
Frontiers in Marine Science | www.frontiers

Edited by:
Catharina Alves-de-Souza,
University of North Carolina
Wilmington, United States

Reviewed by:
Chih-Ching Chung,

National Taiwan Ocean University,
Taiwan

Olga Carnicer,
Dalhousie University, Canada

Heather McNair,
University of Rhode Island,

United States
Laure Guillou,

Centre National de la Recherche
Scientifique (CNRS), France

*Correspondence:
Adrian Marchetti

amarchetti@unc.edu

†Present address:
Erika F. Neave,

School of Biological and Environmental
Sciences, Liverpool John Moores

University, Liverpool, United Kingdom
and Department of Life Sciences,
Natural History Museum, London,

United Kingdom

Specialty section:
This article was submitted to

Marine Biology,
a section of the journal

Frontiers in Marine Science

Received: 09 November 2021
Accepted: 13 April 2022
Published: 18 May 2022

Citation:
Jang SH, Lim P, Torano O, Neave EF,

Seim H and Marchetti A (2022)
Protistan Communities Within the
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The Galápagos Archipelago is a globally significant biodiversity hotspot. However,
compared to the relatively well-known megafauna, the distribution and ecological
significance of marine protists in this system are poorly understood. To gain an
understanding of the protistan assemblages across trophic modes, an intensive
oceanographic survey was conducted in the Galápagos Marine Reserve (GMR) in
October of 2018. The Equatorial Undercurrent (EUC)-influenced region had higher
chlorophyll-a (Chl-a) concentrations than those of the eastern regions of the
archipelago, along with higher abundances of protistan grazers. Specifically,
proportions of autotrophic and potentially mixotrophic dinoflagellates were higher in the
EUC, whereas in the eastern regions, heterotrophic dinoflagellates and chlorophytes
dominated. Taxonomic composition and biochemical indicators suggested proportions of
micrograzers and their associated heterotrophic biomass was higher in the oligotrophic,
low Chl-a regions in the east. We also report observations from a dinoflagellate bloom in
the western archipelago, which was heavily influenced by upwelling of the EUC. The red
tide-forming dinoflagellate Scrippsiella lachrymosa was highly detected through light
microscopy and DNA amplicon sequencing. In addition, the heterotrophic dinoflagellate
Polykrikos kofoidii was detected and, based on cell densities observed in this study and
grazing rates obtained from the literature, estimated to potentially graze up to 62% of S.
lachrymosa bloom population. Our findings thus provide new insights into the
composition of micrograzers and their potential roles in structuring protistan
communities in the Galápagos Archipelago.

Keywords: upwelling, red tide, bloom, heterotrophic protist, microzooplankton, metabarcoding, trophic mode
INTRODUCTION

The Galápagos Archipelago comprises a group of volcanic islands in the Equatorial Pacific Ocean
located roughly 1,000 km from mainland Ecuador. To protect the archipelago’s marine biodiversity,
the Galápagos Marine Reserve (GMR) was created in 1998 and was declared a World Heritage Site
in 2001. Despite the unique global value of this marine ecosystem, there is still a lack of knowledge,
particularly of its planktonic communities, which provide the majority of primary productivity to
in.org May 2022 | Volume 9 | Article 8119791
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this system. The source waters that supply nutrients to the
euphotic zone of the Galápagos Archipelago are influenced by
a number of physical processes (Feldman, 1986). Most
importantly, the upwelling by the eastward flowing Equatorial
Undercurrent (EUC) is the fundamental origin for the supply of
nutrients in this region (Feldman, 1986). Based on remote
sensing data, the nutrient-replete EUC causes an increase of
Chl-a concentrations associated with increased phytoplankton
biomass, especially in the western side of the archipelago that is
directly affected by the EUC upwelling (Schaeffer et al., 2008;
Kislik et al., 2017). Also, the strength of the EUC upwelling in the
GMR is known to be influenced by El Niño Southern Oscillation
(ENSO) events (Sweet et al., 2007).

Little is known about upwelling effects on the structure and
function of protozoan (micrograzers) communities in the
Galápagos Archipelago, potentially impacting food availability for
higher trophic levels. Identifying protozoan species can be an
arduous task due to ingested prey material causing morphological
variations, cell fragility, and relatively poorly-known taxonomic
information (Sherr andSherr, 1993; Anderson andMenden-Deuer,
2017). However, distinguishing protists, particularly whether they
are mixotrophic or heterotrophic, is essential since they link
planktonic food webs through phytoplankton and metazoans
(Stoecker and Capuzzo, 1990; Tillmann, 2004; Buitenhuis et al.,
2010). Inparticular, dinoflagellates, which commonly cause blooms
in waters around the globe, are a protistan group with a variety of
trophic modes (Stoecker, 1999; Jeong et al., 2010); thus, the
population dynamics of species are sometimes completely
different based on the functional characteristics of their trophic
modes. Also, understanding trophic modes of micrograzers in
marine food webs is important in that it is estimated, on average,
60% of total primary production is consumed by phagotrophic
protists, followed by grazing bymesozooplankton or sinking to the
seafloor sediment, fueling the biological carbon pump (Calbet and
Landry, 2004; Schmoker et al., 2013).

The DNA metabarcoding method has been used to
investigate composition, relative abundance, and distribution
of eukaryotic plankton taxonomic communities by sequencing
a short DNA region at an affordable cost (Cuvelier et al., 2010; De
Vargas et al., 2015; Abad et al., 2016; Schroeder et al., 2020).
Furthermore, the high sensitivity of this technique is capable of
detecting rare taxa and identifying cryptic species and those
overlooked by conventional microscopy methods because they
are either too fragile or too small (Cuvelier et al., 2010; Abad
et al., 2016). In this study, we used DNA metabarcoding
complemented by microscopic examination of the protistan
community in waters of the Galápagos Archipelago. There
were two main objectives of this study. First, to investigate
oceanographic variables and their influence on spatial patterns
and trophic structure of planktonic protistan assemblages in the
Galápagos Archipelago. This includes the environmental
conditions and potential controls of a red tide bloom
opportunistically sampled in Elizabeth Bay on the west side of
Isabela Island. Second, to understand the abundance and
distribution of micrograzers in protistan communities in
this region.
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MATERIALS AND METHODS

Study Area and Sample Collection
The research cruise was conducted throughout the Galápagos
Archipelago, including sites adjacent to most of its main inhabited
islands of Isabela, Santa Crúz, San Cristobal, and Floreana, within an
area from1°N to 2°S and 92– 89°W fromSeptember 30th toOctober
15th of 2018 (Figure 1). CTD profiles were obtained at 29 sites; at 23
of these, seawater was collected for biological and chemical
measurements. The survey period fell within a typically cool and
dry season driven by southeasterly tradewinds resulting in upwelling
(Atwood and Sachs, 2014). The surveyed sites were grouped into two
distinct regions based on the observed data: 1) the EUC-influenced
region and 2) an eastern region, according to the water mass
characteristics (i.e., water-column temperature and nutrient
profiles, Supplementary Table 1). Exceptionally, St. 14, located in
the partially collapsed caldera, which is now Darwin Bay, off the
Island ofGenovesa in the northeastern region of the archipelago, had
water-column characteristics distinct from the surrounding waters
and was therefore not included in the analysis. Additionally, we
investigated a red tide bloom event located in the western part of
Isabella Island in Elizabeth Bay (St. RT).

