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Understanding change at the base of the marine foodwebs is fundamental to
understanding how climate change can impact fisheries. However, there is a shortage
of empirical measurements of primary productivity, and models estimates often disagree
with each other by an order of magnitude or more. In this study we incorporate information
from empirical studies and a suite of Earth system models statistically downscaled using
an ensemble model to produce estimates of North Sea primary production with robust
quantification of uncertainties under two different climate scenarios. The results give a
synthesised estimate of primary production that can feed into regional fisheries models.
We found that Earth system models describe the dynamics of primary production in the
North Sea poorly, and therefore the effects of climate change on future primary production
are uncertain. The methods demonstrated here can be applied to other geographical
locations and are not limited in application to primary production.
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1 INTRODUCTION

The resilience of marine ecosystems to future climate change and human activities is dependent on
primary production. Understanding change at the base of the marine food web is fundamental to
our understanding of how climate change impacts cascade through the ecosystem (Capuzzo
et al., 2018).

The climate impacts on primary production can be simulated with Earth system models (ESMs).
ESMs are increasingly being used in the context of fisheries management (Kearney et al., 2021).
Outputs of primary production from ESMs are often used as boundary conditions in regional
fisheries models (e.g. Barange et al., 2014; Bryndum-Buchholz et al., 2019; Lotze et al., 2019;
Bryndum-Buchholz et al., 2020; Tittensor et al., 2021), which are often for a whole region and
spatially implicit (e.g. North Sea multispecies size-spectrum model of Blanchard et al., 2014). There
are common protocols for running these models with inputs from ESMs (e.g. Tittensor et al., 2018),
something known as dynamic downscaling-child domain (see Drenkard et al., 2021). However, the
ESMs all tend to say different things about primary production and there can be a number of
complexities involved in connecting ESMs to regional fisheries models (Schrum et al., 2016; Kearney
et al., 2021), which often require either statistical or dynamical downscaling (Drenkard et al., 2021),
leading to uncertainty.
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Some studies attempt to take account of uncertainty by using
several different estimates of primary production from different
ESMs (e.g. Tittensor et al., 2018; Pozo Buil et al., 2021) but in
order to interpret the results, one must make judgements about
which of the estimates are most likely to be right. In reality, no
more than one can be right, and most probably all of them will be
wrong. Despite this, they all give information about primary
production level (Skogen et al., 2020) and therefore one would
ideally synthesise the empirical and modelling studies to give a
coherent estimate of primary production.

In this study we were interested in the primary production in
the North Sea. Methods of weighting ESMs, such as Bayesian
model averaging (Banner and Higgs, 2017), assume that one of
the models gives the exact value of the primary production, which
we do not feel is a reasonable assumption. Further, we did not
assume that the model average would lead to the correct result, as
we do not expect the ESMs to be centered on the truth (Knutti,
2010; Chandler, 2013; Rougier et al., 2013; Christiansen, 2021).
Instead we use an empirical study and several ESMs to quantify
the uncertainty in the true primary production both in the past
and the future. We adopted the ensemble modelling approach of
Spence et al. (2018), which has been applied to fisheries
management (Spence et al., 2021), to statistically downscale
ESMs’ estimates of primary production in the North Sea to give
a coherent estimate for primary production under two future
climate scenarios with quantifiable uncertainty. This approach
characterises how the ESMs were wrong through time. Each ESM
output plus a discrepancy term, specific to that ESM, is equal to
the truth. The discrepancy terms and the truth are uncertain, so
we used the empirical study of Capuzzo et al. (2018), a noisy
incomplete observation of the truth, to learn these values. We
present the empirical study and the ESMs in Section 2, show the
results in Section 3 and briefly describe their possible uses of the
results in Section 4. The projections of primary production for the
two scenarios along with code from this study are available at
https://github.com/michaelspence/EnsemblePP.
2 METHODS

In this study we estimated the primary production in the North
Sea under two future climate scenarios from 1984 until 2100 by
combining projections from ESMs and an empirical study, whilst
quantifying the uncertainty, using the ensemble model of Spence
et al. (2018).

2.1 Scenarios
The Coupled Model Inter-comparison Project Phase 6 (CMIP6)
projections make use of Shared Socioeconomic Pathways (SSP,
O’Neill et al., 2016), which are designed to provide future
scenarios of anthropogenic climate forcing spanning a range
from a low emission scenario characterized by active mitigation
(SSP126) to a high emission scenario (SSP585). Each SSP is
associated with plausible combinations of projected population
growth, economic activity, energy intensity, and socio-
economic development.
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The SSP scenarios were named based on their total radiative
forcing by 2100, and one offive baseline societal pathways. In this
study we choose two possible futures, one representing modest
mitigation activity (SSP370), and one representing a
continuation of historical fossil fuel-reliant development trends
with no additional mitigation (SSP585), and investigated the
primary production under both scenarios up until 2100.

2.2 Earth System Models
In this study we used 10 ESMs from CMIP6 (see Table 1 in
Séférian et al., 2020) to project average annual North Sea primary
production for both SSP370 and SSP585 climate scenarios. The
ESMs were projected up to 2014 forced by historical emissions
and then the two SSP scenarios began in 2015. We calculated
annual mean primary production for each year over the whole of
the North Sea for each ESM. Although the ESMs’ biogeochemical
formulations are of varying complexity (Séférian et al., 2020) we
included them all in the ensemble, as if they perform poorly the
ensemble model discounts them.

