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The seagrass phyllosphere consists of a dynamic mosaic of physico-chemical
microgradients that modulate light harvesting, gas and nutrient exchange between the
photosynthetic leaves and the surrounding water-column. The phyllosphere is thus of
vital importance for seagrass growth and fitness. However, unfavorable environmental
conditions such as water-column hypoxia, increasing temperature and high nutrient
inputs that are predicted to increase in frequency and severity in the Anthropocene,
can render the leaf microenvironment into a hostile microhabitat that is challenging
or even harmful for the plants—especially if leaves are covered by epiphytic biofilms.
Here we summarize effects of epiphytic biofilms on seagrass leaves and discuss how
they change and affect the biogeochemical processes and chemical conditions in the
seagrass phyllosphere. During night-time, water-column hypoxia can lead to anoxic
conditions at the leaf/epiphyte interface, reducing diffusive O, supply and thus O»
availability for plant respiration and transport to below-ground tissues. Furthermore,
anoxia in epiphytic biofilms can also enable anaerobic microbial processes that can lead
to harmful nitric oxide production via denitrification. Such microenvironmental stress
conditions at night-time are exacerbated by increasing temperatures. In the light, the
leaf epiphytic biofilm community often results in lower leaf photosynthetic activity and
efficiency due to epiphyte-induced shading and a combination of O» build-up and CO»
reduction in the phyllosphere owing to thicker total diffusional pathways, phyllosphere
basification and epiphytic carbon fixation. Furthermore, absorbed light energy in the
epiphytic biofilm can also drive an increase in the leaf surface temperature relative
to the surrounding seawater potentially aggravating heating events in the surrounding
seawater. In combination, all these above-mentioned diurnal effects of epiphytes result
in higher compensation photon irradiance of epiphyte-covered leaves and thus higher
light requirements of seagrasses.

Keywords: Anthropocene, light, microenvironment, oxygen, pH, photosynthesis, temperature, toxins

INTRODUCTION

Seagrasses are marine angiosperms that have adapted to a life in an aqueous environment rooted in
reduced, anoxic sediments by evolving internal gas channels (aerenchyma) enabling low-resistance,
intra-plant gas transport to below-ground tissues (Armstrong, 1979; Colmer, 2003), and leaves
with primary photosynthetic tissue in the epidermis that lack stomata and bares a thin cuticle
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(Larkum et al., 2006). Seagrasses are highly productive marine
plants that form densely populated meadows, which provide
important ecosystem services, such as: (i) increasing the
pH and O; level in the surrounding water-column during
daytime with positive effects on calcifying organisms like
corals (Greve et al., 2003; Ricart et al.,, 2021); (ii) providing
coastal protection against erosion owing to leaf-induced wave
attenuation (Ward et al., 1984; Fonseca and Cahalan, 1992);
(iii) offering versatile feeding and nursery grounds especially
for juvenile fish (Bertelli and Unsworth, 2014); (iv) absorbing
nutrients such as N and P leading to improved water quality
(McRoy and Barsdate, 1970; Pernice et al., 2016); (v) efficient
sequestration of fixed carbon into the sediment and thus
mitigating climate change (Duarte et al., 2005; Fourqurean et al.,
2012). Healthy and productive seagrass leaf canopies are thus
important for ensuring a good environmental state of marine
waters, especially in coastal regions. However, seagrasses are
challenged by global climate change and regional anthropogenic
stressors encompassing rising seawater temperatures, ocean
deoxygenation, and coastal eutrophication that have detrimental
effects on plant performance and health (Waycott et al., 2009;
Raun and Borum, 2013; Brodersen et al., 2015a,b, 2020a,b;
Pedersen et al., 2016; Noisette et al., 2020; Rasmusson et al., 2020;
Nguyen et al., 2021).

