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Sea wave monitoring is key in many applications in oceanography such as the validation
of weather and wave models. Conventional in situ solutions are based on moored buoys
whose measurements are often recognized as a standard. However, being exposed
to a harsh environment, they are not reliable, need frequent maintenance, and the
datasets feature many gaps. To overcome the previous limitations, we propose a system
including a buoy, a micro-seismic measuring station, and a machine learning algorithm.
The working principle is based on measuring the micro-seismic signals generated by
the sea waves. Thus, the machine learning algorithm will be trained to reconstruct the
missing buoy data from the micro-seismic data. As the micro-seismic station can be
installed indoor, it assures high reliability while the machine learning algorithm provides
accurate reconstruction of the missing buoy data. In this work, we present the methods
to process the data, develop and train the machine learning algorithm, and assess the
reconstruction accuracy. As a case of study, we used experimental data collected in
2014 from the Northern Tyrrhenian Sea demonstrating that the data reconstruction can
be done both for significant wave height and wave period. The proposed approach was
inspired from Data Science, whose methods were the foundation for the new solutions
presented in this work. For example, estimating the period of the sea waves, often not
discussed in previous works, was relatively simple with machine learning. In conclusion,
the experimental results demonstrated that the new system can overcome the reliability
issues of the buoy keeping the same accuracy.

Keywords: sea swell, ocean waves, sea state, sea wave period, buoy, machine learning, micro-seismic data

INTRODUCTION

The complexity of the sea waves is mathematically described by the directional wave spectrum
as a combination of waves propagating in different directions with different wavelengths (Talley
et al., 2011). The knowledge of the directional wave spectrum is key in several applications such as
coastal management and design of coastal and offshore structures (e.g., ports and renewable energy
platforms). Indeed, forces on piles, breakwaters, offshore structures as well as wave-induced coastal
erosion, all depend on the directional wave spectrum. Recently, accurate wave measurements
are required also in marine renewable energy industry for engineering design, and for resource
and performance assessments (Thies et al., 2014). Key applications concern verification and data

Frontiers in Marine Science | www.frontiersin.org 1 February 2022 | Volume 9 | Article 798167

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.798167
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2022.798167
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.798167&domain=pdf&date_stamp=2022-02-17
https://www.frontiersin.org/articles/10.3389/fmars.2022.798167/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-798167 February 16, 2022 Time: 10:52 # 2

Iafolla et al. Seismic Based Wave Data Reconstruction

assimilation into weather and sea waves models to improve their
accuracy (Krogstad et al., 2005; Mentaschi et al., 2015).

Fostered by the interest on the numerous applications,
technology for ocean observation and monitoring has made
significant advances in the last decades (Ardhuin et al., 2019; Lin
and Yang, 2020). For example, if in the middle of the twentieth
century the measurements of the directional wave spectrum
were a major achievement, nowadays many systems based on
different measuring principles are affordable for operational use.
In Krogstad et al. (2005); Souza et al. (2011), good reviews
of the available sea state monitoring systems are provided
distinguishing two families: remote sensing and in situ. Examples
of remote sensing systems are those based on radars. These can
be ground-based (Wyatt et al., 2003; Lopez and Conley, 2019;
Novi et al., 2020), ship-based (Izquierdo et al., 2004), airborne
(Voronovich and Zavorotny, 2017; Le Merle et al., 2019; Sun et al.,
2020), as well as spaceborne (Macklin and Cordey, 1991; Aouf
et al., 2021) and rely on the analysis of the backscattered intensity
and/or the Doppler spectrum of radar signals. Examples of in situ
systems are the subsurface devices, such as pressure and acoustic
sensors, but the most common are those based on moored
buoys instrumented with motion sensors such as accelerometers,
gyroscopes, or GPS as described in Herbers et al. (2012); Andrews
and Peach (2019) and in Datawell website.1 The directional
wave spectrum is calculated from the raw measurements by
using algorithms based on the hydrodynamics characteristics of
the hull.

Buoy technology is well established and recognized as a
standard since decades, however, uncertainties have been well
demonstrated as discussed in Ashton and Johanning (2015);
Ardhuin et al. (2019), Jensen et al. (2021). For example, some
issues might arise from the mooring (Niclasen and Simonsen,
2007) or from biofouling (Campos et al., 2021). Furthermore,
buoys are installed in a harsh environment, at the mercy of sea
waves, wind, storms, and other possible causes of damage. For
instance, they might be accidentally damaged by ships when
moored next to naval routes, e.g., close to a port. Therefore, buoys
are vulnerable to system failures, communication problems,
breakage of the mooring, vandalism, etc., and require continuous
maintenance. Consequently, data gaps might be very large and
frequent, while maintenance costs might be very high. For
example, in Picone (2009) the analysis of the data collected from
2002 to 2006 by the 14 buoys of the Italian Data Buoy Network
(Piscopia et al., 2003; Bencivenga et al., 2012) revealed that the
missing data of the most reliable buoy (Cetraro) were the 15.5% of
the total, whereas those of the worst reliable (P. d. Maestra) were
the 88.8% (performance of other buoys are shown in Figure 1).

