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Risk assessment and management of marine disasters are the prerequisite of ocean
exploitation and utilization. Marine disaster assessment is a complicated system
engineering with high non-linearity and uncertainty. To deal with the problem, Bayesian
network (BN) has become a powerful model used for disaster assessment due to its
capability of expressing complex relationships and reasoning with uncertainty. However,
scarce data sets and case samples of marine disasters pose an obstacle to BN
modeling, particularly for structure and parameter learning. In our research, we combine
expert knowledge with small sample to propose a new BN-based assessment model.
Expert knowledge is regularly expressed and quantitatively incorporated into BN learning
with DS evidence theory. Then, the genetic algorithm is adopted to search the optimal
network parameters. Comparative experiments show that the new model has a better
assessment accuracy (91.03%) than BPNN (61.34%) and SVM (70.67%), especially with
small samples. The proposed model achieves the risk assessment of marine disasters
under the small sample condition, providing the technical support for marine disaster
prevention and mitigation.

Keywords: marine disaster, risk assessment, Bayesian network, expert knowledge, small sample modeling

INTRODUCTION

The twenty-first century has been widely recognized as “A Century of Ocean.” Ocean, as the main
space of marine development and security strategy, plays a significant role in safeguarding security,
enriching resources, and expanding the development space for the economy and society. It is well-
known that the marine environment contains many oceanic and meteorological factors, which are
constantly changing and have mutual actions between each other (Li et al., 2021b). With climate
change, marine disasters are occurring more frequently and disaster losses are heavier. Therefore,
risk management of ocean is urgently needed so as to provide solutions for tackling climate
impacts and marine disasters. Nowadays, risk assessment of marine disasters is taken increasingly
seriously, which can provide basis for the development of nature-based solutions, such as hazard
prevention and mitigation.

The Marine environment is complicated and changeable, producing varieties of marine
disasters, such as marine geologic disaster, red tide, wave disaster, sea ice disaster, and storm surge
disaster. Scholars have carried out many studies about risk assessment on different types of marine
disasters. Zhao et al. (2007) summarized the research progress of storm surge disaster assessment
and constructed a multi-level assessment system for storm surge disaster. Wen et al. (2007) analyzed
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features of risk-causing factors and risk-taking bodies of red
tide to establish the risk assessment model based on fuzzy
comprehensive evaluation (FCE) method. Qiao et al. (2014)
focused on the risk assessment of geologic disaster sources in
coastal areas. Yu et al. (2020) adopted several machine learning
(ML) algorithms to evaluate the sea ice disasters and conducted
the short-term prediction of the risk.

Different marine disasters usually occur in the form of
cluster, concurrence, and contingency, causing considerable
disaster losses. However, it is unable to express these forms
through the risk assessment of one single type of marine
disaster. Aiming at this problem, several studies have been
devoted to the comprehensive risk assessment of multiple
marine disasters. Ye et al. (2005) analyzed the temporal–
spatial characteristics of oceanic and meteorological factors
and established the comprehensive risk management system of
marine disasters. Zhang (2012) elaborated marine environmental
features in the South China Sea from the perspectives of marine
geography, marine meteorology, and marine hydrology, and
adopted the FCE method to evaluate the marine disaster. Gao
et al. (2018) established a comprehensive hazard assessment
system targeted at five marine disasters, including waves, sea
levels, storm surges, sea ice, and tsunami. Weights for each
of these marine disasters were obtained by analytic hierarchy
process (AHP), based on which the risk of marine disasters
were classified. Li et al. (2021b) used the non-stationary model
for dynamic assessment of comprehensive marine disasters. In
addition, government agencies also attach great importance
to relevant research. The Earth System Science Partnership
started the proposal of integrated risk governance to analyze
internal relations between marine disasters and climate change
at different scales (Ignaciuk et al., 2012). The Federal Emergency
Administration of the USA developed a natural hazard loss
estimation software to evaluate and predict the risk losses caused
by multiple marine disasters, including storm surges, sea waves,
and typhoons (Khatsü, 2011). Comprehensive risk assessment
of multiple marine disasters, emphasizing systematization and
interdisciplinarity, can analyze different types of marine disasters
to establish a more comprehensive assessment index system.
With the index system set up, varieties of mathematical models
can be combined for quantitative assessment.

In the above assessment researches of marine disasters,
whether for a single marine disaster or multiple marine
disasters, most studies use qualitative and semi-quantitative
assessment methods, mainly including Delphi method, AHP,
gray comprehensive evaluation method (GCE), and FCE. ML
algorithms, such as BP neural network (BPNN) and support
vector machine (SVM), are initially introduced into disaster
assessment. It should be noted that the marine disaster is
a complicated system containing a number of factors, which
influence each other and are strongly coupled together. The risk
mechanism of marine disaster is highly non-linear and uncertain.
However, the traditional assessment methods rely heavily on
expert experience or domain knowledge. The subjectivity and
empiricism are so strong in the expert investigation method
that it is difficult to express complex relationships among
indicators quantitatively. Besides, the ML-based assessment
models usually have strict mathematical assumptions and have

high requirements on data quality, which is hard to model with
large-scale assessment indicators and non-linear relationships in
marine environments, especially with uncertain knowledge and
deficient data. It is urgent to develop a new assessment model.