Temperature, salinity, and photosynthetic active radiation
(PAR) profiles were obtained by CTD (SeaBird SBE 19plus)
casts to approximately 100 m depth. Based on the measured
PAR, discrete water-column samples from four light depths
within the euphotic zone at ∼50%, 30%, 10%, and 1% of
incident irradiances (Io) were collected using 10 L Niskin
bottles. Chlorophyll-a (Chl-a), dissolved and particulate
nutrients, 13C-DIC primary productivity, and 15N-NO3 uptake
rates were analyzed using the collected waters. Samples for 18S
rRNA gene amplicon analyses and cell counts preserved in
Lugol’s iodine solution (final concentration of 2%) were
collected at the 50% Io depth of each site where discrete water
samples were collected. Processed DNA filters and samples were
frozen at -20°C and the Lugol’s solution fixed plankton samples
were stored in the dark at 4°C until further analysis.

Analyses of the Collected Samples and
Seawater Properties
To distinguish between contributions of small-sized
phytoplankton such as flagellates, including picoeukaryotes, and
relatively large-sized phytoplankton such as diatoms and most
dinoflagellates, size-fractionated (<5 mm and ≥5 mm) Chl-a
samples, as a proxy for phytoplankton biomass, were obtained
from 400 mL of seawater passed through a filter cascade
containing a 5-mm polycarbonate filter (47 mm, Millipore,
Burlington, MA, USA) by gravity filtration and 0.7-mm nominal
porosity glass fiber filter (25 mm, Whatman GF/F) under gentle
vacuum pressure (< 100 mmHg). Chl-a extraction was performed
using 90% acetone and incubated in the dark at -20°C for 24 h.
Raw fluorescence values of the Chl-a extracts were measured by
fluorometry with a Turner Designs 10-AU fluorometer according
to the methods of Parsons et al. (1984).

Dissolved nutrient (NO−
3 ) + (NO−

2 ), (PO
3−
4 )and Si[OH]4

concentrations were measured using a OI Analytical Flow
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Solutions IV auto-analyzer (Parsons et al., 1984). A total of 15
mL of seawater for each sample was filtered through a GF/F
filter (25 mm), using acid-washed syringes into a polypropylene
FalconTM tube. Nutrients were measured by the Wetlands
Biogeochemistry Analytical Services at Louisiana State
University with detection limits of 0.09 mM for (NO−

3 ) +
(NO−

2 ), 0:02 mM for (PO3−
4 ), and 0.02 mM for Si(OH)4.

Reference standards for dissolved nutrients in seawater were
run for quality control.

Size-fractionated (<5 mm and ≥5 mm) particulate organic carbon
(POC), particulate organic nitrogen (PON), DIC uptake rates and
NO−

3 uptake rates were obtained by spiking 618 mL of subsamples
with 120 mmol L-1 NaH13CO3 and 0.5 mmol L-1 Na15NO3 and
incubated for 24h in flow-through transparent incubators covered
with neutral density screening as according to the light intensity
observed at the depth the samples were collected (Slawyk et al.,
1977). Stable isotope additions were meant to target additions of
10% of ambient concentrations assuming DIC concentrations of
1200 mmol L-1 and average NO−

3 concentrations of 5 mmol L-1. At
sites where sampled depths had NO−

3 concentrations below 5 mmol
L-1, uptake rates may have been stimulated by the isotope addition
and therefore would reflect potential rather than absolute uptake
rates. Following incubation, samples were filtered through a filter
cascade containing a 5 mm polycarbonate filter (47 mm, Millipore,
Burlington, MA, USA) by gravity filtration and a pre-combusted
(450°C for 5 h) GF/F filter (25 mm) by gentle vacuum (<100
mmHg). Particulates collected on the 5 mm filter were then rinsed
onto an additional pre-combusted GF/F filter (25 mm) using an
artificial saline solution. Filters were stored at -20°C until laboratory
analysis. In the lab, filters were dried in an oven at 60°C for 24 h and
pelletized using tin squares (Elemental Microanalysis). POC, PON,
and atom % of 15N and 13C were then quantified from this filter
Frontiers in Marine Science | www.frontiersin.org 3
using an elemental analyzer paired with an isotope ratio mass
spectrometer (EA-IRMS) at the UC Davis Stable Isotope Facility.
Dissolved nitrate concentrations, PON, POC and 15N and 13C atom
percentages were used to calculate volumetric NO−

3 uptake and DIC
uptake rates of the different size fractions as according to Dugdale
and Goering (1967).

The depths of the mixed and subthermocline layers were
determined using temperature and salinity profiles. SeaBird’s
SeaSoft software was used to correct all CTD casts. The sw pden()
function from the Mixing Oceanographic toolbox v 1.8.0.0 in
MATLAB was used to calculate potential density (R2017b). A
consistent density structure was observed, made up of an almost
uniform density surface and deep layer separated by a density
gradient (interfacial layer) that was typically tens of meters thick.
The depth of the mixed layer was determined as the depth at
which the density change from the surface was > 0.35 kg m-3. The
depth of the subthermocline layer (the top of the deep layer of
uniform density) was calculated by measuring the depth at which
the density change from the bottom of the cast was > 0.2 kg m-3.
The detailed process for calculating seawater properties from
CTD cast measurements was performed according to protocols
used previously by Neave et al. (2021).

Satellite Data
Satellite-derived sea surface temperature (°C), Chl-a (mg L-1),
and POC (mmol L-1) data on a 0.025° grid were obtained
from the MODerate-resolution Imaging Spectroradiometer
(MODIS) on board the National Aeronautics and Space
Agency Aqua satellite platform. Daily averaged sea surface
temperature, Chl-a, and POC were collected to reflect
hydrologic conditions of the Galápagos Archipelago during the
survey period. These data were downloaded from the NOAA
FIGURE 1 | Locations of sampling sites in the Galápagos Archipelago. The major oceanographic currents bringing primarily cold (blue) and warm (pink) waters to
the region are indicated. Red circles indicate the Equatorial undercurrent upwelling (EUC) sites, and blue circles indicate the eastern region sites. The map is overlayed
on NOAA bathymetry (https://maps.ngdc.noaa.gov/viewers/bathymetry/). RT indicates the red tide bloom site.
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CoastWatch Browser and are presented using Ocean Data View
software (Schlitzer, 2013).

DNA Extraction, Amplicon Sequencing,
and Sequence Analysis
Four liters of seawater was filtered under gentle vacuum pressure
(< 100 mmHg) through 0.45-µm NES membrane filters (Pall, 47
mm). For DNA extractions, filters were extracted using the
Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instruction with an initial
bead beating step. Extracted DNA was quantified on a Qubit
using the Qubit DNA Assay Kit (Invitrogen, NY, USA) and
stored at -20°C prior to polymerase chain reaction (PCR).