The maintenance issues are not specific of the Italian
Data Buoy Network, and many works focus on missing data
reconstruction using machine learning (ML) and data science
methods. For example in Vieira et al. (2020), a method based
on artificial neural networks is presented to fill the waves record
gaps using offshore hindcast and wind information. In Jörges
et al. (2021), a Long Short-Term Memory neural network was
used to reconstruct the significant wave height from sea state time

1https://www.datawell.nl/Products/Buoys.aspx

series, weather data of adjacent buoys, and bathymetric data. In
Agrawal and Deo (2002), a first order “auto regressive integrated
moving average” (ARIMA) model, e.g., see Nielsen (2019), was
used and compared to a feed-forward neural-network for making
sea wave predictions.

Besides data reconstruction, ML is key in many methods for
oceanography (Lou et al., 2021). In fact, ML algorithms can
find a mathematical model (called ML model) which produces
the desired output when applied to a set of input data (called
“training data”). The interesting part is the prediction, in which
the ML model generates the correct outputs also when applied to
new input data, distinct from the training data, coming from the
same source. An important differentiation is between supervised
learning and unsupervised learning. In the first case, the desired
output is available for the training data, in the latter case, the
desired output is not available. Supervised learning is more
appropriate for missing data reconstruction because the desired
outputs are typically available. For example, the desired output
might be the sea wave data measured by a buoy whereas the input
data comes from adjacent buoys, wind measurements, offshore
hindcast, or, as we do in this work, micro-seismic data. During
the regular operation, all data, including the desired output,
are available and can be used for training. Instead, when data
from the buoy are missing, the ML model will predict them
from the input data. There are several ML algorithms able to
make both regression (predict a continuous value, such as the
significant wave height) and classification (predict a class, such as
the degrees of the Douglas Sea scale). For example, there is whole
family of algorithms, called artificial neural networks, inspired
by natural neural networks. Other algorithms are the results
of mathematical approaches, such as linear models, support
vector machines, and decision trees. An introduction to machine
learning is in Burkov (2019), while a more comprehensive
exposition is in Géron (2019).

In this work, we will use micro-seismic data acquired from an
onshore seismometer as input data. Actually, it is well known
that sea waves are source of a micro-seismic signal which is
detectable from onshore, even at many kilometers from the
coast. Although this phenomenon has been discovered more
than a century ago, the first geophysical model was presented
in Longuet-Higgins (1950); more details are provided in the
section “Background – From Micro-Seismic Signals to Sea Waves
Parameters.” Improvements of this model have been proposed.
For example, in Ardhuin et al. (2011, 2012) three different
geophysical models were introduced for three different types
of events. In other works, the relationship between the micro-
seismic signal and the sea waves has been investigated with
focus on specific locations (Barruol et al., 2006; Davy et al.,
2016; Ferretti et al., 2018) and on specific events (Cutroneo
et al., 2021). In Ferretti et al. (2013), an algorithm based on
Markov chain Monte Carlo is used to determine the model
parameters for a study conducted in the Ligurian coast (Italy).
In Barruol et al. (2016), the authors evaluated the correlation
between the polarization of the micro-seismic signal and the swell
propagation direction. In Serafino et al. (2021), simultaneous
measurements of a micro-seismic based system (called OS−IS)
and those of a radar system were compared for the first
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FIGURE 1 | Missing data percentage of the 14 buoys of the Italian Data Buoy Network from 2002 to 2006. Source (Picone, 2009).

time. In Cannata et al. (2020), a machine learning method
(specifically, a random forest) was proposed to reconstruct the
spatial distribution of sea wave height, as provided by hindcast
maps of sea wave models, by using micro-seismic data from
multiple seismic stations. In Moschella et al. (2020), a network
of broadband seismic stations was used to investigate the micro-
seismic signals from Ionian and Tyrrhenian Sea and, importantly,
it was demonstrated that the signal detected by seismic stations
closer to the sea contain more information concerning the sea
state than the others.

As demonstrated in Iafolla et al. (2015), systems based
on micro-seismic measurements outperform the systems based
on moored buoys in terms of reliability and sustainability.
Consequently in this work, we propose a measuring system
consisting of a moored buoy, a micro-seismic measuring station,
and a supervised machine learning algorithm to provide accurate
sea wave measurements (specifically, significant waves height HS,
peak period Tp, and mean period Tm) continuously and reliably.
This measuring system will typically provide the measurements
from the buoy, which we will use as the desired output for the
training data. Instead, the micro-seismic data are the input data,
processed by the machine learning algorithms to reconstruct (i.e.,
“predict” in ML jargon) the sea wave data and fill the gaps due to
the failures of the buoy. Therefore, the proposed system features
the accuracy of the buoys and the reliability of the micro-seismic

method overcoming the limitations of the two methods taken
separately. In this work, we present the methods to preprocess
the data, develop the ML models, and evaluate their accuracy. As
a case of study, we will use the data recorded simultaneously by a
buoy and a micro-seismic based system to validate the proposed
methods and to assess their accuracy.

BACKGROUND – FROM
MICRO-SEISMIC SIGNALS TO SEA
WAVES PARAMETERS

In this section, we introduce a simple model, based on the
Longuet-Higgins’s one, to derive the sea waves parameters from
the micro-seismic signals. This model provides basic notions and
it was inspirational to develop the ML methods. Furthermore in
this work, it was used as a benchmark for comparisons.