Bayesian network (BN), as an effective intelligent model
for coping with complex system problems, has been gradually
introduced into the risk assessment of natural disasters and
achieved successful applications. Straub and Kiureghian (2012)
constructed a BN-based assessment framework for natural
disaster risk, combining expert knowledge and objective data.
This framework realizes the probabilistic assessment of disaster
risk through node selection, structure learning, parameter
learning, and Bayesian inference. Aiming at the flood disaster,
Boutkhamouine et al. (2017) adopted BN learning algorithms
to identify the causal relationship among assessment indicators
from large-scale samples and constructed the risk assessment
model. Liu (2016) also applied the BN to flood disaster
assessment. He used naive BN and weighted BN for risk
modeling, respectively, and the assessment results were visualized
through the GIS platform. Gu (2017) proposed a risk reasoning
and prediction model based on the BN and disaster chain. The
influence relationship among factors in rainstorm disaster is
identified through BN learning, used for the risk assessment and
prediction of rainstorm disaster. In recent years, BN has been
preliminarily applied to the risk assessment of marine disaster
due to its advantages in the expression of complex relationships
and uncertainty reasoning, but correlational studies are limited:
Bai et al. (2014) attempted to combine BN with the FCE model to
carry out a risk assessment and zoning of storm surge disaster.
Through systematic analysis of risk-causing factors and risk-
bearing bodies of marine disasters, Li et al. (2018b) adopted the
BN and gray relational analysis to build a risk assessment model.
Then, Li et al. (2020; 2021a) also proposed the improved weighted
BN to mine the causal relationship of disaster factors and realized
probabilistic reasoning of marine disaster risk.

The core of BN-based assessment model is network learning,
including structure learning and parameter learning. Based on
objective data sets, the process can identify and express the causal
relationship among indicators through data mining algorithms.
Therefore, BN learning needs to be supported by large-scale
samples. However, natural disasters are extreme events with very
small occurring frequency and there are few observation samples,
which makes it difficult to learn the BN structure and parameters
from data sets (Li et al., 2020). In existing studies about BN-
based risk assessment, the network structure and parameters are
manually constructed by experts based on domain knowledge.
This modeling method is very subjective and one-sided without
the participation of objective data. Aiming at the problem of
data deficiencies, some scholars used sample augment methods
for BN learning, such as the Bootstrap algorithm (Huang, 2006)
and information diffusion theory (Zhang et al., 2013). The scarce
samples are expanded to sufficient samples, and then data mining
algorithms are adopted to learn the network. Sample expansion
can solve the problem of insufficient samples to a certain extent.
However, when the evaluation system is very complex and
contains a lot of indicators, the rationality and effectiveness of
expanded samples cannot be guaranteed. How to learn a reliable
BN with small sample?
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Nowadays, BN construction with expert knowledge
incorporated has become a hot topic of BN learning under
the condition of small samples. Zhang et al. (2014) adopted
DS evidence theory to integrate different expert opinions and
preliminarily identified the causal relationship among nodes,
reducing the search space of network structure and improving
the efficiency of BN learning. Aiming at the small sample
learning problem, Zeng et al. (2020) proposed a learning method
combining expert prior knowledge and monotonic constraints.
This method integrates the expert prior knowledge into the
process of parameter learning in the form of normal distribution
and further improves the accuracy and stability of BN learning
with a small sample set. Taking expert knowledge as constraint to
improve BN learning can effectively increase learning accuracy
and efficiency. We will combine knowledge and data to drive BN
learning and build the marine disaster assessment model in the
small sample environment.

To deal with the problem of scarce modeling samples in
marine disaster assessment, we integrate expert knowledge into
BN learning in a regular and quantitative manner. Based on
knowledge constraint and limited data, we introduce DS evidence
theory and genetic algorithm for BN learning, accomplishing
the assessment modeling under the small sample condition.
For the model verification, we apply the model to the risk
assessment of marine disasters in Shanghai. The remainder of
the paper is organized as follows: Section “Theory and Model”
presents the BN theory. Section “Bayesian Network-Based Risk
Modeling Driven by Knowledge and Data” explains the specific
techniques of the assessment model. The obtained results and
analysis are shown in section “Risk Assessment Experiment of
Marine Disaster.” Section “Conclusion” draws conclusions and
summarizes the main findings.

THEORY AND MODEL

In this section, we first introduce the basic theory of BN and
different BN learning methods. Then we design the technical
framework of the BN-based risk assessment model under the
small sample condition and give a brief elaboration of the
technical procedure.

Bayesian Network Theory
Bayesian Network (BN), whose theoretical foundations are graph
theory and probability theory, is not only a graphical expression
of causal relationship among variables, but also a probabilistic
reasoning technique for random variables (Pearl, 1995). It is a
quantitative causality graph and can be represented by a binary
B = < G, θ >:

• G = (V,E) represents a directed acyclic graph. V is a set of
nodes and each one represents a variable in the knowledge
domain. E is a set of arcs, and a directed arc represents the
causal dependency between two variables.
• θ is the network parameter, that is the conditional

probability distribution (CPD) of network nodes. θ

expresses the degree of mutual influence between two
nodes by conditional probability and presents quantitative
features in the knowledge domain.