Increasing temperature can e.g., lead to a negative O, balance
in the seagrass plant, owing to a decreasing net photosynthesis
above the plant’s temperature optimum (about 24°C in temperate
seagrasses and > 30°C in tropical species). This is due to enzyme
capacity limitations and denaturation of proteins involved in
photosynthesis, whereas the plant respiration rate continues
to increase strongly with increasing temperature (Staechr and
Borum, 2011; Pedersen et al., 2016). Ocean deoxygenation can
also result in inadequate plant aeration via limited O, diffusion
into the seagrass leaves, which especially affects the below-ground
tissue at night-time and can lead to increased mortality owing
to sulfide intrusion (Holmer and Bondgaard, 2001; Pedersen
et al., 2004; Borum et al., 2005). Coastal eutrophication, leads
to algal blooms in the water-column and enhanced epiphyte
growth on seagrass leaves (Borum et al,, 1984; Borum, 1985;
Frankovich and Fourqurean, 1997; Burkholder et al., 2007;
Ralph et al, 2007), which shade the leaves during daytime
(Brush and Nixon, 2002; Brodersen et al., 2015a). This leads
to reduced leaf photosynthesis (Sand-Jensen, 1977; Brodersen
et al., 2015a) and increases the water-column and leaf biofilm O,
demand during night-time (Diaz and Rosenberg, 2008; Brodersen
et al, 2015a). All of the above-mentioned environmental
challenges often act in synergy and thus deteriorate seagrass
health. Leaf epiphytic biofilm communities also challenge their
seagrass host by generating an extreme leaf microenvironment,
especially in the epiphyte micro-understory, leading to carbon
limitation and enhanced photorespiration during daytime, and
low O availability and potentially phytotoxic nitric oxide
(NO) production in the leaf microenvironment at night-time
(Brodersen et al., 2020a,b; Noisette et al., 2020). Furthermore,
leaf infection with the pathogenic marine slime mold-like
protist Labyrinthula, also known as wasting disease, have
previously shown to cause large scale die-off events of seagrass

meadows (Sullivan et al., 2013; Trevathan-Tackett et al., 2018);
a disease that is predicted to worsen with global warming
and increased precipitation (Sullivan et al., 2018). Seagrasses
can alleviate epiphyte colonization via production of zosteric
acid (ZA) an effective antifoulant (Newby et al, 2006) that
has been shown to reduce bacterial and fungal attachment
and formation on surfaces (Villa et al., 2010; Jendresen and
Nielsen, 2019). However, although the production of ZA can
reduce the initial colonization of leaves with epiphytes, such
defense mechanism appears insufficient to avoid overgrowth
under coastal eutrophication events. Epifauna can also mitigate
the epiphyte pressure on seagrass leaves as they function as
grazers in seagrass meadows (Orth and Van Montfrans, 1984;
Orth et al., 1984), where this reduction in leaf epiphyte biomass
likely positively effects nutrient cycling in the ecosystems via
epifaunal nutrient excretion. Last not least, leaf epiphytes have
also been shown to be beneficial for seagrasses by enhancing the
bioavailable amount of inorganic nitrogen via mineralization of
dissolved organic nitrogen accommodated by microorganisms on
the leaf surface; thus, enhancing the productivity and growth rate
of the hosting seagrass meadows (Tarquinio et al., 2018).

In this mini-review, we focus on the seagrass leaf phyllosphere
and how its microenvironment is affected by environmental
change in the Anthropocene, especially eutrophication-induced
epiphyte overgrowth of leaves that can have strong detrimental
impact on seagrasses in future oceans (e.g., York et al., 2016).