Longuet–Higgins showed that a peak of the micro-seismic
spectrum is related to sea waves traveling in opposite direction
(e.g., waves generated by coastal reflection) with similar
frequencies. A peculiarity is that the peak of the micro-seismic
spectrum has doubled frequency compared to that of the sea
waves. Another phenomenon, with lower seismic energy and
same frequencies as the sea waves, originates by the interaction
of the waves with a sloping bottom. A recent review and detailed
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description of these phenomena are given in Ardhuin et al.
(2019). Considering the Longuet-Higgins phenomenon, a simple
mathematical equation to calculate the significant wave height HS
from the micro-seismic power spectral density S(f) (with f being
the frequency) is the following (Bromirski et al., 1999).

HS = α ·

√∫ fmax

fmin

S
(
f
)
· df + β (1)

In the previous equation, α and β are parameters of the model.
The limits of integration fmax and fmin are also parameters and
define a bandwidth that must contain all the micro-seismic signal
generated by the sea waves. However, this bandwidth should
not be too large, in order to avoid extraneous micro-seismic
contributions that would worsen the accuracy of the evaluation
of HS. To calculate Tm and Tp, one can simply use S(f) in place
of the sea wave power spectral density. However, we recall that
the frequency of the micro-seismic signal is doubled compared
to that of the sea waves. Therefore, Tp is 2/fp (with fp being
the peak frequency of S(f)) and Tm is defined by the following
mathematical formula (Krogstad et al., 1999).

Tm = 2 ·

√∫ fmax
fmin

S
(
f
)
· df√∫ fmax

fmin
f · S

(
f
)
· df

(2)

MATERIALS AND METHODS

Measuring Systems
In this work, we used data collected in 2014 by a sea wave
monitoring system, called OS−IS (Ocean Seismic – Integrated
Solution), based on the micro-seismic method and data by the
buoy of the Italian Data Buoy Network moored in proximity
of La Spezia. The latter data are publicly available on the
European Marine Observation and Data Network (EMODnet)2

and a detailed description of the Italian Data Buoy Network
is in Bencivenga et al. (2012). The buoy ISPRA-La Spezia was
moored at latitude 43◦55′45.00′′N and longitude 9◦49′40.00′′E
(see Figure 2). At about 16 km (green line), the OS−IS
station was installed in the basement of Villa Pezzino, the
INGV (National Institute for Geophyisics and Volcanology)
labs of Porto Venere (La Spezia), at latitude 44◦4′24.19′′N and
longitude 9◦50′22.84′′E.

The OS−IS station at INGV-Pezzino was installed in
December 2013 in the framework of a project called Wind,
Ports, and Sea (Bonino et al., 2015) funded by the European
Cross-border Programme “Italy–France Maritime 2007–2013.”
A detailed description of OS−IS is provided in Iafolla et al.
(2014, 2015), Carmisciano et al. (2016) and its simplified
schematic is shown in Figure 3. The core is the high-sensitivity
three-axial accelerometer developed by AGI srl (Figure 4).
Its background noise level is lower than 10−7 m/s2/

√
Hz

in the bandwidth of interest for measuring the micro-
seismic signal generated by the sea waves (from ∼4.10−2

2https://www.emodnet-physics.eu/map/platinfo/piroosplot.aspx?platformid=
8712

FIGURE 2 | Locations of La Spezia city (yellow marker), OS-IS station
(INGV-Pezzino, green marker), and buoy ISPRA-La Spezia (green marker). The
distance, indicated by the green line, between OS-IS and the buoy is about
16 km.

FIGURE 3 | Simplified schematic of an OS–IS station. The UPS
(Uninterruptible Power Supply) improves the reliability of the system. All
instrumentation is installed indoor, sheltered from the environment (rain,
humidity, dust, etc.). One OS–IS station might also include a weather station
and a GPS receiver for weather monitoring and precise timing.

to ∼1 Hz). The sampling rate of the accelerometer was
set to 10 Hz, which is about 10 times bigger than the
highest frequency of interest. Although all three components
(x, y, and z) of the acceleration were available, in this
work, we used only the vertical component, aligned to the
local gravity.

The measurements from the accelerometer were transmitted,
through the internet, to a server for data storage and
processing. Further descriptions regarding the computing system
are reported in the section “Introduction” of Supplementary
Material of this manuscript.

Graphical Tools and Validation Metrics
for Data Analysis
In this work, data analysis was key for two main tasks. The
first was to explore data, identify anomalies, and, consequently,
remove noisy records. The second was to validate the ML
models and assess their performance. The validation is done by
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FIGURE 4 | Picture of a three-axis accelerometer by AGI srl. The three gray
elements are transducers for measuring the x, y, and z components of the
acceleration. Typically, the accelerometer is closed to protect the transducers
and the acquisition electronics.

comparing two datasets: the predicted values and the desired
values. For example, we compared the Hs values predicted by ML
models and the Hs values measured by the buoy.

Performing the former tasks require several tools, both
graphical and numerical. We used well-known graphical tools,
such as time plots, scatter plots, and histograms, as well as less
used (at least in -sea wave to micro-seismic- data analysis) tools
such as empirical cumulative distribution function (ECDF) plots
and hexagonal binning plots.

In ECDF plots (Downey, 2014), the value of the ECDF (y-
axis) at any specified point x0 of the x−axis is the fraction of
observations of the variable× that are smaller than or equal
to x0. In formula, ECDF(x0) = P(x≤x0), where P(x≤x0) is
the probability that x≤x0. ECDFs are useful for comparing
sea wave distributions (Krogstad et al., 1999) because they
smooth out random variations which, instead, are typical in
histograms. Furthermore, synchronization of the records is
not necessary, as with time plots, because the timing is lost
in ECDFs.