Assume a set of variables V = (v1, · · · , vn). The
mathematical basis of BN is Bayes Theorem showed by
Eq. 1, which is also the core principle of Bayesian reasoning.

P(vi|vj) =
P(vi, vj)

P(vj)
=

P(vi) · P(vj|vi)
P(vj)

(1)

where: P(vi) is the prior probability, P(vj|vi) is the conditional
probability and P(vi|vj) is the posterior probability. With P(vi),
P(vi|vj) can be derived by Bayes Theorem under the relevant
condition P(vj|vi).

The joint probability distribution for all network nodes can
be derived from Eq. 1 under the conditional independence
assumption, namely, each child node is independent of non-
parent nodes under conditions given.

P(v1, v2, · · · vn) =
n∏

i = 1

P(vi|Pa(vi)) (2)

where: vi is network node; Pa(vi) is parent node of vi. Bayesian
inference is the calculation of probability distribution of a
set of query variables according to updated evidence of input
variables through Eq. 2.

Bayesian Network Learning and
Modeling
The BN modeling procedure mainly includes structure learning,
parameter learning, and probabilistic reasoning (Li and
Liu, 2019). This process is specifically described as: firstly,
mining causal relationship among nodes to construct the
network topology; then, learning the CPD of each node
to describe the strength of causality quantitatively; finally,
performing the network probabilistic inference based on the
structure and parameter.

BN learning is to find a network that can match the given
actual samples according to a certain measure, including the
learning of a directed acyclic graph and CPD of each node,
namely structure learning and parameter learning. BN learning
has two main ways: manual learning and automatic learning.
The former is to manually determine the network structure and
probability distribution based on the empirical knowledge of
experts. The latter is to automatically determine and optimize
structure and parameters from large-scale data sets by using
intelligent algorithms. The widely used automatic learning
algorithms for structure and parameter learning are shown below.

Structure Learning

Conditional Independence Test

Search-score Method

Maximum Aposteriori Probability algorithm

Maximum Likelihood Estimation algorithm

Expectation Maximization algorithm

SGS algorithm

Evolutionary Programming algorithm

K2 algorithm

K3 algorithm

Structural Expectation Maximization algorithm

Parameter Learning

As we have analyzed in the Introduction, it is impossible
to conduct BN modeling with the above intelligent algorithms
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because of the data sparsity of disaster assessment indicators. In
our research, we propose a new BN learning method driven by
expert knowledge and objective data. DS evidence theory and
genetic algorithm are introduced to optimize BN structure and
parameter learning under the small sample condition. We design
the BN-based risk assessment model for marine disasters and the
technical framework is shown as follows.

Indicator
Selection

Data
Processing

Structure
Learning

Parameter
Learning

Probabilistic
Reasoning

DS
Evidence

Genetic
Algorithm

Limited
Sample

Expert
Knowledge

Marine Disaster
Risk Analysis

Marine Disaster
Risk Level

Firstly, analyze the mechanism of action between the
disaster-pregnant environment and marine disaster risk, and
screen out the evaluation indicators that have a significant
effect on the risk. Then, preprocess the observation samples,
including normalization and discretization. Next, integrate
expert knowledge into BN learning. DS evidence theory is used
to optimize the search scoring method and learn the optimal
network structure. Genetic algorithm is used for the optimal
parameter inversion. Finally, the probabilistic reasoning of BN
is performed to evaluate the risk level of marine disaster. In the
next section, based on the practical application of marine disaster
risk assessment, the algorithms used in the BN-based assessment
technology will be explained and analyzed in detail.

BAYESIAN NETWORK-BASED RISK
MODELING DRIVEN BY KNOWLEDGE
AND DATA

In this section, our proposed assessment model is applied to
evaluate the monthly comprehensive risk of marine disasters in
Shanghai, which borders the Yangtze River and the East China
Sea. There are many kinds of marine disasters occurring in
Shanghai with high frequency and activity intensity. The marine
environment is complicated, and disaster risk has tremendous
uncertainty. The refined evaluation of overall marine risk is

of great significance for conducting hazard prevention and
mitigation, and ensuring economic-social development and city
operation. Next, specific algorithms and steps of each link of the
technical route are elaborated.

Assessment Indicator and Data Process
Assessment System
According to the risk mechanism analysis, International Decade
for Natural Disaster Reduction (IDNDR) makes a clear definition
of risk: the disaster risk consists of the hazard of risk-causing
factors and the vulnerability of risk-taking bodies. Hazard
refers to the danger level of the disaster-pregnant environment.
Vulnerability is generally interpreted as how easily an exposed
unit is harmed due to disturbance and its ability to deal with
disasters, which is related to exposure, emergency capacity and
robustness. We define the hazard of marine disaster risk as the
danger level of the oceanic and meteorological environment
that breeds marine disasters, including wind, currents, waves,
temperature, and so on; and define the vulnerability as the
susceptible degree to which population and properties are
exposed to marine disasters and the region’s emergency response
and recovery capabilities after a disaster.

It is well-known that marine disasters threatening the security
of Shanghai mainly include storm surges, ocean waves, sea-level
rise, and tsunamis. Considering the disaster-causing mechanism
of different types of marine disasters and referring to previous
indicator systems (Sun, 2010; Qi et al., 2019), we select five
representative environmental variables as hazard indicators and
four social factors as vulnerability indicators for assessment
modeling. The assessment system is constructed as follows.

