, and contributes to the mid-1990’s warming
and the post-2005 cooling.

In order to further investigate the role of eddies in the
MHT, we separate the whole field (T and v) into large scale
and eddy scale processes (calculated by subtracting the large
scale from the full field) by applying a Shapiro spatial filter
with a 10 degree frame window following Zhao et al. (2018).
The MHT anomalies, MHT anomalies induced by large scale
and MHT anomalies induced by mesoscale processes are shown
in Figure 6. The major contribution of the MHT anomalies
are induced by large scale processes in both G4 and GI12.
However, eddies contribute to both MHT warming and cooling
anomalies that are related to the decadal variability. The variance
of MHT (Figure 7A) shows that the eddy activity is mainly

located in the 35°N to 45°N latitudes band for both GI2
and G4. However, in G12 the largest variance is localized at
around 38°N, while in G4 the variance is overall weaker than
in G12 but spread across a wider latitude band. The eddy-
explained variance (see section “Data and Methods”) in MHT
anomalies in both G4 and GI12 (Figure 7B), confirms that
over the 35°N-45°N latitudes band the eddies are very active
in both G4 and G12, consistent with Figure 4A. The most
prominent difference between G4 and G12 is at higher latitudes
(45°N-55°N) where eddies explained more variances in G12
than G4 (Figure 7B). Further analysis (Figure 7C) focusing
on the warming period, 1993-2004 (cold period from 2005-
2016 is not shown because they are out of phase to have zero
sum for anomalies), shows that large scale processes contribute
more to the mean heat transfer anomalies for the warming and
cooling period in G4 than in G12. On the other hand, eddies
contribute relatively more to the mean heat transfer anomalies
in G12 than in G4.

In general, the MHT variability in G12 and G4 show similar
evolutions, especially during warming and the post-2005 cooling
phase, with slightly larger amplitudes in G4. The contribution
associated with different components (v'T, ¥T’ and v'T’) of
the total MHT anomalies in both G4 and G12 is very similar,
with the anomalous advection of mean temperature as the
lead contributor, followed by the eddy-eddy correlation term,
and finally the mean advection of temperature anomalies as
the smallest contributor. This indicates that the North Atlantic
decadal variability, here mid-1990s warming and post-2005
cooling period, is reproduced in both eddy-permitting (G4) and
the eddy-resolving (G12) reanalyses, associated with the increase
and decrease of the poleward heat transport. The relative role
of eddies in terms of the contribution to the MHT anomalies is
slightly more prominent in the eddy-resolving reanalysis (G12)
compared with the eddy-permitting reanalysis (G4), especially at
higher latitude (45°N-55°N).

CONCLUSION AND DISCUSSION

In this study we investigate the role of eddies in the North Atlantic
decadal variability by using two ocean reanalysis products with
different spatial resolutions. One reanalysis (G4) features a 1/4
degree horizontal resolution (eddy-permitting) and 75 vertical
levels while the other one (G12) features a 1/12 degree horizontal
resolution (eddy-resolving) and 50 vertical levels. Here we focus
on the mid-1990s warming and post-2005 cooling in the North
Atlantic Ocean as part of the North Atlantic decadal variability
(Robson et al., 2016). The results show that both ocean reanalyses
represent the prominent mid-1990s warming and post-2005
cooling trend (Top 700 m temperature, Figure 1) in the North
Atlantic with minor differences between the two reanalyses.
A linear warming trend of 0.48°C in G4, 0.53°C in G12 for the
mid-1990s period, and a cooling trend of —0.54°C in G4 and
—0.53°C for G12 per decade for the post-2005 period suggests
a minor role of spatial resolution on the inter-annual variability.
However, the mean state of the North Atlantic Ocean does
change after increasing the horizontal resolution, as revealed by
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comparing climatological patterns of T700, ocean circulation and
EKE (the latter, both at surface and sub-surface) in G4 and G12.

The analysis of the poleward ocean heat transport shows
a similar variability of the total MHT signal in both G4
and G12. The main contributor to the total MHT change
in both reanalyses is the anomalous advection of mean
temperature (v/ T) associated with the weakening of the AMOC
strength (Supplementary Figures 1, 2) and North Atlantic gyre
circulation (Supplementary Figure 3) consistent with previous
studies (Msadek et al., 2014). The quantitative analysis of the
eddy contribution to the total MHT variability, which is the
focus of this study, shows that the contribution of eddy MHT
to the total MHT variability is slightly larger in the eddy-
resolving than in the eddy-permitting reanalysis. Additionally,
G12 shows a 10% increase in the total mean MHT compared
to G4 and the decomposition of the total MHT suggests that
the main factor is the increase of mean circulation and mean
temperature, as also discussed in other studies (Hecht and Smith,
2008; Treguier et al., 2012).

Overall, our intercomparison of G12 and G4 shows that the
change in the resolution mostly affects the climatological features,
while the decadal variability signal is relatively less affected with
eddies playing slightly larger role in G12. However, the increases
of resolution has a larger impact on the poleward heat transport
at the higher latitude. One point in this study we have to bear
in mind is that G12 has higher horizontal resolution but lower
vertical resolution compared with G4. Thus, with the future
new 1/12 degree ocean reanalyses (G12) the results could be
slightly different.

The implications of this study go beyond the North Atlantic
mid-1990s and post-2005 cooling event. The North Atlantic
displays prominent decadal fluctuations. Understanding the
underlying mechanisms and improving the skill of decadal
predictions in the North Atlantic sector is a very active and
promising area of research for the climate prediction community.
Previous studies have shown that an accurate initialization of
the ocean state is key for making skillful predictions of the
North Atlantic variability (Msadek et al, 2014) and ocean
reanalyses have been used as initial conditions for decadal
prediction experiments (Bellucci et al., 2013, 2015). This study
confirms the reliability of ocean reanalyses as initial conditions
for decadal predictions even with eddy-permitting (and eddy
rich) resolution.

The fast development of computational power will pave the
way to high-resolution decadal prediction systems. However, the
importance of model resolution needs to be evaluated in order
to optimize the usage of the resources. This study focusing on
the North Atlantic Ocean shows that the increase of resolution
affects the mean state of the ocean but has no significant impacts
on the decadal scale variability. However, the interaction between
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