Hexagonal binning plots are an alternative to the more
common scatter plots to show and verify the relationship between
two variables (Bruce et al., 2020). The records are grouped into
hexagonal bins whose color indicates the number of records
in that bin. The hexagonal binning plots are ideal to display
large datasets that would appear as a monolithic cloud of
points in conventional scatter plots. To make hexagonal binning
plots, we used the hexbin function of the Matplotlib library
of Python.

Other common methods for comparing two datasets
are the validation metrics such as RMSE (Root Mean
Squared Error), MAE (Mean Absolute Error), and Pearson
correlation coefficient (Géron, 2019; Bruce et al., 2020). To
compute them, we used the functions mean_squared_error,
mean_absolute_error (from sklearn.metrics library of Python)
and corrcoef (from numpy library).

Data Pre-processing and Cleaning
Exploratory Data Analysis
Exploratory data analysis (EDA) is a process for gaining an
insight into a dataset (Downey, 2014). A golden rule in ML
is to always perform an EDA before preparing the data and
feeding them into a ML algorithm. For example in this study,
it is relevant to know how the values of Hs, Tp, and Tm are
distributed and if there is any relationship between them. The
section “Background – From Micro-Seismic Signals to Sea Waves
Parameters” of the Supplementary Material reports the results of
an EDA conducted on the dataset used in this study.

Data Augmentation
The amount and the quality of the training data is important
for successfully training ML algorithms. In other words, a large
dataset well representing the population of possible inputs is
desirable. Sometimes, new training data can be generated from
the available ones, this is called “data augmentation” in ML
jargon. For example, it might be sufficient to flip one image
about its central axis to obtain a new sample image for training.
However, the new sample should not be too much alike the
original one, otherwise it will not determine any improvement
of the training.

In our work, the size of the dataset was limited by the sampling
period of the buoy, which was 30 min. To increase this size, we
interpolated the buoy data to a sampling period of 10 min. To
do so, we used the interpolate method of the Pandas library of
Python with the interpolation parameter set to “quadratic.” We
did not further decrease the sampling period to avoid feeding
the ML algorithms with samples too much alike each other. For
example, records of the sea wave parameters are displayed in the
time plots of Figures 5A–C. In such short timing, the variations
are already quite small because of the inertia of the sea state.
Consequently, further interpolation would not determine any
improvement of the training because the newly generated records
would be almost identical to the existing ones.

Feature Engineering
Data pre-processing is called “feature engineering” in ML jargon,
where the features are the input variables of the algorithm: for
example, if the input is an array, each of its elements is a feature.
In other words, feature engineering defines the shape of the
ML algorithm input and impacts significantly its performance
(e.g., the accuracy). Inspired by the model introduced in the
section “Background – From Micro-Seismic Signals to Sea Waves
Parameters” and timeseries forecasting methods (Nielsen, 2019),
we defined and tested two methods to engineer the features, i.e.,
to pre-process the micro-seismic data. Both these methods use
the power spectral density (PSD) of the micro-seismic signal,
like that shown in Figure 6. Details on the method to compute
the PSD are provided in the section “Materials and Methods” of
Supplementary Material.

We defined the first feature engineering method inspired
by Equations 1, 2, which contain the micro-seismic spectrum
S(f). This method merely consists in using the PSD as ML
algorithm input.
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FIGURE 5 | The time plots (A–C) show five buoy records from 22:20 to 23:00 on the February 5, 2014. In (D) is shown the spectrogram of the micro-seismic signal,
i.e., the five columns represent the five PSDs corresponding to the timings indicated by the labels on the x axis.

FIGURE 6 | Power spectral density (PSD) of the micro-seismic signal recorded on the February 5, 2014 at 23:00. The corresponding sea waves parameters from the
buoy were: Hs = 3.37 m; Tp = 8.00 s; and Tm = 5.90 s.

We defined the second feature engineering method inspired
by the analysis of the properties (stationarity, autocorrelation,
partial-autocorrelation, etc.) of the timeseries Hs, Tp, and Tm and,

specifically, by the possibility to predict their present value from
their past values (Nielsen, 2019). For example, Figure 7 shows
that an ARIMA(3,1,5) model can forecast Hs using its past five
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FIGURE 7 | (A) Hs observed by the buoy and forecasted with an ARIMA(3,1,5) model. Each forecast is evaluated using the past observed values. The error limits are
too small to be visible on this scale. (B) Deviation of the forecasted values from the observed ones.

FIGURE 8 | Time plots of (A) IPSD, (B) diff(IPSD) (as defined in the section “Data Pre-processing and Cleaning”), and (C) Hs. Anomalies are in red.

values. This suggests that past Hs values carry useful information
to evaluate the present value. Similarly, we supposed that the past
records of the PSD might carry useful information to evaluate the
present sea state. To leverage this, we used a spectrogram, i.e., an
image combining the last five PSDs like that shown in Figure 5D,

as ML algorithm input. Similar spectrograms with more than five
PSDs could be used, however they require more memory and
computational power. More details on the computation of the
spectrogram are provided in the section “Materials and Methods”
of the Supplementary Material.
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Summarizing, the first feature engineering method consists in
feeding the ML algorithm with the present PSD of the seismic
signal; the second in feeding it with the last five PSDs (i.e.,
the spectrogram).