DNA was diluted 1:10 and amplified with PCR primers
(Forward: 5′-CCAGCA(G/C)C(C/T)GCGGTAATTCC-3′,
Reverse: 5′-ACTTTCGTTCTTGAT-3′) targeted for the V4
region of the 18S rRNA gene (Lin et al., 2017). All primers
used in the PCR include universal linker primer sequences,
which were used to link to Illumina adapters and barcodes in
the downstream library preparation process (Neave et al., 2021).
Samples were amplified in triplicate using half reactions of Takara
hot start Ex-Taq buffer with 2 mL dNTPs, 2.5 mL of 10X buffer, 0.4
mL of forward and reverse primers, 0.125 mL of Taq, 2 mL of DNA
template, and 17.6 mL of Milli-Q water to bring the reaction volume
to 25 mL. The following thermocycler settings were used with a 9902
Veriti 96-well thermal cycler (Thermo Fisher Scientific): 1 cycle of
98°C for 1 min, 4 cycles 94°C for 30 s, 45°C for 45 s, 72°C for 1 min,
30 cycles of 94°C for 30 s, 57°C for 45 s, 72°C for 1 min, 1 cycle of
72°C for 2 min. The amplicon was then confirmed by 1% agarose
gel electrophoresis to ensure a clear band was formed. Products
were cleaned with the Qiaquick PCR Purification Kit (Qiagen,
Hilden, Germany). The purified products from 23 sites were
submitted for sequencing at Genewiz Inc (South Plainfield, NJ)
on a single lane of Illumina MiSeq platform.

The sequencing output was demultiplexed using tools from
QIIME 1.9.1 and Cutadapt 1.18 then analyzed using the software
pipeline QIIME 2.0 (Martin, 2011; Bolyen et al., 2019). Reads
were trimmed, assembled and quality controlled. De-multiplexed
paired-end reads were denoised, paired ends were joined, and
chimeras were removed using DADA2 (Callahan et al., 2016).
Joined sequences were clustered into amplicon sequence variants
(ASVs). Taxonomic assignment of the clustered ASVs was
performed against the SILVA 132 database using default
parameters (Quast et al., 2012). ASVs classified as Metazoans
were removed from the analyses. For the functional classification
in relation to trophic modes, the ASVs of dinoflagellates were
assigned at the species/genus levels and those of other protists
generally at order/class levels according to the references. If the
dinoflagellate genus is known to have at least one mixotrophic
species, the genus was classified as a potential mixotroph.
The various ASVs belonging to Syndiniales were categorized
by several groups.

To further identify species of the dinoflagellate genus
Scrippsiella, which dominated the red tide in Elizabeth Bay, at
the species level, single cells from the Lugol’s solution fixed sample
stored at 4°C were isolated in a 0.2-mL PCR tube containing 15 mL
of Milli-Q water. The tube was frozen at -80°C for 3 min to
Frontiers in Marine Science | www.frontiersin.org 4
rupture the cell membranes and subsequently thawed. PCR
amplification was conducted using 5 mL of 10X Ex Taq buffer, 4
mL of 2.5 mM dNTP mix, 0.25 mL of 5 U/mL ExTaq polymerase
(RR006A, Takara Bio, Madison, WI), 0.2 mM of primers for the
ITS region of rDNA; ITSF2 and LSU500R (Litaker et al., 2003).
The PCR protocol included one cycle of 95°C for 5 min, 38 cycles
of 95°C for 40 s, 59°C for 2 min and 72°C for 1 min, with one cycle
of 72°C for 5 min. Products containing a clear single band were
then cleaned with the Qiaquick PCR Purification Kit (Qiagen,
Hilden, Germany). For phylogenetic analysis, multiple sequences
including two of the Galápagos’ Scrippsiella were aligned using
native implementation of ClustalW inMEGA v.4.0 (Tamura et al.,
2007) and then refined manually. The analysis was inferred by
Maximum-likelihood (ML) analysis using the RAxML 7.0.3
program (Stamatakis, 2006) and Bayesian analysis using
MrBayes v.3.1 (Ronquist and Huelsenbeck, 2003) (see Jang
et al., 2018 for more details).

Cell Identification and Abundance Estimation
Light microscopy was used to further identify and enumerate
dominant protistan species. For microscopic cell counts, 50 mL
subsamples preserved in Lugol’s solution were concentrated by
sedimentation using Utermöhl chambers for >24h (Utermöhl,
1958). Cell counts of recognizable dinoflagellate and diatom
genera were carried out using an Olympus CKX-31 inverted
microscope on a minimum of 200 total cells in at least ten fields
of view at 200× and 400× magnification.

Statistical Analyses
To statistically compare the spatial differences between
oceanographic variables and 18S rRNA gene read-based protistan
taxa observed in the EUC upwelling and eastern region sites, t-tests
were performedusing the statistical software package SPSS ver. 25.0
(IBM Corp., Armonk, NY, USA). Furthermore, non-metric
multidimensional scaling (NMDS) was performed to visualize
pairwise dissimilarity between communities across the sites
sampled. Environmental factors were fitted onto the NMDS
ordination to represent how oceanographic and productivity
variables influence spatial patterns in protistan communities
using the envfit-function. To determine whether statistically
significant differences were observed between the EUC and
eastern regions, a one-way analysis of similarities (ANOSIM) test
was utilized. Both NMDS and ANOSIM analyses were performed
using the vegan package in R-4.1.2.
RESULTS

Physical and Chemical Properties of the
Water Column
The satellite-derived sea surface temperatures (SST) during the
2018 sampling period displayed a clear regional contrast between
sites in the EUC upwelling influenced region and sites in the
eastern region (Figure 2A). Both surface concentrations of Chl-a
and particulate organic carbon (POC) observed by remote
sensing were higher in the EUC region, especially in Elizabeth
Bay, consistent with the observed red tide bloom (Figure 2B, C).
May 2022 | Volume 9 | Article 811979
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Concentrations of nutrients were higher in the mixed layer
(depth sampled at 50% incident irradiance, Io) of the EUC
region, while those of the other sites were more variable and
often oligotrophic (Figure 2D–F). Generally, the seawater
temperatures in the upper 100 meters had a significant negative
relationship with the measured nutrient concentrations (i.e., nitrate,
phosphate, and silicic acid; all p <0.01) (Supplementary Figure 1).

In the EUC upwelling region, the averaged depths of the
mixed layer and subthermocline layer were 8 m and 48 m,
respectively, which were shallower than those of the other sites
in the eastern region at 23 m and 67 m, respectively (Figure 3
and Supplementary Table 1). The average water temperature
difference between the upper layer and the deep layer was 2.2°C
and 6.8°C in the EUC upwelling and other eastern region sites,
respectively, indicating a relatively stronger degree of
stratification in the latter. The average nitrate concentrations in
the upper and deep layers in the EUC region were 8.9 mmol L-1

and 10.4 mmol L-1, respectively, while the average nitrate
concentrations in the eastern region differed remarkably from
the upper layer (2.0 mmol L-1) to the deep layer (9.9 mmol L-1),
indicating that a nitracline had been established (Figure 3 and
Supplementary Table 1).

Biological Properties of the Upper Layer
The measured surface biological variables were collected at 50%
Io depth of the euphotic zone (Table 1). Both small (<5 mm) and
large (≥5 mm) size-fractions of average Chl-a concentrations
were significantly higher at EUC upwelling sites than the eastern
region sites (t-test, both p <0.05). The concentrations of small
size-fraction Chl-a were higher in most sites than those of the
large size-fraction. With respect to particulate organic carbon
(POC) and particulate organic nitrogen (PON) concentrations,
there were no significant differences between the two regions.
However, the average POC to Chl-a ratios for both small and
Frontiers in Marine Science | www.frontiersin.org 5
large size-fractions were nearly twice as high in the eastern region
sites compared to the EUC sites (t-test, both p <0.05). Similarly,
the averaged PON to Chl-a ratios for both size-fractions were
significantly higher in the eastern region sites (t-test, p <0.01
and <0.05, respectively).