Marine Disaster Risk

Hazard

Vulnerability

Urban Population Density d6

Marine Economic Density d7

Mariculture Area d8

Cultivated Area d9

Wind Speed d1

Wave Height d2

Flow Velocity d3

Sea Surface Height d4

Sea Surface Temperature d5

Casualties d10

Direct Economic Losses d11

As shown in the assessment system, hazard indicators include
wind speed, wave height, flow velocity, sea surface height,
and sea surface temperature. Vulnerability indicators include
urban population density, marine economic density, mariculture
area and cultivated area. All assessment indicators are benefit
indicators, that is, indicators are positively correlated with the
risk. In addition, the assessment target of our research is the
marine disaster risk. We use the casualties and direct economic
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losses caused by marine disasters to quantify the risk, and define
the following risk index, denoted as R:

R = w1 ∗ d10 + w2 ∗ d11 (3)

where: w1 and w2, respectively, represent the weight of casualties
and direct economic losses, which are determined according to
the actual situation. Referring to related research (Gao et al.,
2018), this paper sets w1 = 0.6 and w2 = 0.4.

Data Preprocessing
We aim to carry out a refined monthly assessment of marine
disaster risk, so indicator data used for the assessment modeling
must be monthly average data. The data of hazard indicators are
obtained from the monthly measured data sets (2000–2019) in
Shanghai station (National Data Center for Marine Sciences).1

However, there is almost no monthly data of vulnerability
indicators. Considering that the inter-monthly change of these
indicators is small, it is reasonable to use annual data instead of
monthly data. The data of vulnerability indicators are collected
from the < China Ocean Statistical Yearbook >, < China
Statistical Yearbook >, < China City Statistical Yearbook >,
and < China Finance Statistical Yearbook >. On account of
limited data recording and data storage, the time series of
vulnerability indicators are not long enough and discontinuous.
We look up the statistical yearbook from 2000 to 2019 and only
get 120 complete samples.

All indicator data need to be normalized and discretized. The
former is to eliminate the influence of dimension, and the latter
is to determine the assessment level so as to improve the training
efficiency of the model and facilitate decision-making analysis.
All indicators are normalized according to the maximin rule
shown by Eq. 4.

X =
x− xmin

xmax − xmin
(4)

where: X is the normalized value; x is the original value; xmax,
xmin denote maximum and minimum of original data.

Then we use the equal interval division method for data
discretization to determine the grade space of indicators. We take
the interval value as 0.2 and each indicator is divided into five
grades. The discrete samples are shown in Table 1.

The sample size is too small to directly use conventional
statistical analysis methods and data mining algorithms for
BN learning. In the following subsection, we express expert

1http://mds.nmdis.org.cn/

TABLE 1 | Discrete samples of assessment indicators.

Sample ID d1 d2 d3 d4 d5 d6 d7 d8 d9 R

1 3 2 5 5 1 2 2 3 4 3

2 3 2 5 4 1 3 3 4 1 3

3 1 3 5 1 2 1 3 2 3 2
.
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.

.
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.
.
.
.

.

.

.
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.

.

.

.
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.
.

120 4 5 1 2 2 3 2 4 3 4

knowledge in a regular manner, and then quantitatively integrate
it into the BN learning to propose a BN-based assessment
modeling technology under the small sample condition. In
the modeling process, there are 90 training samples and 30
testing samples.

Bayesian Network Structure Learning
Structure learning of BN can mine and identify the causal
relationship among indicators from objective data. Structure
learning with a small sample size is the research hotspot and
difficult subject of BN learning. At present, there are two main
methods for this problem (Li et al., 2018a): the first is to
expand limited data and increase the sample size, then use the
classic learning algorithms to learn the structure; the second
is to construct constraints by introducing expert experience or
domain knowledge to make up for the data deficient, improving
the efficiency and accuracy of structure learning. As the modeling
samples in our research are extremely scarce, the accuracy of the
expanded data is difficult to guarantee. We will adopt the second
method and propose an improved search-score method to learn
the network structure.

Structure Learning Algorithm With Knowledge Fusion
The basic idea of our proposed algorithm: Firstly, expert
knowledge is described in a regular manner, and a quantitative
constraint model is designed to express expert knowledge. Then
multi-expert knowledge is fused by the DS evidence theory and
incorporated into the structure scoring function. Finally, the
heuristic search algorithm is used to search for the optimal
network structure. Detailed steps are elaborated as follows.

(1) Connection probability distribution of structure

In order to integrate expert knowledge into the process of
structure learning, we adopt the constraint model proposed by Di
et al. (2017) to express the knowledge. The connection probability
distribution is defined as follows:

Assuming that a and b are two nodes of BN, the connection
state between a and b have three types: a points to b (a→ b); b
points to a (b→ a); and there is no connection between a and
b (a\b). The connection probability between a and b satisfies:

P
(
a→ b

)
+ P

(
b→ a

)
+ P

(
a\b

)
= 1 (5)

• Assuming that in a BN, the expert has no relevant
knowledge of the connection between nodes a and b, then
the connection probability obeys a uniform distribution:

P
(
a→ b

)
= P

(
b→ a

)
= P

(
a\b

)
=

1
3

(6)

• Assuming that the expert has a certain understanding of
the connection between a and b, for example, the expert
knowledge is P(a→ b) = 3/4. It is considered that the
probability of the remaining connection state still obeys a
uniform distribution:

P(b→ a) = P(a\b) = 1−
P(a→ b)

2
=

1
8

(7)
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According to the above rules, the connection probability
distribution of all nodes in a BN can be obtained. For
example, the connection probability distribution of three network
nodes is shown below.