Data Cleaning
Data cleaning is aimed at achieving optimal results in ML and at
checking the quality of the records during the operational use.
Given the big amount of data and the real-time applications,
it is also important to automatize the cleaning and the
quality checking.

Data from the buoy were already classified with a quality check
label (“good value,” “bad value,” etc.). We merely discarded all
those samples whose label was not “good value.” Other records
were dropped because the corresponding micro-seismic data
were not available. The number of available and missing records
is reported in Supplementary Table 1. In addition, we picked just
the variables of our interest (i.e., timestamp, Hs, Tp, Tm, and swell
direction) and dropped all other variables (e.g., temperature of
the water, intensity of the wind).

To perform micro-seismic data cleaning, it was useful to
compute a timeseries IPSD(t), or simply IPSD, of the mean values
of the elements of the PSDs. For example, IPSD(5th February
2014 at 23:00) is the mean value of the points shown in the
plot of Figure 6. For convenience, we standardized IPSD(t) by
subtracting its mean value and dividing by its standard deviation.
Furthermore, it was useful to compute the timeseries, diff(IPSD),
of the variations of each record of IPSD with respect to the recent
previous ones. To do so, we used a rolling window (4 h wide)
technique over IPSD; i.e., diff(IPSD) is the difference between the
value of last point and the mean value within the window.

Using IPSD(t) and diff(IPSD) we could identify noisy data
caused by micro-seismic disturbances. Most common examples
of the latter are earthquakes and human activities, such as people
walking next to the accelerometer. These disturbances might last
for several minutes and they might affect several consecutive
input samples (i.e., PSD records). This is visible in the time plots
of IPSD, such that in Figure 8A. Bunches of points, highlighted
in red, are clearly displaced away from the others, indicating an
anomaly. Sometimes, these anomalies are very high and setting a
threshold over IPSD is sufficient to spot them automatically. An
example is the bunch of points recorded on the 24th of May.
However, their values are often lower than peaks due to the
sea waves. For example, the bunch of red points recorded on
the 9th of May are clearly anomalies because they do not have
correspondence with the Hs measured by the buoy (Figure 8C).
Still, their IPSD values are lower than the peak on the 13th,
which is due to sea waves. To automatically identify these points,
we used diff(IPSD), shown in Figure 8B, where these points
emerge from the rest.

To automatically identify and discard anomalies, we made the
scatter plot of IPSD vs. diff(IPSD) as shown in Figure 9. Most of
the records are close to the center (0,0), as also visible from the
side and top histograms, whereas the anomalies are far away.
Consequently, we defined an ellipse (shown in red), inside which
all good records are expected to be. The anomalies, colored in
orange, are outside the ellipse and, consequently, easy to discard.

FIGURE 9 | Scatter plot and corresponding histograms of IPSD vs. diff(IPSD).
All points outside the ellipse, colored in orange, are identified as anomalies.

Defining the size and the position of the ellipse is trade-off: when
it is too small, some good records might be wrongly discarded;
when it is too large, some anomalies might not be identified as
such. In our case, we defined the IPSD axis length equal to 6 and
the diff(IPSD) axis length equal to 2.2.

Machine Learning Algorithms and
Models Validation
Machine Learning Algorithms
The ML algorithms able to predict the sea state with the highest
accuracy were ensembles of decision trees (bagging, boosting,
and random forests) and convolutional neural networks (a special
case of deep learning algorithms).

A decision tree (DT) (Géron, 2019; Bruce et al., 2020) is a
process that sequentially examines, one per time, the features of
an input sample assigning it to an output value. However, only
a finite number of possible output values is defined during the
training, consequently, the output is discrete.

Ensemble methods overcome the limit of the discrete output
and improves the accuracy of the DTs. In general, an ensemble
is a group of predictors, e.g., a DT, making predictions on
the same input sample. The output of the ensemble is an
aggregation, e.g., the average, of all predictions. There are several
ensemble methods; we used bagging, boosting, and random
forest (Random F.), which are among the most commonly
used (Géron, 2019). We implemented the ensembles using the
dedicated functions of the Scikit Learn library of Python and
we fed them with the PSDs defined in the section “Data Pre-
processing and Cleaning.” The most important parameters of
the ensemble methods are the max depth of the DTs and the
number of predictors (called n_estimators in Scikit Learn). We
used max depth equal to 7 and number of predictors equal to
15 or 20.

Finally, we trained and tested convolutional neural networks
(CNNs), which were developed for processing images such as
the spectrograms described in the section “Data Pre-processing
and Cleaning.” For example, CNNs are famous for being able
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to classify pictures of dogs, cats, or other objects. Adjusting
their output layer, they can also make regression as needed
for the sea wave variables. A CNN consists of several layers
of different types that are stacked and set accordingly to the
task (Géron, 2019). Very complex tasks usually require high
number of layers, large training datasets, and the training
takes very long time (or very large computational power).
The configurations we tested in this work are reported in
Supplementary Table 2.