THE PHYSICAL MICROENVIRONMENT
OF THE SEAGRASS LEAF
PHYLLOSPHERE

Impedance of Mass Transfer in the
Phyllosphere

Epiphytic biofilms strongly affect the light microclimate as well as
the mass and heat transfer across the leaf tissue surface (Figure 1;
Brodersen et al., 2015a; Noisette et al., 2020). Seagrass leaves (and
most other flow exposed aquatic surfaces) are surrounded by
a diffusive boundary layer (DBL) that is generated by impeded
water movement toward the leaf surface, leading to unstirred
water conditions close to the leaf surface where mass transfer is
predominated by diffusion (Jorgensen and Revsbech, 1985; Koch,
1994; Hurd, 2000). The average transport time for a molecule
via molecular diffusion scales with the square of the distance,
and mass transfer impedance imposed by the DBL thus depends
strongly on its thickness. The DBL thickness is affected by factors
like the flow velocity and the leaf surface topography, where
low flow conditions and more rough leaf surfaces increase the
DBL thickness (Jorgensen and Des Marais, 1990; Lichtenberg
et al., 2017). Epiphytic biofilms can strongly accentuate such
mass transfer impedance by increasing the total diffusional
distance (TDD, i.e., the combined thickness of the biofilm and
the overlying DBL thickness) between the seagrass leaf and the
surrounding water, in combination with active removal of e.g.,
O, in the epiphytic biofilm in darkness imposing strong O,
limitation (Brodersen et al., 2015a, 2020a,b).
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FIGURE 1 | Effect of epiphytes on the physical microenvironment in the seagrass phyllosphere. The changes in the phyllosphere physical microenvironment are
shown as an effect on seagrass leaves with epiphytic biofilms as compared with bare leaves and/or bare leaf parts. The seagrass phyllopshere dynamics are shown
over diel cycles, where the yellow marked areas represent alterations during daytime and gray marked areas represent changes during night-time. Blue arrows
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Light-Driven Heating of the Phyllosphere
Absorbed solar radiation in densely pigmented epiphytic biofilms
and tissues can lead to local heating, which is dissipated toward
the overlying water via a leaf thermal boundary layer (TBL;
Jimenez et al., 2008; Noisette et al., 2020). The TBL acts as
an insulating barrier and therefore impedes heat dissipation
(i.e., the rate of convective dissipation of heat) from the tissue
surface (Jimenez et al., 2008, 2011; Brodersen et al., 2014).
High irradiance can increase the leaf surface temperature up
to ~0.8°C relative to the ambient seawater (Noisette et al.,
2020) and such leaf surface warming correlates linearly with
the incident irradiance (under similar flow conditions) and is
further enhanced by epiphytic overgrowth. The TBL thickness
increases with decreasing flow velocity, increasing leaf surface
topography and epiphytic overgrowth (Noisette et al., 2020), and
is often much thicker than the TDD (~4 times wider) under slow
to moderate flow velocities. Such seagrass leaf surface warming
can potentially aggravate negative responses to extreme heat
events and ongoing global warming, especially in regions where
seagrasses live close to their thermal stress tolerance, but the
role of the phyllosphere temperature microenvironment remains
largely unexplored.

Changes in the Light Microclimate of the

Phyllosphere
The presence of epiphytes reduces both light quality and
quantity reaching the seagrass leaf surface (Drake et al., 2003;

Brodersen et al., 2015a; Noisette et al., 2020). The presence
of epiphytes has been shown to reduce the photon scalar
irradiance of photosynthetically active radiation (PAR; 400-
700 nm) at the seagrass leaf surface by about 50%, depending
on epiphyte thickness, composition and density (Brodersen et al.,
2015a; Noisette et al., 2020); however, reductions of >90% as
compared to bare leaves have been recorded (Brodersen et al.,
2015a). Depending on the structure of the epiphytic biofilms,
compaction of the epiphytic biofilm under high flow conditions
can further decrease the light intensity reaching the leaf surface
(Noisette et al., 2020).

In the upper more loose epiphyte canopy, this decrease in
scalar irradiance is mainly uniform across wavelengths within the
PAR region, whereas blue and red light are strongly absorbed
by algae in the understory of epiphytic biofilms (spanning the
innermost < 1 mm above the leaf tissue surface) (Brodersen et al.,
2015a). Such dramatic reduction in the blue and red wavelengths
reaching the seagrass leaf surface below the epiphyte canopy
leads to an unfavorable light microenvironment predominated
by green light that is not effectively absorbed by the seagrass leaf
chlorophylls (a and b). Consequently, epiphyte-covered leaves
typically have an increased compensation photon irradiance,
i.e, the photon irradiance required for producing enough O,
through photosynthesis to meet the plants own respiratory needs
(Brodersen et al., 2015a). Furthermore, sediment resuspension
and sedimentation of fine particles on seagrass leaves, which
likely is promoted by epiphyte cover due to exopolymer
excretion, also negatively affect light transmission through
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the water-column and the seagrass leaf microenvironment
(Erftemeijer and Lewis, 2006; York et al., 2015; Brodersen et al.,
2017a).