(2) Multi-expert knowledge fusion based on DS evidence
theory

In order to reduce the subjectivity, one-sidedness, and
contingency of different experts, multiple experts are asked to
generate connection probability distributions, then DS evidence
theory is used to fuse the different prior knowledge to obtain
a synthetical network connection probability distribution. The
main idea of DS evidence theory: obtain the basic credibility
distribution of evidence, and then use the evidence combination
rules for knowledge fusion (Niu, 2016). The basic concepts of DS
evidence theory are as follows.

• Definition 1: Let be a recognition frame, if the set
function m : 22

→ [0, 1] satisfies m(8) = 0 and∑
A∈2 m(A) = 1, then m is the basic credibility

distribution on the recognition frame 2. If A ⊂ 2 and
A 6= 8, then m(A) is the basic credibility of proposition A.
If m(A) > 0, then A is called a focal element of evidence,
and the set of all focal elements is called the core.
• Definition 2: Let m1, m2 be the two basic credibility

distribution functions on the same recognition frame, and
their focal elements areA1,A2, · · · ,Ap and B1,B2, · · · ,Bq,
respectively. The combined result of m1 and m2 is
denoted as m1

⊕
m2, and the evidence combination rule is

expressed as shown by Eq. 8.

m(A) = m1
⊕

m2

=


1

1−K
∑

Ai∩Bj = A
m1(Ai)m2(Bj), A 6= 8

0, A = 8
(8)

where: i = 1, 2, · · · , p; j = 1, 2, · · · , q;
K =

∑
Ai∩Bj = 8 m1(Ai)m2(Bj). 1

1−K is planning factor.
When K = 1, the combination rule cannot be applied. For the
combination of multiple evidences, this rule can be used to fuse
them in sequence.

The key of DS evidence theory is the determination of
the credibility distribution function, also called the basic
probability distribution. According to the Definition 1 of
the basic distribution, in our research, the basic credibility
distribution is just the connection probability distribution.
Assuming that there are m experts, the credibility distribution
of the structure connection is shown in Table 2. Based on the
DS combination rule, the connection probability distribution

TABLE 2 | Credibility distribution of structure connection with m experts.

a→ b b→ a a\b Uncertainty

Expert 1 m1(A1) m1(A2) m1(A3) θ1

Expert 2 m2(A1) m2(A2) m2(A3) θ2

. . . . . . . . . . . . . . .

Expert m mk(A1) mk(A2) mk(A3) θk

DS fusion m(A1) m(A2) m(A3) θ

integrated with multi-expert knowledge can be obtained. To deal
with the evidence conflict, we adopt the correction factor-based
combination rule. First determine the uncertainty degree of each
evidence, and then conduct evidence combination. The flow of
the multi-expert knowledge fusion algorithm for BN structure
learning is shown in Figure 1.

(3) Structure learning with improved scoring function

BIC score is the most common scoring function in structure
learning. We use the structural constraint obtained through
DS evidence theory to optimize the BIC score. The structural
constraint is added into the BIC scoring function with a priori
evidence of local structure. The improved scoring function
combined with expert knowledge is expressed by Eq. 9.

NewBIC =

n∑
i = 1

 qi∑
j = 1

ri∑
k = 1

mijklog2
mijk

mij∗
−

qi(ri − 1)

2
log2m

+mlog2

(
1+

ϕe
m

)]
(9)

where: m is the sample size. e is the connection probability of
the arc based on the fusion of multi-expert knowledge. ϕ is the
tuning function.

Based on the improved BIC score, the greedy search algorithm
is used to search for the optimal structure. The basic thought
of the GS algorithm: start from an initial structure, perform arc
addition, arc reduction, and arc rotation on the initial structure
and score it after each operation. If the score is increased, the
operation is retained (Chickering et al., 2004). The process is
iterated until the network score is optimal. The specific algorithm
flow is as follows.

GS Algorithm with New BIC Score
Input: V is variable set, D is complete data set of V ,

G0 is an initial structure
Output: G is the optimal structure
Step 1: Determine the connection probability

distribution based on expert knowledge;
Step 2: Build the prior constraint by DS combination

rule and new score function;
Step 3: Score the initial network structure G0 ≡

old_score;
Step 4: Perform arc addition, arc reduction and arc

rotation,
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FIGURE 1 | Knowledge fusion for BN structure learning.

Score the new network structure G′ ≡
temp_score;
If old_score > temp_score
old_score→ new_score and keep the
corresponding arc operation;
Else
temp_score→ new_score and discard the
corresponding arc operation;
End if

Step 5: If new_score→max
Return G≡G′

Bayesian Network Structure Learning for Marine
Disaster Assessment
Simulation Experiment
In order to verify the effectiveness of the proposed structure
learning algorithm, the famous Asia network (eight nodes and
eight directed arcs) is used as a simulation model for experiments
and compared with the classic K2 algorithm. Hamming distance
is used to measure the quality of learning structures (Li et al.,
2018a). The smaller the Hamming distance, the more accurate
the structure learning.