Machine Learning Models Validation
After a ML algorithm has been trained using training data, it
provides a ML model. This can predict the output given only
the input data; however, its performance should be assessed
before using it. To make this assessment, the graphical methods
and the metrics introduced in the section “Graphical Tools and
Validation Metrics for Data Analysis” can be used to compare the
outputs of the model with the desired outputs. This assessment
is called validation and it is performed over a validation dataset
that must contain also the desired outputs. However, a ML
algorithm might be able to memorize (this is called overfitting)
the training data without being able to generalize over new input
data. Therefore, keeping the training data separated from the
validation data is key to validate correctly the ML model even
when it is overfitting. One method is based on holding out a
validation subset and training the ML algorithm by using the
rest of the dataset. However, the validation results might depend
on the chosen validation subset. To overcome this issue, we
used a method called cross-validation (Géron, 2019; Bruce et al.,
2020); the idea is to split the full dataset in subsets, e.g., 12 (see
Figure 10). The ML algorithm is then trained 12 times, each time
holding out a different subset and using it only for validation.
Merging the results, we can obtain validation estimates over
the full dataset. The bootstrap method (Bruce et al., 2020)
can be used to assess the confidence intervals of the validation
metrics. In this work, we used a similar method that allows us

FIGURE 10 | In cross-validation, the full dataset is split in subsets (e.g.,12) of
the same size. In this figure, different colors indicate different validation
subsets.

to inspect the performance of the ML model over the time. The
idea is to estimate the validation metrics over multiple (e.g.,
50) consecutive time intervals. Specifically, first we divided the
validation dataset in 50 consecutive subsets, then we estimated

FIGURE 11 | Validation metrics (RMSE and correlation) of the Random Forest
ML model (20 predictors) computed over 50 different time spans. (A–C) labels
are referred to Hs, Tm, and Tp, respectively. 1 and 3 are the time plots of
RMSE and correlation respectively, whereas 2 and 4 are their ECDF plots.
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the validation metrics of each subset to obtain a timeseries. This
can be plotted to see how the ML model behaved over time and
its ECDF can be used to easily assess the confidence intervals.
Examples are shown in the section “Results,” Figure 11.

RESULTS

The dataset used for training and validating the ML models
was made of 42603 simultaneous records, whereas 9957 records
were not available or discarded during the data cleaning (see
Supplementary Table 1, for more details).

The validation metrics of the best performing ML models
and those of the conventional model introduced in the section
“Background – From Micro-Seismic Signals to Sea Waves
Parameters” (indicated as OS−IS Model) are reported in
Table 1, 2. The OS−IS model is a good benchmark to assess
the improvement achieved with the ML method because its
performance was assessed using the same instrumentation and
the same data. Rarely the OS−IS model performed better than
the others, except for the MAE of Tp. The reason is that the
OS-IS model was designed to provide measures of Tp only
if Hs was larger than 1 m, when the signal to noise ratio
was higher. To make a fair comparison, the last columns of
Table 1, 2 report the validation metrics of a ML model (Boosting
20 pred.) trained and validated using the same dataset as for
the OS-IS model (i.e., featuring Hs>1 m). As expected, its the
validation metrics for Tp and Tm outperform those of the others,
including those of the OS−IS model. This also highlights that the
validation metrics depend on Hs and, more in general, on the
training/validation data.

Comparing the ML models reported in Table 1, we notice that
the difference between them is rather small, anyway, Random F.
performed slightly better than the others on all metrics.

In Figure 11, the validation metrics (RMSE and correlation)
are estimated 50 times over consecutive time intervals of about
1 week each (see “ML models validation” in the section “Machine
Learning Algorithms and Models Validation”). Notice the high
variability of the estimates. On the right side of each time

plot, the ECDF plots are shown and are useful to assess the
confidence intervals. For example, in Figure 11 (a, 2) the median
(ECDF = 0.5) of the RMSE estimates is ∼0.13 m and 90%
(ECDF = 0.9) of the RMSE estimates are smaller than ∼0.25 m.
Similarly, only 10% (ECDF = 0.1) of correlation estimates are
smaller than∼0.8.

Table 2 reports the validation metrics for a subset comprising
only data from November to December 2014 (6229 records).
Compared to the estimations in Table 1, the validation metrics
are similar for Hs and Tp, but they are slightly worse for Tm. The
same validation data are shown in Figure 12 and Supplementary
Figures 5, 6. Specifically in these figures, the predicted values of
Hs, Tp, and Tm are compared to the desired outputs provided by
the buoy. Inspecting these figures provides us with more insights
than the validation metrics. For example, we notice that the
absolute errors of Hs (Figure 12B), might be bigger than 1 meter
(e.g., see the orange ellipse), but often this is due to a time-lag
between the buoy measurements and predicted values. In fact, in
subplot (a) we do not see a deviation bigger than 1 m between the
buoy and predicted data (see the orange circle). Consequently,
the MAE and the RMSE of Hs reported in the tables might be
overestimated. On the other hand, histograms and ECDF plots
do not suffer from the time-lag issue. For example, Figures 12C,D
show a good agreement between buoy and predicted data. On the
opposite, histograms and ECDF plots (c) and (d) of Tp and Tm
in Supplementary Figures 5, 6 do not overlap as nicely as with
Hs. This indicates that assessing accurately Tp and Tm is slightly
more complex than assessing the Hs.

Inspecting the errors histograms [subplots (e)] is a good way
to evaluate if the ML model is introducing a systematic error. In
fact, this would skew the histogram or displace its center away
from zero; however, such effects were not detected in our case.

Finally, Figure 13 shows the hexagonal binning plots of the
predicted values vs. the desired values from the full dataset. Each
plot also shows a black straight line along which the points
are expected to align in the ideal case. We notice that for Hs
[subplot (a)], the points are mainly concentrated next to the
black line for values smaller than 2 m whereas they are more
spread for bigger values. However, the hue also indicates that

TABLE 1 | Performance of the ML models trained and validated over the data from 2014.