On top of declining light availability in turbid waters affected
e.g., by eutrophication or dredging, epiphyte-induced reduced
light quality at the seagrass leaf surface can thus further
deprive the light microclimate to near or below minimal photon
requirements for a positive net O, balance (Brodersen et al.,
2015a). This can lead to high seagrass mortality rates in heavily
exposed areas, due to the relatively high light requirements of
seagrass (approx. 10-20% of the sea surface irradiance depending
on seagrass species); with Z. marina placed in the high-end of
the light requirement scale at ~20% of the sea surface irradiance
(Duarte, 1991; Dennison et al., 1993; Ballesteros et al., 2007;
Larkum et al., 2018).

Microscale light measurements have mainly been performed
on temperate Zostera sp. with epiphytes largely consisting of
bacteria and microalgae dominated by green, brown and red
algae; where the dominating algae group determines the color
morph of the epiphytic community (i.e., typically green during
spring and red in the autumn; Borum et al., 1984). However,
calcifying epiphytes often appear white in color (often seen in the
Mediterranean and the tropics) and therefore likely rather reflect
light than absorb it; as e.g., observed with the skeleton in corals
(Enriquez et al., 2005; Wangpraseurt et al., 2012; Brodersen et al.,
2014). But such effects of epiphyte community compositions
needs to be verified experimentally and thus deserves further
attention in future studies.

THE CHEMICAL MICROENVIRONMENT
OF THE SEAGRASS LEAF
PHYLLOSPHERE

Leaf epiphytes also strongly affect the chemical
microenvironment of the seagrass phyllosphere over diel
cycles, generating extreme microenvironmental conditions for
the seagrass leaf exposed to the epiphyte micro-understory, as
compared with bare leaves (Figure 2). In the light, photosynthesis
(both in the seagrass leaf and epiphytic biofilm) leads to a strong
increase in O, concentration in the seagrass phyllosphere of
epiphyte-covered leaves due to restricted mass transfer over the
TDD (Brodersen et al., 2015a, 2020a,b; Noisette et al., 2020).
This results in markedly reduced efliciency of seagrass leaf
photosynthesis due to enhanced photorespiration, as the high O,
to CO; ratio favors the oxygenase function of RuBisCO, which
leads to reduced carbon fixation via leaf photosynthesis (Buapet
and Bjork, 2016; Larkum et al., 2018; Brodersen et al., 2020a;
Rasmusson et al., 2020). Actually, in seagrass leaves covered
by thick and dense epiphytic biofilms, the vast majority of the
O, production in the seagrass phyllosphere is produced by the
epiphytes (i.e., photosynthesis by the epiphyte community can
account for up to ~70% of the total O, production in the seagrass
phyllosphere in light [Mazzella and Alberte, 1986; Noisette et al.,
2020; Zhang et al., 2022]), and leaf epiphytes have also been
shown to cause oxidative stress in seagrass (Costa et al., 2015).