The average mixed layer DIC and NO−
3 uptake rates of small

cells (<5 mm) measured in both regions were only slightly
different (Table 1). However, the average uptake rates of large
cells (≥5 mm) in the EUC region sites were more than double
those in the eastern region sites, although there were no
significant differences due to large variability (t-test, both p >0.1).

Protistan Community Structure
Taxonomic assignment inferred from the V4 region of the 18S
rRNA gene amplicon sequencing showed the relative dominance
of Dinoflagellata and Chlorophyta followed by Syndiniales across
both regions (Figure 4A). Dinoflagellata was the most abundant
group in the EUC upwelling region (48 ± 23% of protistan reads),
while Chlorophyta, consisting mostly of picoeukaryotic taxa, was
the most dominant in the eastern region (30 ± 20%).
Furthermore, there were several sites in the eastern region
where members of the group Rhizaria were considerably
abundant. We calculated the mean Shannon diversity between
the EUC upwelling and eastern regions for alpha diversity
analysis (Figure 4B). For general protistan taxa, the Shannon
index inferred by the ASVs revealed no significant differences
across regions, but the dinoflagellate and rhizarian groups did,
with lower diversity of dinoflagellates and higher diversity of
rhizaria in the EUC region (t-test, p <0.01).

Regardless of region, both species richness (i.e., the number of
different ASVs; average of 222 ± 69) and relative abundance of
the number of ASVs at most sites were similar (Figures 4C, D).
In general, the most abundant ASVs across all regions were
Stramenopiles, followed by Dinoflagellata and Syndiniales
FIGURE 2 | Spatial distribution of (A) sea surface temperatures (SST, °C), (B) chlorophyll-a (mg L-1), and (C) particulate organic carbon (POC, mmol L-1) concentrations

derived from remote sensing during the survey period and dissolved nutrient concentrations (mmol L-1) for (D) nitrate NO−
3 (E) phosphate PO3−

4 ,and (F) silicic acid (Si[OH]4)
measured in the mixed layer (50% incident irradiance depth).
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(Supplementary Table 2). However, three sampling sites (RT, 6,
and 26) had considerably low richness (126, 96, and 66 ASVs,
respectively). The overall richness within the EUC upwelling
region was higher at the sites over the archipelago slope (i.e., St.
3, 5, and 7; average of 316 ± 39 ASVs) which may have been more
directly affected by the upwelling water mass compared to the
inner continental shelf sites (i.e., St. RT, 4, and 6; average of 165 ±
75 ASVs), where the value of the former were among the highest
out of all surveyed sites.

NMDS analysis showed that samples were generally clustered
by spatial differences between the EUC upwelling and eastern
regions (Figure 5 and Supplementary Table 3). Also, the result
indicated that nutrients, biomass (i.e., Chl-a, POC, and PON),
and primary productivity measurements correlated more with
the EUC region, whereas temperature and particulate carbon and
nitrogen to Chl-a ratios correlated with the eastern region.
Furthermore, ANOSIM analysis indicated that there was a
marginal, yet significant difference in protistan communities
between the two regions (R = 0.38; p <0.01).

An assessment of functional classifications of the protistan
community and specifically the dinoflagellate group based on
their trophic modes (i.e., autotroph, mixotroph, and
heterotroph) was conducted (Figures 6A, B). At the whole
protistan level, the averaged proportion based on read counts
Frontiers in Marine Science | www.frontiersin.org 6
of heterotrophic protists in the eastern region (34 ± 19%) was
higher than that of the EUC upwelling region (22 ± 11%).
Similarly, the averaged proportion of heterotrophic
dinoflagellates out of the entire dinoflagellate community was
also higher in the eastern region (31 ± 12%) than the EUC
upwelling region (18 ± 15%).

The number of 18S rRNA gene reads belonging to
heterotrophic protists in each site showed a few noteworthy
characteristics (Figure 6C). Firstly, free-living heterotrophic
dinoflagellates including Gyrodinium spp., the parasitic
Syndiniales groups and ciliates were commonly present across
many of the surveyed sites regardless of region. However, the
read counts of the heterotrophic dinoflagellate Polykrikos kofoidii
were only present in appreciable densities at the red tide bloom
site. Finally, the read counts of Rhizaria among heterotrophic
protists was higher in the eastern region sites despite diversity
being lower.

Cell Abundances of the Dominant
Protistan Taxa
The dominant protistan taxa were further quantified by light
microscopy-based cell counts (Table 2). Of the heterotrophic
protists, the small-sized dinoflagellate Gyrodinium spp. (<40 mm)
and small naked ciliates (20-50 mm) were commonly present across
FIGURE 3 | Vertical distribution of temperature (upper axis, closed circles, °C) and nitrate (NO−
3 ) concentrations (lower axis, open squares, mmol L-1) in the Equatorial

undercurrent upwelling (EUC) region and eastern region of the Galápagos Archipelago. The y-axis represents the depth (m). The dotted and solid lines indicate depths
of the mixed layer and subthermocline layer, respectively. Of the 23 sites surveyed, the sites where data were measured at multiple depths (50%, 30%, 10%, and 1%
incident irradiance) are displayed. Full data are available in Supplementary Table 1.
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many of the surveyed sites. However, the large-sized dinoflagellates
(e.g., Gyrodinium spp. larger than 40 mm in cell length and P.
kofoidii) and large naked ciliates (50-100 mm and >100 mm) were
primarily abundant at sites containing high levels of the large size-
fraction phytoplankton biomass. The dominant protistan taxa
observed at the red tide bloom site were the dinoflagellates
Scrippsiella and P. kofoidii, with maximum observed cell densities
of 3636 cells mL-1 and 132 cells mL-1, respectively, followed by small
naked ciliates (45 cells mL-1). Also, the dominance of the diatom
Cylindrotheca spp. (892 cells mL-1) was observed at St. 6 in the EUC
upwelling region.

A Red Tide Bloom Event in Elizabeth Bay,
Isabela Island
An intense red-pigmented bloom, mostly composed of the
dinoflagellate Scrippsiella, was observed on October 1st 2018
on the west coast of Isabela Island in Elizabeth Bay
(Figures 7A, B and Table 2). The dinoflagellate species
Scrippsiella lachrymosa was identified by sequencing of the ITS
regions of the rRNA genes from single cells of Scrippsiella
(Supplementary Figure 2). The two analyzed sequences of
Scrippsiella cells showed no genetic differences, indicating they
were identical clones. Cells of the large dinoflagellate grazer P.
kofoidii that appeared to have fed on S. lachrymosa cells were also
commonly observed in the preserved samples (Figure 7C).

During the bloom, the mixed layer nutrient concentrations of
nitrate, phosphate, and silicic acid were 3.7, 0.7, and 4.7 mmol L-1,
Frontiers in Marine Science | www.frontiersin.org 7
respectively (Figure 7D). The average mixed layer Chl-a
concentrations of small and large size-fractions were 1.16 and
5.97 mg L-1, respectively, with high variability across biological
replicates due to spatial heterogeneity in the bloom (Figure 7E).
DISCUSSION

While only a few recent studies have thoroughly explored the
Galápagos planktonic protistan communities (e.g., Carnicer
et al., 2019; Neave et al., 2021), here we reveal the trophic
structures of the assemblages with a particular emphasis on the
ecological significance of heterotrophic protists and their
potential grazing impacts. Furthermore, we found relatively
higher heterotrophic biomass proportions in the oligotrophic
eastern waters. At the same time, we report the occurrence of a
dinoflagellate red tide event where a dominant factor controlling
the population of the blooming dinoflagellate was suggested to be
grazing by another heterotrophic dinoflagellate, suggesting
crucial roles of dinoflagellates as both primary producers and
micrograzers in the planktonic marine food webs of the GMR.