Algorithm Random F.
20 pred.

Boosting 20
pred.

Boosting 15
pred.

Bagging 15
pred.

CNN
Config. 1

CNN
Config. 2

OS-IS
Model

Boosting 20
pred.

Dataset Full dataset Hs>1 m

RMS Hs [m] 0.17 0.18 0.18 0.17 0.19 0.23 0.21 0.24

MAE Hs [m] 0.11 0.12 0.12 0.11 0.14 0.15 0.14 0.17

Corr Hs 0.95 0.95 0.95 0.95 0.94 0.93 0.93 0.89

RMS Tp [s] 1.38 1.38 1.38 1.38 1.40 1.47 1.52* 0.97

MAE Tp [s] 0.98 1.01 1.01 1.00 1.03 1.09 0.96* 0.68

Corr Tp 0.72 0.72 0.72 0.72 0.71 0.67 0.56* 0.78

RMS Tm [s] 0.63 0.63 0.64 0.65 0.70 0.66 0.95 0.57

MAE Tm [s] 0.44 0.45 0.46 0.46 0.52 0.48 0.67 0.41

Corr Tm 0.83 0.83 0.82 0.82 0.81 0.82 0.65 0.82

Notice that, the ML model on the last column was trained only with data satisfying the condition Hs>1 m. The best performances are in bold. *The validation of OS-IS
Model over Tp was performed only for Hs>1 m.
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TABLE 2 | Performance of the ML models trained over the data from 2014 and validated over the data from November to December 2014 (6229 records).

Algorithm Random F.
20 pred.

Boosting
20 pred.

Bagging
15 pred.

CNN
Config. 2

OS-IS Model Boosting
20 pred.

Dataset November – December 2014 Hs>1 m

RMS Hs [m] 0.19 0.20 0.20 0.23 0.24 0.23

MAE Hs [m] 0.13 0.13 0.14 0.16 0.17 0.15

Corr Hs 0.95 0.95 0.95 0.92 0.93 0.95

RMS Tp [s] 1.28 1.30 1.27 1.32 1.47* 1.10

MAE Tp [s] 0.95 0.98 0.96 1.00 0.98* 0.80

Corr Tp 0.78 0.77 0.78 0.76 0.65* 0.80

RMS Tm [s] 0.83 0.79 0.84 0.80 1.13 0.73

MAE Tm [s] 0.60 0.58 0.62 0.61 0.82 0.52

Corr Tm 0.80 0.82 0.79 0.81 0.63 0.81

Notice that, the ML model on the last column was trained only with data satisfying the condition Hs>1 m. The best performances are in bold. *The validation of OS-IS
over Tp was performed only for data with Hs>1 m.

values bigger than 2 m are much less frequent; consequently,
the ML algorithm is less exposed to those values during the
training, leading to worse accuracy. The spreading of Tm and Tp,
subplots (b) and (c), is not significantly larger for bigger values.
However, we noticed that the points of Tp [subplot (c)] do not
distribute symmetrically about the black straight line, particularly
for values between 2 and 4 s (inside the yellow circle). Most
likely, this is driven by those records whose Hs < 1 m. In fact,
when the signal to noise ratio is lower (i.e., Hs < 1 m), it is
harder to identify the peak frequency (i.e., the peak period) than
when the signal to noise ratio is higher (i.e., Hs>1 m). This
agrees with the validation metrics reported in the last columns
of Table 1, 2.

DISCUSSION

The objective of this work has been to develop a sea wave
monitoring system consisting of a moored buoy, a micro-seismic
station, and a ML algorithm to automatically reconstruct missing
buoy data using micro-seismic data. In this section, we discuss
many aspects that differentiate our work from previous ones
in the same field.

To begin, reconstructing missing buoy data using micro-
seismic data is a novel aspect as, in previous works, other types
of input data were used. For example, offshore hindcast and
wind information were used in Vieira et al. (2020) and weather
data of adjacent buoys and bathymetric data were used in Jörges
et al. (2021). Moreover, many works were limited to short term
(less than 48 h) predictions meaning that their models rely
on recent observations of the buoy, e.g., (Agrawal and Deo,
2002). Instead, the proposed system can make predictions for
any time after the last buoy observation keeping the same level
of accuracy. This is key as buoy data gaps might be several
weeks long.

As reported in the section “Introduction,” several previous
works investigated the methods to retrieve sea wave data from
micro-seismic data. A key aspect of the present work is the
application of ML to automatically find the -micro-seismic to sea
waves relationship- directly from data, with no need to develop

and calibrate complicated geophysical models. Furthermore, the
more training data are collected during the operations, the
more accurately the ML model can perform. For example, by
routinely training the ML algorithm as soon as new data is
available, new types of events will be incorporated in the ML
model with no need of manually tweaking its parameters, e.g.,
as in Cutroneo et al. (2021). Despite these many advantages,
ML limits the investigation on the input-output relationship
(i.e., on the geophysical phenomenon) because most of the ML
algorithms are “black boxes.” Although this would be limiting
in projects whose objective is to investigate the geophysical
phenomenon, e.g., (Ardhuin et al., 2011), it is not relevant for
missing data reconstruction.