Hamming distance = Missing arcs+ Inverted arcs

+ Extra arcs

Ask three experts to give the connection probability between
each two nodes based on the professional knowledge, and use
DS evidence theory to fuse the prior knowledge to obtain the
structural connection probability distribution. For the sake of
space, this paper only lists the fusion process of the two nodes
“Smoking and Bronch,” as shown in Table 3. Figure 2A shows the
connection probability distribution based on expert knowledge,
which is added to the BIC scoring function. Then search for the
optimal network based on the improved scoring function.

Figure 2B shows the structure learning results of the two
algorithms with different sample sizes. It can be seen that
when the sample size is less than 1,700, our proposed structure
learning algorithm is better than the K2 algorithm, especially
when the sample size is less than 400, the advantage of our

TABLE 3 | Expert knowledge fusion of nodes “Smoking and Bronch.”

Smoking→ Bronch→ Smoking/ Uncertainty

Bronch Smoking Bronch

Expert 1 0.85 0.15 0 0.9

Expert 2 0.78 0.12 0.1 0.8

Expert 3 0.83 0.1 0.07 0.6

DS fusion 0.827 0.112 0.061 \

algorithm is more obvious. Comparative experiments show that
when modeling samples are very scarce, reasonable integration
with expert knowledge can effectively improve the accuracy of
structure learning.

Bayesian Network Structure for Marine Disaster Assessment
Following the same steps as above, the DS evidence theory is
used to fuse the professional knowledge of three experts to obtain
the connection probability distribution of the marine disaster
network. Then, based on the knowledge-based constraint, the
greedy algorithm is adopted to search for the optimal structure.
Table 4 shows the expert knowledge fusion process of nodes d1
and d2. Figure 3A shows the connection probability distribution
based on expert knowledge, and Figure 3B shows the optimal
network structure.

Bayesian Network Parameter Learning
BN parameter learning is to learn the CPD of each node on
the basis of the complete structure. Sparse data of vulnerability
indicators in marine disaster assessment makes traditional
parameter learning algorithms, such as MAP and MLE, difficult
to implement. Aiming at parameter learning with a small
sample size, we have proposed a GA-based parameter inversion
algorithm (GA-CPD), and the effectiveness of this algorithm has
been verified through simulation experiments (Li et al., 2018b). In
this research, we still use this algorithm for parameter learning.

GA-Based Parameter Inversion Algorithm Algorithm
GA-CPD algorithm adopt the principle of optimality. The error
function based on limited sample and expert knowledge is
constructed and the genetic algorithm is used to search the
optimal network parameters. This algorithm does not need the
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FIGURE 2 | Structure learning of Asia network. (A) Connection probability distribution. (B) Comparison of structure learning.

support of large-scale data sets. The learning efficiency is less
affected by the degree of data missing and the complexity of
network, and the convergence speed is faster. The algorithm flow
is elaborated as follows.

GA-CPD algorithm
Input: Initial search space of CPD; Error function;

Prior probability
Output: Optimal CPD
Step 1: Analyze historical samples to obtain the prior

probability distribution of input nodes and the
posterior probability distribution of output
nodes;

Step 2: Create initial population of CPD based on
expert knowledge;

Step 3: Construct the fitness function;
Step 4: Perform genetic operations such as crossover

and mutation to expand population diversity;
Step 5: Search and select according to fitness function;
Step 6: Judge the termination condition, and the

optimal CPD of the node to be sought is
output.

The key of GA-CPD algorithm is the construction of the
fitness function, which determines the accuracy and efficiency
of parameter search. For BN parameter learning, we define the
reasoning error function as the fitness function. The error is the
difference between the actual and reasoning posterior probability
of the output node, as shown by Eq. 10.

f =
M∑

j = 1

∣∣∣P (Vi = xji
)
− P0

(
Vi = xji

)∣∣∣ (10)

where: M is the number of states taken by the node, P
(
Vi = xji

)
is the reasoning posterior probability of node i taking state j,

TABLE 4 | Expert knowledge fusion of nodes d1 and d2.

d1 → d2 d2 → d1 d1/d2 Uncertainty

Expert 1 0.89 0.0007 0.1 0.9

Expert 2 0.83 0 0.08 0.9

Expert 3 0.85 0.004 0.07 0.5

DS fusion 0.909 0.002 0.089 \

and P0

(
Vi = xji

)
is the actual posterior probability of node i

taking state j.

Bayesian Network Parameter Learning for Marine
Disaster Assessment
We learn the CPD of network nodes according to the above steps
based on limited samples and expert knowledge. Firstly, count
the frequency distribution of each state of each node from the
existing samples, as shown in Figure 4.

Secondly, determine search parameters and search space of
the genetic algorithm. For the sake of space, take the probability
distribution P(d2|d1) between nodes d1 and d2 as an example.
The search parameter settings are shown in Table 5. The initial
range of the parameter is determined based on expert knowledge,
thus the rationality of the search is ensured by introducing
expert knowledge.