During night-time, seagrasses are completely dependent on
passive diffusion of O from the surrounding water-column into
the leaves (Greve et al., 2003; Pedersen et al., 2004; Borum et al.,
2005, 2006). Epiphytic biofilms intervene with such diffusive O,
supply via epiphyte respiration and an increased TDD leading
to reduced plant respiration rates and hypoxic phyllosphere
conditions, as well as establishment of anoxic microzones in the
epiphyte micro-understory (Brodersen et al., 2020a,b; Noisette
et al, 2020). In such epiphyte-driven anoxic microhabitats
anaerobic microbial processes can produce phytotoxins such
as nitric oxide (NO) via denitrification (Noisette et al., 2020),
which can potentially be very harmful to the plant (Beligni and
Lamattina, 2001; Arasimowicz and Floryszak-Wieczorek, 2007;
Kumar et al., 2015). Anoxia in the seagrass phyllosphere can thus
lead to multiple detrimental effects on the intra-plant conditions,
however, leaf-associated microorganisms may also be beneficial
to the seagrass plant. Epiphytic microbiota have thus been shown
to increase the nitrogen availability for seagrasses by mineralizing
amino acids via heterotrophic metabolism (Tarquinio et al.,
2018), which may be further supplemented by diazotrophic
cyanobacteria (Hamisi et al., 2013). Biogeochemical processes
in the epiphytic biofilms may thus increase the nitrogen uptake
of seagrass leaves and enable enhanced plant productivity and
growth in nitrogen-limited waters. The nitrogen cycle and
dynamics in the seagrass phyllosphere is, however, not well
described and deserves further attention in future studies.

The leaf photosynthetic activity is likewise negatively affected
by epiphytes as compared with bare leaves (Sand-Jensen,
1977; Drake et al, 2003), largely due to epiphyte-induced
shading (Brodersen et al., 2015b; Larkum et al., 2018). Reduced
photosynthesis leads to decreased carbohydrate synthesis and
thus increases the risk of plant starvation (Falkowski and Raven,
2013), as well as less efficient O, transport to distal roots and
parts of the rhizome via the aerenchyma. The latter can lead to
anaerobic metabolism in below-ground tissues and intrusion of
phytotoxins like hydrogen sulfide into the seagrass plant from
the surrounding sediment (Borum et al., 2006; Brodersen, 2016;
Brodersen et al., 2018a).

In epiphyte-covered seagrass leaves, especially thick and dense
microalgal biofilm communities, leaf photosynthesis drives a
pronounced phyllosphere basification up to a pH of about
10. This leads to marked shifts in the phyllosphere carbon
speciation from CO, toward bicarbonate (HCO3™) and even
further to carbonate ions (CO327), resulting in a CO, and
HCO;3 ™ availability below the plants CO, compensation point of
about 0.6 uM CO;, for active leaf photosynthesis (Brodersen et al.,
2020a). The phyllosphere basification, and thus strong reduction
in CO; and HCO3™ availability, correlates with increasing
irradiance and TDD (Brodersen et al., 2020a). In regions where
the epiphytic community is dominated by calcifying epiphytes,
such epiphyte-induced carbon limitation challenge in the light
may be alleviated, as calcification generates CO, owing to its
effect on the carbonate system equilibria and thereby likely
supplies inorganic carbon for RuBisCO (McConnaughey, 1991;
Riebesell et al., 2000; Van Dam et al., 2021). Furthermore,
aerobic respiration by grazing leaf epifauna (e.g., Orth and Van
Montfrans, 1984) may also decrease the O,/CO; ratio in the
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seagrass phyllosphere. However, these speculations need to be
verified experimentally and therefore deserve further attention in
future studies. In darkness, on the other hand, the leaf surface pH
of epiphyte-covered leaves reaches pH 7, as compared to a more
or less constant value of pH 8 on the leaf surface of bare seagrass
leaves, which is similar to the bulk water-column, in both light
and darkness (Brodersen et al., 2020a).