Many aspects of the system were defined accordingly to
the objective. For example, the micro-seismic station used
for this work was specifically installed close to the shoreline
and in front of the buoy of La Spezia (see Figure 2). As
demonstrated in Moschella et al. (2020), this displacement
of the instrumentation leads to more accurate buoy data
reconstruction. In fact, undesired signals, such as those from
remote seismic sources, are less relevant and the signal to
noise ratio is higher than that of stations far away from the
shoreline and the reference buoy. For example in Ferretti
et al. (2013), the micro-seismic stations were from previous
projects with different purposes (e.g., seismic monitoring) and,
due to their locations, the interpretation of the signals was
more complex.

Pursuing our objective, it was also important to use buoy
data to train the ML algorithm and not weather model
data, e.g., as done in Cannata et al. (2020). In fact, if the
sea wave data from weather models were a ground truth,
there would be no need to retrieve the same data from any
monitoring system. On the opposite, sea wave monitoring data
are critical to validate weather models and implement data
ingestion techniques.

In the section “Materials and Methods,” we have gone through
the main steps of the data processing; these are the typical
steps of a ML project. Data cleaning is very important because
ML algorithms are very sensitive to outliers and noisy data:
the proposed method to clean the micro-seismic data is quite
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FIGURE 12 | Significant wave height (Hs) measured by the buoy (in black) and predicted by the Random Forest model (20 predictors) (in red) displayed in the time
plot (A), the histogram (C), and the ECDF plot (D). The deviation between the two-time series is displayed (in blue) in the time plot (B), and the histogram (E).

standard but still very effective; furthermore, it can be used
to check the quality of the results during the monitoring
operations. Despite the importance, data cleaning methods
were seldom discussed in previous works. Feature engineering
typically impacts the overall performance of ML models. We
proposed two methods: one is based on using PSD arrays, the
other on spectrograms; the latter was specifically meant for
CNNs. Then, we introduced some ML algorithms and assessed

their performance. Random forest was the best performing while
CNNs did not shine as expected. Notice that the method to
estimate and validate sea wave periods (Tp and Tm) from the
micro-seismic data was discussed. This was often disregarded
in previous works and the validation of waves period estimates
was rarely presented. Still, the waves period is an important
parameter to assess the energy and, consequently, the impact
of the sea waves.
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FIGURE 13 | Hexagonal binning plots of the Hs (A), Tm (B), and Tp (C) values
predicted by a Random Forest (20 predictors) model vs. those measured by
the buoy. Validation data from 2014.

We have shown that the performance assessments, in
particular the validation metrics, depend on the validation
dataset. For example, the periods are better evaluated when Hs
is bigger than 1 m; this should not be surprising because the
signal to noise ratio is higher. To avoid wrong performance
assessments, we proposed to use cross-validation, which is rarely
used in projects related to the calculation of sea wave data

from micro-seismic signals. Furthermore, we proposed a method
to evaluate the confidence interval of the validation metrics
using their ECDFs.

Our results for the accuracy on Hs estimates are comparable
to those of other works. However, accuracy depends on many
variables (e.g., validation dataset, measurement site, sea wave
conditions, and time interval length) that make such comparisons
meaningless. Consequently, the accuracy estimations should be
used only to assess the ability of the system to reconstruct the
missing buoy data.

It is worth to stress that the proposed system is an
improvement of an existing technology for sea state monitoring,
i.e., that of moored buoys. Accordingly, the micro-seismic system
is not meant to operate as a standalone device. Therefore,
the buoy is expected to continuously provide training data,
particularly of sporadic events such as rare storm events;
once these are incorporated in the training dataset, the ML
algorithm will learn how to reconstruct them from the micro-
seismic data. On the opposite, if the buoy is dismissed at
some point in time, some new sporadic events might occur
and the ML algorithm would not be able to reconstruct
them accurately.

Finally, we stress the value of data science methods that are
poorly and seldomly used in studies related to the evaluation
of sea wave data from micro-seismic signals. Besides the ML
methods, we have shown methods to compare timeseries and
distributions. These are key when comparing and validating
complex data such as sea wave measurements. For example,
conventional scatter plots were often shown, where points
formed a monolithic cloud hiding most of information. Instead
of scatter plots, we proposed to use hexagonal binning plots.
The validation metrics, such as RMSE, MAE, and correlation,
were typically reported but, although very useful, they rarely
tell the whole story. Instead, tools such as the ECDF plots
were rarely used despite they are more informative than
validation metrics.

CONCLUSION

In this work, we introduced a novel sea state monitoring system
able to automatically reconstruct missing buoy data using micro-
seismic data and machine learning. Specifically, we presented
the methods to process the data, develop and train the ML
algorithms, and assess their accuracy. As a case of study, we used
the data collected in 2014 from a buoy of the Italian Data Buoy
Network and a micro-seismic station (OS−IS). We demonstrated
that many ML algorithms were able to reconstruct Hs, Tm,
and Tp. However, the best performing was a Random Forest
algorithm, whose root mean squared errors of Hs, Tm, and Tp
were, respectively 0.17 m, 0.63, and 1.38 s. When Hs was bigger
than 1 m, the accuracy of Tm and Tp improved to, respectively
0.57 and 0.97 s.

By collecting more data, particularly for rare storm events,
and tweaking the ML algorithm architectures, we believe that the
accuracy can further improve. Specifically, we believe that the full
potential of the CNN and the spectrograms as input, was not fully
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exploited. To do it, spectrograms with larger time span should be
used and the CNN models should be more complex (i.e., more
parameters). However, this requires more computational power
than that available for this work.
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