Oceanographic Variables and Their Effects
on the Protistan Communities
Nutrient distributions in the upper water column are strongly
influenced by the upwelling of the cold EUC waters, which
sequentially affects the protistan community structure.
TABLE 1 | Size-fractionated Chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate organic nitrogen (PON), and nitrate NO−
3 and dissolved inorganic carbon

(DIC) uptake rates in the mixed layer [50% incident irradiance (Io) depth] at sites in Galápagos Archipelago in October 2018.

Site 50% Io depth (m) Chl-a (µg L-1) POC
(µmol L-1)

PON
(nmol L-1)

POC: Chl-a PON: Chl-a NO−
3 uptake

(nmol L-1 d-1)
DIC uptake
(µmol L-1 d-1)

<5µm ≥5µm <5µm ≥5µm <5µm ≥5µm <5µm ≥5µm <5µm ≥5µm <5µm ≥5µm <5µm ≥5µm

EUC upwelling region 2 5.0 1.145 0.492
3 9.1 0.618 0.100 5.23 1.83 718 312 8.5 18.3 1162 3132 118.2 59.6 1.27 0.32
4 6.8 0.907 0.309
5 11.4 0.141 0.053 1.96 1.39 323 166 13.9 26.4 2290 3157 33.4 10.3 0.37 0.07
6 5.0 0.888 0.535
7 8.0 0.521 0.244 5.19 4.30 863 677 10.0 17.6 1657 2771 190.1 142.3 1.65 0.98
29 0.407 0.814

Mean 7.6 0.661 0.364 4.13 2.50 635 385 10.8 20.8 1703 3020 113.9 70.7 1.10 0.46
STD 2.5 0.342 0.268 1.87 1.57 280 263 2.8 4.9 566 216 78.4 66.7 0.66 0.47

Eastern region 1 7.0 0.450 0.147 5.72 2.11 917 324 12.7 14.4 2038 2211 171.7 73.4 1.34 0.34
9 5.0 0.213 0.090
10 7.7 0.241 0.070 5.08 3.46 699 508 21.1 49.6 2896 7305 75.8 19.5 1.14 0.26
11 9.0 0.183 0.055 2.72 1.49 449 282 14.8 27.2 2447 5120 68.0 14.5 0.66 0.11
12 9.7 0.147 0.067 3.32 2.42 495 360 22.6 36.4 3366 5409 41.7 20.0 0.59 0.20
15 5.0 0.136 0.055
16 13.2 0.101 0.060 3.10 2.61 395 337 30.7 43.2 3911 5587 38.1 30.0 0.60 0.33
18 11.4 0.128 0.045 3.99 3.03 573 261 31.3 67.7 4493 5847 47.9 17.3 1.02 0.23
20 11.0 0.318 0.063 5.50 1.56 895 250 17.3 24.8 2811 3980 138.4 47.6 2.28 0.37
22 10.2 0.293 0.056 4.82 3.51 742 254 16.5 63.0 2536 4558 113.1 19.3 1.66 0.17
24 9.0 0.235 0.072 3.88 2.21 605 302 16.5 30.7 2575 4187 77.0 17.7 1.07 0.17
26 13.3 0.186 0.070 4.30 2.99 608 415 23.1 42.9 3268 5965 38.4 8.2 0.87 0.12
27 5.0 0.762 0.641
28 0.418 0.103

Mean 9.0 0.272 0.114 4.24 2.54 638 329 20.7 40.0 3034 5017 81.0 26.8 1.12 0.23
STD 2.9 0.176 0.154 1.03 0.71 176 82 6.4 16.9 740 1381 46.0 19.6 0.53 0.09
May 2
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With respect to phytoplankton growth and nitrate uptake kinetics,
the observed nutrient concentrations in the EUC region suggest
theywere sufficient to support proliferation ofmost phytoplankton
taxa, including large-sized taxonomic groups such as diatoms and
autotrophic and mixotrophic dinoflagellates (Eppley et al., 1969;
Lee et al., 2017). Considering that the EUC upwelling region of the
Galápagos has sufficient macronutrients throughout the year
(Sakamoto et al., 1998; Palacios, 2004; Schaeffer et al., 2008), the
bloomdynamics inElizabethBay, characterized as a phytoplankton
hotspot, is likely influenced by other variables. Although iron
limitation is widespread in the Equatorial Pacific Ocean, given the
naturally enriched iron in the EUC water mass and the close
proximity of our sampling sites to the islands, iron is less likely to
be limiting, although the relationship betweenChl-a and iron levels
in waters of the GMR is still unclear (Martin et al., 1994; Sakamoto
et al., 1998). Also, Kislik et al. (2017) reported positive and negative
correlations of Chl-a with particulate carbon and surface
temperature, respectively. However, the relationship between
grazers andprimaryproduction in theGMRisnot fully understood.

The stratified vertical profiles of physicochemical properties at
themajorityof sites in the eastern regionof the archipelagosuggest a
limited nutrient supply on primary productivity throughout the
upper euphotic zone. An exception was observed at St. 27, where
high nutrients and Chl-a concentrations suggest there is localized
upwelling at this site, possibly resulting from the topographic
Frontiers in Marine Science | www.frontiersin.org 8
influence of Kicker Rock (Roca León Dormido) and/or an island
wake effect from San Cristóbal Island as reported by Feldman
(1986). Given the geographical characteristics of the Galápagos
Archipelago, characterizing the various physical modes of
deepwater nutrient delivery into the upper water column would
be valuable knowledge for understanding plankton dynamics and
productivity. The results of the clustering of samples between the
EUC upwelling and eastern regions shown by the NMDS
ordination also suggests that the composition of protistan
communities in the archipelago is strongly affected by the
characteristics of the upwelled water.

Heterotrophic Biomass Proportions
Another interesting contrasting characteristic observed between
the EUC and eastern regions is that of the ratios of the biochemical
properties (i.e., POC: Chl-a and PON: Chl-a ratios), which may be
used as a proxy for heterotrophic biomass proportions: sites in the
eastern region had ratios twice as high as in the EUC-influenced
region. It seems unlikely that the particulate organic matter in
these waters originated from terrestrial sources given the minimal
land-based runoff into the marine environment, especially during
the dry season (Atwood and Sachs, 2014; Moity et al., 2019).
Although phytoplankton cellular Chl-a contents can vary to some
extent due to their physiological status (Riemann et al., 1989;
Rodriguez et al., 2006), the obviously large and statistically
A B

DC

FIGURE 4 | 18S rRNA gene amplicon sequencing of higher ranked taxonomic groups of protistan communities at the sites within the Equatorial undercurrent
upwelling (EUC) region and eastern region. (A) Taxonomic abundance based on read counts, (B) Box and whisker plots of the Shannon alpha diversity, (C) species
richness and (D) relative abundance based on the number of ASVs.
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significant differences in ratios between the two examined regions
may also be a consequence of varying amounts of heterotrophs,
which is consistent with our taxonomic measurements based on
18S rRNA gene sequencing and light microscopy cell counts.
Thus, observation of the POC: Chl-a ratio via remote sensing
could be another possible way to evaluate the planktonic food web
structure in relation to nutritional modes.