Finally, based on the posterior probability distribution of the
evaluation target, the error function is constructed as shown by
Eq. 11.

f = |P(R = 1)− P0(R = 1)| + |P(R = 2)− P0(R = 2)|

+ |P(R = 3)− P0( = 3)| + |P(R = 4)− P0(R = 4)|

+ |P(R = 5)− P0(R = 5)| (11)

Input the prior probability of hazard indicators and vulnerability
indicators, use the joint tree reasoning mechanism to perform
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FIGURE 3 | Structure learning of BN Structure for marine disaster assessment. (A) Connection probability distribution. (B) Optimal network structure.

FIGURE 4 | Frequency distribution of all states of each node.

the probabilistic reasoning. Based on the reasoning error,
the genetic algorithm is used to search for the optimal
CPD of each network node. Take CPD P(d2|d1) between
nodes d1 and d2 for example. The convergence curve of
the fitness function is displayed by Figure 5, and Table 6
lists the optimal probability distribution. At this point, it’s
completed to build the BN-based assessment model for
marine disaster.

RISK ASSESSMENT EXPERIMENT OF
MARINE DISASTER

In section “Bayesian Network-Based Risk Modeling Driven by
Knowledge and Data,” on the basis of limited samples, we have
combined expert knowledge into BN learning and constructed a
BN-based risk assessment model under the condition of extreme
shortage of samples. Next, we will input testing samples of hazard
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TABLE 5 | Initial range of search parameters.

P(d2|d1) d2 = 1 d2 = 2 d2 = 3 d2 = 4 d2 = 5

d1 = 1 x1 ∈ [0, 0.6] x2 ∈ [0, 0.4] x3 ∈ [0, 0.6] x4 ∈ [0, 0.5] 1-x1 − x2 − x1 − x2

d1 = 2 y1 ∈ [0, 0.3] y2 ∈ [0, 0.6] y3 ∈ [0, 0.5] y4 ∈ [0, 0.3] 1-y1 − y2 − y3 − y4

d1 = 3 z1 ∈ [0, 0.4] z2 ∈ [0, 0.4] z3 ∈ [0, 0.3] z4 ∈ [0, 0.5] 1-z1 − z2 − z3 − z4

d1 = 4 u1 ∈ [0, 0.3] u2 ∈ [0, 0.5] u3 ∈ [0, 0.3] u4 ∈ [0, 0.3] 1-u1 − u2 − u3 − u4

d1 = 5 v1 ∈ [0, 0.5] v2 ∈ [0, 0.3] v3 ∈ [0, 0.4] v4 ∈ [0, 0.3] 1-v1 − v2 − v3 − v4

FIGURE 5 | The convergence curve of the fitness function.

TABLE 6 | The optimal CPD P(d2|d1).

P(d2|d1) d2 = 1 d2 = 2 d2 = 3 d2 = 4 d2 = 5

d1 = 1 0.6637 0.2438 0.0024 0.0039 0.0464

d1 = 2 0.2124 0.5962 0.1125 0.0582 0.0526

d1 = 3 0.1035 0.1214 0.5948 0.4215 0.1417

d1 = 4 0.0053 0.0034 0.2356 0.3037 0.3564

d1 = 5 0.0151 0.0352 0.0547 0.2127 0.4029

indicators and vulnerability indicators to evaluate the risk level
of marine disaster through probabilistic reasoning, in order to
verify the effectiveness of the risk assessment technology with
small sample size.

Probabilistic Assessment
Based on the information of assessment indicators, the
comprehensive risk of marine disaster is evaluated by
probabilistic reasoning. The reasoning algorithm of BN includes
the exact reasoning algorithm and approximate reasoning
algorithm. Considering the small scale of network structure in
our research, we choose the joint tree reasoning mechanism,
one of the most widely used exact reasoning algorithms, to
calculate the posterior probability distribution of the node R.

We input the testing samples and the risk level is determined
according to the maximum probability principle, as shown
in Table 7. Take the first sample as example, the probability
distribution of target node R is [level 1 = 0.912, level 2 = 0.055,
level 3 = 0.033, level 4 = 0, level 5 = 0]. “level 1” has the
highest probability, so the risk level of marine disaster is judged
as “level 1.”

The evaluation results are expressed in the posterior
probability distribution, clearly showing the probabilities of
different risk levels. The assessment results display richer
information and expresses the uncertainty of disaster risk.
Compared with the actual risk level, the assessment accuracy of
our proposed assessment model is 91.03%, which can effectively
evaluate the comprehensive risk of marine disaster under the
small sample condition.

Comparison Experiment
In the marine disaster assessment, associated samples between
disaster losses and environmental conditions are deficient.
It is hard to construct a scientific and accurate BN with
classic structure and parameter learning algorithms directly,
which has been verified by simulation experiments. To
further discuss the performance of our assessment model
and verify its effectiveness under the conditions of limited
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TABLE 7 | Posterior probability distribution and risk level of marine disaster.

Testing sample State 1 State 2 State 3 State 4 State 5 Assessing level True level

1 0.912 0.055 0.033 0 0 1 1

2 0 0 0.051 0.312 0.637 5 5

3 0 0.045 0.109 0.683 0.63 4 4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

30 0.09 0.763 0.126 0.021 0 2 2

samples and uncertain knowledge, we design multiple sets of
comparative experiments.