Phyllosphere basification in combination with epiphytic
carbon fixation can thus induce inorganic carbon limitation in
seagrasses, where densely epiphyte-covered seagrass leaves have
a strong dependence on HCO;3~ utilization for maintaining
efficient photosynthesis-driven carbon fixation (Brodersen
et al, 2020a). Seagrasses possess several CO, concentration
mechanisms (Beer et al., 1980, 2002; Beer and Rehnberg, 1997;
Larkum et al.,, 2017) such as extracellular carbonic anhydrase
(CA) that catalyzes the conversion of HCO3~ to CO; through
dehydration, as well as active transport of HCO3 ™~ into epidermal
cells and subsequent conversion to CO; by intracellular CA (Beer
and Rehnberg, 1997; Borum et al., 2016; Larkum et al., 2017).
However, such carbon-concentration machinery, which can be
up- and downregulated depending on external environmental
conditions (Kim et al., 2018), is energetically more expensive
for seagrasses as compared with passive uptake of CO, via
diffusion (Raven et al., 2014; Larkum et al., 2018). Extreme
conditions in the chemical phyllosphere microenvironment
can thus reduce leaf photosynthesis and respiration, as well
as enable microbial production of reduced toxic compounds
within anoxic microzones. This can lead to seagrass die-off

events owing to inadequate internal plant aeration and chemical
suffocation, respectively.

EFFECTS OF LEAF PHYLLOSPHERE
CONDITIONS ON THE SEAGRASS
RHIZOSPHERE

The leaf microenvironment largely controls the internal O,
balance of the seagrass plant over diurnal cycles and thereby the
transport of O, down to the below-ground rhizome and roots of
seagrasses (reviewed in Brodersen et al., 2018a). Seagrasses release
O, into the rhizosphere at the base of the leaf (i.e., basal leaf
meristem), the root/shoot junctions (i.e., nodes), and at tips (i.e.,
apical root meristem) of actively growing roots (Pedersen et al.,
1998; Jensen et al., 2005; Frederiksen and Glud, 2006; Koren et al.,
2015; Brodersen et al., 2016). Such radial O, loss (ROL) forms
oxic microzones, which: (i) protect the seagrass plant against
intrusion of reduced toxic compounds such as H,S produced
in the surrounding anoxic sediment (Brodersen et al., 2015b,
2018a,b; Martin et al., 2019), and (ii) mobilize nutrients by means
of stimulating microbial processes (Welsh et al., 1996; Nielsen
et al., 2001; Brodersen et al., 2018b) and chemical solubilization
(Brodersen et al., 2017b).

The oxidation capacity of the seagrass below-ground tissue
is determined by the efficiency of O, transport from the leaves
and the following O, release into the sediment, whereas the
sediment oxygenation is a balance between the below-ground
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tissue O, release and the sediment O, demand (Borum et al,,
2006; Brodersen, 2016; Brodersen et al., 2018a). Within the
seagrass rhizosphere, ROL leads to marked reductions in the
sediment sulfide concentrations through spontaneous chemical
and biological oxidation of H,S (Brodersen et al., 2015b, 2018b;
Martin et al., 2019) resulting in an acidification of the seagrass
rhizosphere through production of sulfuric acid (Brodersen
et al., 2015b, 2016, 2018b). Rhizosphere acidification can also
lead to phosphate solubilization in carbonate-rich sediments via
protolytic dissolution of Ca-phosphates, while other important
nutrients such as ammonium and Fe(II) can be mobilized
via stimulation of the microbial community by plant exudates
(Brodersen et al., 2017b); sulfate-reducing bacteria can e.g.,
fix dinitrogen (Welsh et al, 1996; Nielsen et al, 2001) and
solubilize Fe(IT) and P through reductive dissolution of insoluble
Fe(III)oxyhydroxides (Brodersen et al., 2017b). Changes in the
seagrass phyllosphere microenvironment can thus have strong
effects on the biogeochemical processes and chemical conditions
in the seagrass rhizosphere, and thereby the capacity of the below-
ground tissue to detoxify reduced compounds and mobilize
nutrients in the surrounding sediment. Inadequate internal plant
aeration, and subsequent diminished oxic microzones in the
rhizosphere, can thus lead to toxic sulfide intrusion and plant
starvation, which may kill the plants if persisting over long time
periods (Pedersen et al., 2004; Holmer and Hasler-Sheetal, 2014;
Brodersen et al., 2015b).