Taxonomic and Trophic Structures of the
Protistan Community
Both high numbers of 18S rRNA gene sequence reads (72,748
average/sample, 41,375 standard deviation) and the even relative
abundances of the number of ASVs among the taxa across all
sites suggest a sufficient sequencing depth. Furthermore, the light
microscopy-based morphological identification and quantitative
cell counts of dominant protistan genera support the
interpretations based on DNA sequencing.

From the ASV richness, it is possible to speculate on the
biodiversity patterns derived by the EUC upwelling in the western
archipelago region. The highest ASV richness at the sites closest to
where fresh upwelling occurred may be due to the sediment
resuspension of seed populations along the archipelago slope
(Powell et al., 1992; Bringué et al., 2013). The supply of nutrient-
rich water into Elizabeth Bay, where residence times are likely
higher, may then cause the proliferation of select dominant species,
which decreases biodiversity.

The dominance of the Chlorophyta group, mainly consisting of
picoeukaryotic plankton, in the eastern region sites is consistent
with the previous observations that these organisms play a more
significant role in oligotrophic waters (Magazzu and Decembrini,
1995; Not et al., 2008). This may be due to their small size having
an advantage in acquiring nutrients through having a reduced
Frontiers in Marine Science | www.frontiersin.org 9
diffusion boundary layer and large surface area to volume ratio
(Raven, 1987), In contrast, as expected, Dinoflagellata (excluding
Syndiniales) with a relatively large cell size compared to
Chlorophytes occupied higher proportions in the EUC upwelling
region sites. However, the proportions of dinoflagellates did not
drop sharply even in the oligotrophic eastern waters as observed in
other studies (Le Bescot et al., 2016; Cohen et al., 2021), suggesting
the importance of understanding their diverse trophic modes.
Unlike other protistan groups, the greater Shannon alpha
diversity of dinoflagellates in the eastern region is likely also a
result of their various nutritional modes. One of the potential
causes of the low R value (0.38) of ANOSIM test, which shows the
dissimilarity between protistan communities in the two regions,
may be the abundance of protistan groups that exhibit various
nutritional modes such as dinoflagellates. Furthermore, unlike the
significant high R2 values of individual vectors associated with
oceanographic parameters and heterotrophic biomass proportions
in the NDMS analysis, vectors for the primary productivity
measurements were not statistically significant, which may be
partially explained by the high abundance of mixotrophic
dinoflagellates within both of the regions.

Given that the minimum range of prey sizes available to
phagotrophic dinoflagellates are generally less than 5 mm
(Nakamura et al., 1995; Berge et al., 2008), a high proportion
of heterotrophic dinoflagellates in the eastern region may be
possible due to the presence of available prey biomass. In the
same manner, other dominant protozoan groups, such as small
ciliates, could occur throughout the archipelago due to the
abundance of prey sources.

Although many heterotrophic protists are capable of feeding
on diverse prey species, there are often constraints on the size of
prey species for sufficient proliferation for large cells (Hansen,
FIGURE 5 | Non-metric multidimensional scaling (NMDS) of the protistan assemblages in the Galápagos Archipelago. NMDS (stress = 0.134) of samples based on
protist composition determined by sequence reads obtained from DNA metabarcoding (V4 region of 18S rRNA gene). Samples were classified according to the sites
collected: Equatorial undercurrent upwelling (EUC) region (red circle) and eastern region (blue circle) sites. Vectors illustrate the relative directions and magnitudes of
oceanographic and productivity variables’ contribution to dissimilarities among samples. Asterisks indicate significance at p-values of less than 0.05 (*), 0.01 (**), and
0.001 (***). The R2 and p-values of each vector are provided in Supplementary Table 3.
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1992; Hansen et al., 1994), such as those detected mainly in the
large size-fraction (≥5 mm) Chl-a abundant sites from this study.
Therefore, we speculate that the abundance of the large-sized
heterotrophic protists in the GMR is likely to be bottom-up
regulated by the limited abundance of large phytoplankton
species. In summary, the protozoan community structure in
the GMR is likely regulated by the abundance of their prey size
spectra, which depend on the availability of nutrients provided
by upwelling.

The frequent ASVs based on read counts belonging to
dinoflagellate genera such as Scrippsiella, Gyrodinium, and
Polykrikos and low proportions of diatom groups during our
observation period were consistently verified from the
microscopic cell counts. Although certain diatom genera appear
to be underestimated based on 18S rRNA gene sequencing,
particularly with members of the diatom genus Cylindrotheca that
were found to be in high concentrations at St. 6 (892 cells mL-1),
yet almost absent from DNA sequencing. Indeed, the 18S
rRNA gene copy numbers within certain protists can be
variable according to their genome sizes (Gong and Marchetti,
2019), thus resulting in underestimates of some genera and
Frontiers in Marine Science | www.frontiersin.org 10
overestimates of others, therefore not being an accurate
reflection of cell abundances. In addition, in some dinoflagellate
lineages, the sequence of the V4 (18S rRNA gene) region, which
is commonly used for protist metabarcoding is too highly
conserved, making classification to the genus-level challenging.
Despite these caveats, the metabarcoding approach used in this
study was highly valuable to understanding trends in relative
protistan dynamics. Moreover, the method provided high
resolution for estimating the importance of small protozoans,
particularly high relative proportions of the parasitic
dinoflagellate Syndiniales, which are difficult to identify based
on morphological observations, raising questions regarding their
ecological roles as protistan parasites in this region.

Grazing Impacts by Dominant
Heterotrophic Protists on
Phytoplankton Species
The grazing coefficients attributable to the dominant heterotrophic
protists (i.e., heterotrophic dinoflagellates Gyrodinium spp., P.
kofoidii and naked ciliates) on some of the most commonly
found phytoplankton species (i.e., dinoflagellate Prorocentrum
A B

C

FIGURE 6 | Functional classifications of the protistan community and the dinoflagellates in relation to their trophic modes based on read abundances of 18S rRNA
gene amplicon sequencing. (A) Protistan community and (B) Dinoflagellate groups. ATD, autotrophic dinoflagellate; MTD, mixotrophic dinoflagellate; HTD, heterotrophic
dinoflagellate. (C) Relative abundance of heterotrophic protists in each sample. Sites are separated by region where Equatorial undercurrent upwelling (EUC) sites are on
the left and Eastern region sites are on the right. The trophic modes of dinoflagellates were annotated at the species/genus levels and for the other protists generally at
order/class levels according to the cited references. If the dinoflagellate genus is known to have at least one mixotrophic species, the genus was classified as a potential
mixotroph. See Supplementary Table 2 for detailed ASV information.
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spp. with 10-20 mm in cell length,Heterocapsa spp., and Scrippsiella
spp.) throughout the archipelago were predicted using maximum
potential grazing rate estimates based on cell concentrations
(Supplementary Text S1 and Figure S3). Given the two
phytoplankton species, Prorocentrum spp. and Heterocapsa spp.,
are optimal prey for small naked ciliates (NCs, <50 mm), the
potential grazing impacts of small NCs on two red-tide species
could be considerable throughout the archipelago (Gifford, 1985;
Verity, 1991; Yang et al., 2015). However, cells of large NCs (50-100
Frontiers in Marine Science | www.frontiersin.org 11
and >100 mm), Gyrodinium spp. (>40 mm), and P. kofoidii, which
belong to the large cell size category among the protistan species,
mainly were detected in the EUC upwelling region, thus
demonstrating their spatially-restricted impacts as grazers in this
community. The grazing coefficient potentials suggest varied and
significant consumption of primary producers by micrograzers.
Most importantly, considering that the protistan community in
Elizabeth Bay, where the red tide bloom occurred, was over-
dominated by a single species S. lachrymosa, it is estimated that
FIGURE 7 | A red tide (RT) event observed in October 2018 in Elizabeth Bay on the west side of Isabela Island of the Galápagos Archipelago. (A) A general view of
the red tide event from the surface. (B) The two dominant taxa: dinoflagellates Polykrikos kofoidii and Scrippsiella lachrymosa, observed in a preserved sample collected

from the RT site. (C) P. kofoidii cell assumed to have fed on several S. lachrymosa cells. (D) Nutrient concentrations (mmol L-1) for nitrate NO−
3 , phosphate PO3−