Comparison With Other Intelligent Assessment
Models
The BN-based assessment model is an intelligent model and
we focus on comparing it with other intelligent assessment
models. At present, BPNN and SVM have achieved successful
applications in the field of risk assessment (Feng and Liu, 2017;
Li et al., 2021a). BPNN can better deal with the non-linear
relationship among complex indicators. SVM is a non-linear
modeling method that is suitable for solving small samples and
high dimension modeling problems. Based on the same modeling
samples, we also use BPNN and SVM to evaluate the marine
disaster risk in Shanghai. The parameter settings of BPNN and
SVM are shown as follows.

Model Parameter Setting
BPNN Activation function is “RELU”;

Number of neurons in the input layer is 9,
hidden layer is 10, output layer is 4;
Learning rate is 0.1;
The remaining parameters are left with the
default values.

SVM The kernel function is “RBF”;
The penalty coefficient and small positive
number are set at 15 and 0.001;
The remaining parameters are left with the
default values.

Figure 6 displays the disaster assessment results of the three
models. The assessment accuracy of BPNN and SVM are 61.34
and 70.67%, respectively, which are significantly lower than the
accuracy of BN (91.03%). More importantly, BPNN and SVM are
ML algorithms with deterministic outputs, and the assessment
results are single certain values, which cannot handle and express
the uncertainty in disaster assessment. In contrast, BN not only
obtains high accuracy in assessment with mining the causal
relationship among indicators, but also can deal with uncertainty
through probabilistic reasoning.

To further test the effectiveness of our proposed technique
for small sample modeling, we use three models to conduct
risk assessment experiments based on different training sample
sizes (sample sizes from 10 to 90). Figure 7 shows the
assessment accuracy with the testing samples. It can be seen
that when the training sample size is small, the accuracy of

our proposed model is better than that of BPNN and SVM,
and the sample size has less impact on the BN-based model.
Especially, when the training samples are extremely scarce
(<30), the proposed model can still maintain a high evaluation
accuracy rate (>60%), while the other two models are under-
performing (<30%).

In conclusion, ML-based intelligent assessment models
usually require big data to train the mapping relation between
input and output. The mapping relation is surely unreliable
if there is just small sample. In our proposed model,
expert knowledge is regularly expressed and quantitatively
incorporated into BN learning to make up for the information
loss. The combination of data and knowledge results in a
better accuracy.

Generalization Verification
Generalization ability is usually known in the ML community,
used to describe the algorithm’s adaptive capacity to new
samples. In order to test the generality of our proposed model
for new scenes, we conducted the risk assessment of marine
disaster in five other coastal cities: Dalian, Qingdao, Xiamen,
Guangzhou, and Haikou. In the risk-modeling process, there are
still 90 training samples and 30 testing samples. The parameter
settings of the three models remain unchanged. The assessment
results are shown in Figure 8. For different cities, the accuracy
of the BN-based assessment model is higher than that of
BPNN and SVM, indicating that the proposed model has a
better stability.

CONCLUSION

Risk management of marine disasters is crucial to ocean
exploitation and utilization. With climate change, marine
disasters are occurring more frequently and risk management of
ocean is urgently needed so as to provide solutions for tackling
climate impacts and marine disasters. Our research is focused on
the risk assessment of marine disasters, which can provide basis
for the development of nature-based solutions, such as hazard
prevention and mitigation.

On one hand, the marine disaster is a complicated system
consisting of a number of factors, which can influence each other
and are strongly coupled together. The interaction in the disaster
system has strong non-linearity and uncertainty. On the other
hand, marine disasters are extreme natural phenomena, which
are small-probability events with very small occurring frequency,
so there are few observation samples. BN is a powerful model for
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FIGURE 6 | Assessment results of BN, BPNN and SVM.

FIGURE 7 | Assessment accuracy of three models with different training samples.

FIGURE 8 | Risk assessment of different coastal cities.

dealing with uncertain and complex relationships and has been
widely used in the field of risk evaluation and decision-making.
But BN modeling needs to be supported by big data, which
contradicts the small sample size in marine disaster assessment.

Aiming at this problem, we propose a new BN learning method
driven by a hybrid of knowledge and data, and apply it to marine
disaster risk assessment, expanding the application of BN in small
sample modeling.
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For BN structure learning, the expert knowledge is
expressed quantitatively in the form of network connection
probability, and DS evidence theory is used to fuse the
multi-expert knowledge, building the prior constraint for
structure learning. For parameter learning, by introducing
the principle of optimality, we establish the error function
based on limited samples and expert knowledge, and
adopt the genetic algorithm to search the optimal network
parameters. Expert knowledge is regularly expressed and
quantitatively integrated into BN learning, achieving the
risk assessment modeling under the condition of insufficient
samples. Comparative experiments show that the proposed
model has better accuracy and stability than BPNN
and SVM.

However, the DS evidence combination rule used in our
model is relatively simple and the reliability of different
evidence is not taken into full consideration. We will adopt
a more sensible combination rule for knowledge fusion in
the next step. Besides, we will also improve the search
algorithm in BN structure learning to avoid the remaining
local optima.
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