TECHNIQUES FOR MONITORING THE
PHYLLOSPHERE MICROENVIRONMENT

The seagrass phyllosphere represents at thin mm-thick
zone surrounding the seagrass leaf and in some cases also
encompasses epiphytic biofilms colonizing the leaf surface.
Traditionally, microenvironmental analyses of the phyllosphere
and rhizosphere of plants have involved use of electrochemical
and fiber-optic microsensors (Kithl and Revsbech, 2001; Kiihl,

2005; Pedersen et al, 2020; Revsbech, 2021) with tip sizes
typically ranging from ~5 to 100 pm. Such microsensors enable
minimally invasive profiling of physical (light, temperature,
diffusivity) and chemical (gases and ions) analytes at high
specificity and spatio-temporal resolution around and within
plant tissue at specific locations, and their application has gained
many fundamental insights to the seagrass microenvironment
(see previous sections; Figure 3). While it is possible to use
microsensors to map 2D transects and even 3D grids of
microprofiles, e.g., over plant tissue topographies (Lichtenberg
et al., 2017), it remains a major challenge to align microsensor
measurements and account for spatial heterogeneity in samples
with pronounced structural complexity. In recent vyears,
microenvironmental studies of seagrasses are increasingly
complemented by chemical imaging approaches, especially for
2D mapping with optical sensors embedding or appressed to
the below-ground seagrass tissue (reviewed in Scholz et al,
2021). The use of magnetic sensor particles in combination
with luminescence lifetime imaging has also enabled 2D
mapping of O, over natural flow-exposed surfaces and biofilms
(Fabricius-Dyg et al., 2012) and recently, a first application
studying the heterogeneous O, microenvironment of epiphytic
biofilms on seagrass leaves was reported (Brodersen et al,
2020Db). Suitable sensor particles have been developed for a
variety of analytes in the aquatic environment (Moffhammer
et al., 2019), and we envision that this approach can relatively
easily be extended to imaging other chemical species (e.g., pH)
in the seagrass phyllosphere. Furthermore, combining such
sensor particle-based imaging with e.g., light sheet or confocal
microscopy systems could enable true 3D mapping of the
chemical phyllosphere microenvironment.

CONCLUSION AND PERSPECTIVES

Coastal eutrophication is a major environmental stressor
stimulating dense epiphytic biofilm growth on seagrass leaves.
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Increased epiphyte colonization shades the seagrass leaves,
and the increasing diffusion distance between the leaf and
surrounding water can result in phyllosphere basification,
warming and hyperoxia, leading to carbon limitation and
enhanced photorespiration in the light. During darkness,
anoxic stress in the seagrass phyllosphere owing to restricted
diffusional O, supply across the epiphytic biofilm layer from
the surrounding water-column and/or heterotrophic activity in
the biofilm can induce production of reduced toxic substances
that can diffuse into the plant tissue and potentially cause
increased mortality. Finally, reduced leaf O, evolution or
diffusional supply from the adjacent water decreases O, transport
to the root/rhizome system and subsequent release to the
reduced sediment increasing the risk of H,S intrusion and plant
nutrient limitation.

The biomass of the seagrass leaf-associated epiphytic
communities is largely driven by progressive enrichment
of seawater with minerals and nutrients, wherefore leaf
epiphyte blooms mainly follow algal blooms in the water-
column that mostly occur during spring (April-May) and
autumn (Aug-Sep) time in northern temperate waters (Borum
et al, 1984). These time windows thus represent the most
critical periods during the annual growth season of the
seagrass plant. Furthermore, ocean acidification can lead
to a shift in the seagrass epiphyte community structure by
increasing the fleshy/calcareous algal taxa ratio (Campbell and
Fourqurean, 2014), which may impose further shading and
impede mass transfer in seagrasses owing to the increased
epiphytic biomass load on the seagrass leaves. This is supported
by recent findings near CO, seeps, where seagrass leaves
often appear free of calcifying epiphytes (e.g., Mishra et al,
2020); however, the underlying mechanisms for epiphyte
colonization at CO, seeps are not well understood. Future
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