4 , and
silicic acid (Si[OH]4) measured at the site. (E) Size-fractionated chlorophyll-a concentrations (Chl-a, mg L-1). Scale bars = 50 mm for B and 20 mm for (C) Error bars in E
represent standard deviation of the mean (n=3).
TABLE 2 | Cell abundances (cells mL-1) of dominant phytoplankton taxa (>10 mm in cell length of dinoflagellates and diatoms) and heterotrophic protists during the
survey period in 2018.

EUC upwelling region Eastern region

RT St. 2 St. 3 St. 6 St. 11 St. 15 St. 16 St. 18 St. 22 St. 27

Heterotrophic protists
Gyrodinium spp. (<40 mm) 16.7 6.9 2.6 10.0 7.5 2.2 5.0 8.5 2.5 6.9
Gyrodinium spp. (≥40 mm) 11.7 0.6 0 2.5 0.6 0 0.6 0.6 0 0
Polykrikos kofoidii 131.8 1.3 0.5 0 0 0 0.6 0 0 0
Other heterotrophic dinoflagellates 3.3 1.9 1.0 12.5 2.5 1.6 7.5 17.1 0.6 12.5
Naked ciliates (20-50 mm) 45.0 11.9 8.3 7.5 4.4 5.4 1.9 1.1 1.3 9.4
Naked ciliates (50-100 mm) 3.3 1.3 0.8 2.5 0 0 0 0 0 2.5
Naked ciliates (>100 mm) 1.7 1.0 0 0 0 0 0 0 0 0
Phytoplankton
Prorocentrum spp. (10-20 mm) 10.0 3.1 2.3 55.1 3.1 1.6 8.8 5.1 3.1 18.8
Heterocapsa spp. 6.7 13.1 3.1 27.6 3.1 1.1 4.4 3.4 1.9 6.3
Karlodinium spp. 1.7 2.5 3.4 17.5 2.5 1.1 2.5 1.1 0.6 0
Scrippsiella spp. 3636.1 71.3 0.5 7.5 1.9 0.5 2.5 0.6 0.6 0
Cylindrotheca spp. 28.4 35.7 7.6 891.8 8.1 3.8 11.3 23.3 45.7 382.0
Chaetoceros spp. 0 2.5 3.1 42.6 3.8 3.3 6.9 6.8 16.3 212.9
Pseudo-nitzschia spp. 5.0 5.0 12.5 17.5 4.4 5.4 10.6 8.0 3.8 18.8
Thalassiosira spp. 1.7 3.8 6.5 55.1 4.4 2.7 7.5 4.5 5.6 144.0
Chlorophyll-a (µg L-1)
<5 mm 1.16 1.15 0.62 0.89 0.18 0.14 0.10 0.13 0.29 0.76
≥5 mm 5.97 0.49 1.0 0.55 0.06 0.06 0.06 0.05 0.06 0.64
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the grazing coefficient of P. kofoidii could be remarkably high as our
estimate indicates (Figure S3).

Documenting a Dinoflagellate Red Tide
Event in the GMR
Prior to this study, only a few red tide events have been reported in
the Galápagos Archipelago (e.g., Torres, 2015). Although the
western GMR is a known productivity hotspot, there is a general
lack of information on factors influencing algal bloom development.

Members of the dinoflagellate genus Scrippsiella, which were
responsible for the red tide outbreak, are known as one of the
most commonly found dinoflagellates to produce resting cysts in
sediments around the world, suggesting germination as a
primary mechanism for bloom initiation (Nehring, 1994; Satta
et al., 2010; Shin et al., 2012). Particularly, the identified relatively
short dormancy period and high germination rate for this
dinoflagellate, combined with the absence of a requirement for
a dramatic shift in environmental conditions for excystment,
have suggested that Scrippsiella species could facilitate rapid
cycling between cysts and vegetative stages (Binder and
Anderson, 1987; Olli and Anderson, 2002; Wang et al., 2007).
Also, the co-occurring heterotrophic dinoflagellate P. kofoidii is
another actively cyst-forming dinoflagellate (Satta et al., 2010;
Shin et al., 2012). Thus, cyst-forming protistan species may have
an advantage surviving in this dynamic system in between
upwelling events.

The relatively lower nutrient concentrations at the bloom site
compared to surrounding sites were likely due to localized
drawdown by blooming cells. The high concentrations of
nutrients can support large-sized phytoplankton that have
higher nutrient demands, as observed in our study. Similarly,
the increased biomass of larger-sized phytoplankton is also
observed in other upwelling systems (Cermeno et al., 2006;
Taylor and Landry, 2018). The nutrients incorporated into
biomass of larger cells may be more efficiently transferred to
higher-level consumers through short food chains, thus creating
a biological hotspot in this region.

Although we were not able to investigate the complete evolution
of this red tide event, the dominant species composition of the
bloom strongly suggested a potential terminationmechanism of this
S. lachrymosa red tide - considering the heterotrophic nutritional
mode and the large cell size of the dinoflagellate P. kofoidii, their
observed high cell abundance (i.e., 132 cells mL-1) indicates active
consumption. Furthermore, previous studies have shown that
Scrippsiella species are among the most optimal prey species that
provide high growth rates for P. kofoidii (Jeong et al., 2001; Kim
et al., 2019). Kim et al. (2019) derived a laboratory-based growth
rate equation of P. kofoidii feeding on S. lachrymosa. When applied
to our bloom scenario, the calculated growth rate of P. kofoidii
feeding on S. lachrymosa at a concentration of 3636 cells mL-1

(1272.6 ng C mL-1) was 0.35 d-1 (Kim et al., 2019). This calculated
growth rate estimates P. kofoidii could support 68% of their
maximum growth rate feeding on only S. lachrymosa, consuming
as much as 62% of the bloom in a single day (Figure S3). These
findings suggest that predation by P. kofoidii would significantly
influence the termination of the S. lachrymosa red tide, causing
succession by grazer dominance. Exploring various roles of grazers,
Frontiers in Marine Science | www.frontiersin.org 12
such as detoxifying phytoplankton toxins by ingestion of P. kofoidii,
could be beneficial as a harmful algal bloom mitigation strategy for
the GMR (Jeong et al., 2003).

Comparison Between 2018 and the
2015/16 ENSO Event
We compared the temporal trends of the environmental
variables and protistan communities in the Galápagos
Archipelago between the El Niño Southern Oscillation (ENSO)
event occurring in 2015 and 2016, and the 2018 observation
period. Neave et al. (2021) investigated the influence of an ENSO
event on the protistan community in the archipelago during the
same season, where during their sampling period in 2015, El
Niño conditions were present followed by a return to cooler, yet
neutral conditions in 2016.

In the EUC upwelling region during the El Nino event, Chl-a
concentrations were considerably lower than that of other years,
when the upwelling was weakened, while the Chl-a concentrations
at most sites in the eastern region were relatively stable regardless
of temporal differences (Figure 8A). POC concentrations were
generally higher in the EUC upwelling region than in the eastern
region, but there were no particular temporal trends across years
(Figure 8B). Interestingly, the POC to Chl-a ratios, used here as a
potential indicator of heterotrophic biomass proportions, were
consistently higher in the eastern region (Figure 8C).
Furthermore, the higher POC: Chl-a ratio in the EUC region
during El Niño compared to 2016 and 2018 suggests a greater
proportion of heterotrophs. This comparison suggests that the
ecological importance of heterotrophic protists in the planktonic
community of the Galápagos Archipelago is directly influenced by
the oceanographic conditions and the degree of EUC upwelling on
both temporal and spatial scales.

Although numerical comparisons for proportions of protistan
community between Neave et al. (2021) and this study was not
possible due to differing taxonomic criteria, it is noteworthy that
heterotrophic micrograzers such as ciliates and rhizarians were
higher during the El Niño event than in the neutral periods.
Moreover, the high proportion of heterotrophic Syndiniales
during the El Niño condition was likely due to their feeding
strategy, which allows them to prey on their diverse hosts,
somewhat independently of the nutrient status of primary
producers (Siano et al., 2011; Jephcott et al., 2016).
CONCLUSIONS

The results of this study provide insights into how EUC upwelling
affects the protistan communities of the Galápagos Archipelago,
including the dynamics of micrograzers. More specifically,
protozoan community structure in the GMR is likely regulated by
the abundances of their prey size spectra, which depend on the
availability of nutrients provided by upwelling. Also, cyst-forming
protistan species may have an advantage in surviving in dynamic
systems in between upwelling events. We also report a bloom of an
autotrophic dinoflagellate in the western GMR, which was heavily
influenced by upwelling of the EUC. Our estimates of grazing
potential suggested that the bloom propagation was likely to be
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hindered by predatory pressure. Although the grazing coefficients
of micrograzers on dominant phytoplankton species were
considerable throughout the archipelago, the taxonomic
composition and biochemical indicators suggested a higher
proportion of micrograzers and associated heterotrophic biomass
in oligotrophic, low Chl-a regions in the east. In conclusion, our
findings suggest the importance of micrograzers in structuring
protistan communities within the Galápagos marine system,
which will have consequences for energy transfer to higher
trophic levels of the marine food web.
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(GSC), Universidad San Francisco de Quito (USFQ), and Galápagos
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Dynamic Coastal Ecosystem (Rıá De Vigo, NW-Spain): Seasonal and Short-
Time Scale Variability. Estuar. Coast. Shelf S. 67, 251–266. doi: 10.1016/
j.ecss.2005.11.027

Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K., Hawco,
N. J., et al. (2021). Dinoflagellates Alter Their Carbon and Nutrient Metabolic
Strategies Across Environmental Gradients in the Central Pacific Ocean. Nat.
Microbiol. 6, 173–186. doi: 10.1038/s41564-020-00814-7

Cuvelier, M. L., Allen, A. E., Monier, A., McCrow, J. P., Messié, M., Tringe, S. G.,
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Color Around the Galápagos: Regional and Local Influences. Deep. Sea. Res. II.
51, 43–57. doi: 10.1016/j.dsr2.2003.08.001

Parsons, T. B., Maita, Y., and Lall, C. M. (1984). A Manual of Chemical and
Biochemical Methods of Seawater Analysis (Oxford: Pergqmon Press).

Powell, A. J., Lewis, J., and Dodge, J. D. (1992). The Palynological Expressions of
Post-Palaeogene Upwelling: A Review Vol. 64 (Geological Society, London:
Special Publications), 215–226. doi: 10.1144/GSL.SP.1992.064.01.14
May 2022 | Volume 9 | Article 811979

https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1016/j.marmicro.2013.03.007
https://doi.org/10.1029/2009GB003601
https://doi.org/10.4319/lo.2004.49.1.0051
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.3389/fmars.2019.00235
https://doi.org/10.1016/j.ecss.2005.11.027
https://doi.org/10.1016/j.ecss.2005.11.027
https://doi.org/10.1038/s41564-020-00814-7
https://doi.org/10.1073/pnas.1001665107
https://doi.org/10.1126/science.1261605
https://doi.org/10.4319/lo.1967.12.2.0196
https://doi.org/10.4319/lo.1969.14.6.0912
https://doi.org/10.1007/978-1-4612-4966-5_3
https://doi.org/10.3354/meps023257
https://doi.org/10.3389/fmars.2019.00219
https://doi.org/10.1007/BF00349535
https://doi.org/10.3389/fmars.2019.00219
https://doi.org/10.3389/fmars.2019.00219
https://doi.org/10.1016/j.hal.2018.11.007
https://doi.org/10.1111/j.1550-7408.2001.tb00318.x
https://doi.org/10.3354/ame031307
https://doi.org/10.1016/j.hal.2015.07.009
https://doi.org/10.1016/j.funeco.2015.03.007
https://doi.org/10.1016/j.funeco.2015.03.007
https://doi.org/10.1111/jpy.12864
https://doi.org/10.5281/zenodo.1314831
https://doi.org/10.1111/1462-2920.13039
https://doi.org/10.1111/1462-2920.13039
https://doi.org/10.4490/algae.2017.32.5.20
https://doi.org/10.4490/algae.2017.32.5.20
https://doi.org/10.1038/s41598-017-14109-1
https://doi.org/10.1046/j.1529-8817.2003.02112.x
https://doi.org/10.3354/ame009097
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/371123a0
https://doi.org/10.1371/journal.pone.0209313
https://doi.org/10.3354/ame009157
https://doi.org/10.1111/1462-2920.15863
https://doi.org/10.1016/0077-7579(94)90051-5
https://doi.org/10.1016/j.dsr.2008.06.007
https://doi.org/10.1046/j.1529-8817.2002.01113.x
https://doi.org/10.1016/j.dsr2.2003.08.001
https://doi.org/10.1144/GSL.SP.1992.064.01.14
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Jang et al. Protistan Communities Within the Galápagos Archipelago
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012). The
SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and
Web-Based Tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

Raven, J. A. (1987). Physiological Consequences of Extremely Small Size for
Autotrophic Organisms in the Sea. Photosynthetic Picoplankton. Can. Bull.
Fish. Aquat. Sci. 214, 1–70.

Riemann, B., Simonsen, P., and Stensgaard, L. (1989). The Carbon and
Chlorophyll Content of Phytoplankton From Various Nutrient Regimes.
J. Plankton. Res. 11, 1037–1045. doi: 10.1093/plankt/11.5.1037

Rodriguez, F., Chauton, M., Johnsen, G., Andresen, K., Olsen, L. M., and Zapata,
M. (2006). Photoacclimation in Phytoplankton: Implications for Biomass
Estimates, Pigment Functionality and Chemotaxonomy. Mar. Biol. 148, 963–
971. doi: 10.1007/s00227-005-0138-7

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian Phylogenetic
Inference Under Mixed Models. Bioinformatics 19, 1572–1574. doi: 10.1093/
bioinformatics/btg180

Sakamoto, C. M., Millero, F. J., Yao, W., Friederich, G. E., and Chavez, F. P. (1998).
Surface Seawater Distributions of Inorganic Carbon and Nutrients Around the
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