2.3 Empirical Studies
Capuzzo et al. (2018) presented a time series of gross primary
production in the North Sea from 1988 to 2013. Primary
production was estimated using in situ measurements of
chlorophyll, underwater light and the empirical model of Cole
and Cloern (1987). The model was fitted to measurements of
primary production using the 14C method with an R-squared
value of 0.86. For more details see Capuzzo et al. (2018).

2.4 Ensemble Model
The primary production projections from the ESMs were
combined with the empirical study using the ensemble model
of Spence et al. (2018). We fitted two different ensemble models,
one for each scenario. The ensemble model for each scenario is
described below.

2.4.1 The Truth
At time t, the natural logarithm of the true primary production
under each scenario, y(t), evolved as a random walk,

y tð Þ ∼ N y t−1ð Þ,s 2
s

� �
, (1)

where a ~ N (b,c) means that a is sampled from a Gaussian
distribution with expectation b and variance c. The data from
Capuzzo et al. (2018) was an indirect observation of the true
primary production, exp(ŷ (t)), for t = (1988, … ,2013). As
Capuzzo et al. (2018) reported an R-squared value of 0.86, we
said that

ŷ tð Þ ∼ N y tð Þ, 0:1462
� �

, (2)

as the variance of ŷ (t) was 0.131 (see Supplementary
Material S1.2).

2.4.2 ESMs
For each scenario the primary production was projected by 10
ESMs, with the natural logarithm of ith ESM’s projection at time
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t being x(t)i . The relationship between the natural logarithm of
truth and the ith ESM was

y tð Þ = x tð Þ
i + z tð Þ

i , (3)

where z (t)
i is the discrepancy of the ith ESM (Kennedy andO’Hagan,

2001). We split the discrepancy term between discrepancies that
were shared by all of the ESMs, and discrepancies that were specific
to the ith ESM. These two discrepancies were further split into fixed
discrepancies, the long-term shared discrepancy, d, and ESM i's
long-term individual discrepancy, gi, and dynamic discrepancies, the
short-term shared discrepancy, h(t), and ESM i's short-term
individual discrepancy, z(t)i , i.e.

z tð Þ
i = d + h tð Þ + gi + z tð Þ

i (4)

The ith ESM’s long-term individual discrepancy was a random
effect (for more details see Chandler, 2013; Rougier et al., 2013),

gi ∼ N 0, f2� �
: (5)

We expect each of the shared and individual short-term
discrepancy terms to be correlated in time, for example if z(t)i
was larger than 0 then we might expect z(t+1)i to also be larger
than 0. With this in mind, we let these terms follow a stationary
auto-regressive processes of order one (AR1) (for more details
see Spence et al., 2018),

h tð Þ ∼ N rhh t−1ð Þ, l
2
h

� �
(6)

and

z tð Þ
i ∼ N riz t−1ð Þ, l

2
i

� �
(7)

respectively, with | r h| < 1 and | r i| < 1.

2.4.3 Initial Values
In 1984, at the beginning of the study, we said

y 1984ð Þ ∼ N 5:4, 22
� �

, (8)

as 5.4 is the mean of the natural log of the observed primary
production. As the short-term discrepancy terms are stationary
AR1 processes, the initial distributions were

h 1984ð Þ ∼ N 0,
l2
h

1 − r2h

� �
(9)

and

z 1984ð Þ
i ∼ N 0,

l2
i

1 − r2i

� �
(10)

We used a Kalman filter to calculate the likelihood of the
ensemble model (Chui and Chen, 2009), and then to estimate
the truth (Durbin and Koopman, 2002; Strickland et al., 2009).
As we were interested in the uncertainty of the estimates, we
adopted a Bayesian framework (Bayes, 1763). Due to the high
dimensionality and correlation of the uncertain parameter space,
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we fitted the ensemble model using the No U-turn Hamiltonian
Monte Carlo (Hoffman and Gelman, 2011) in the package Stan
(Stan Development Team, 2020). We ran the algorithm for 4000
iterations discarding the first 2000 as burn in. For more details
see the Supplementary Material S2.
3 RESULTS

The ESMs disagree with each other about the magnitude of
primary productivity, but tend to agree with each other on there
being little future trend and on SSP370 and SSP585 being similar.
On the other hand, the empirical study showed a lot more inter-
annual variation than the ESMs. The ESMs inability to capture
inter-annual variability suggests that the ESMs are not good at
describing primary production in the North Sea on the short-
term (Figure 1) The ESMs project changes in future primary
production that are smaller relative to the inter-annual variation
implied by the empirical study.

There was not a substantial difference in projections of
primary production [exp (y(t))] between the two scenarios from
the ensemble model (Figure 2), with both scenarios predicting
that the primary production in the North Sea in 2041-2050 will be
lower than it was in 1991-2000 (with probability 0.996), but
higher than in 2001-2010 and 2011-2020 (with probability 0.983
and 0.764 respectively under the SSP585). Table 1 shows
comparisons of decades under SSP585. We found that there’s
not enough evidence in the ESMs to make strong statements
about which scenario would give a higher primary production in a
given year (see Supplementary Material S3.1).

The median trajectories in Figure 2 masked inter-annual
variability in individual samples from the ensemble model,
which showed similar variability for each scenario (Figure 3).
These represent integrated knowledge of a suite of models and
empirical data that can be used as input to other studies, freeing
them from dependence on a subset of models or data, and
assisting with their quantification of uncertainty connected
with primary productivity.
4 DISCUSSION

In this brief research report, projections of primary production
in the North Sea from 10 ESMs for two future climate scenarios,
SSP370 and SSP585, were statistically downscaled, using the
ensemble model of Spence et al. (2018) and the empirical
study of Capuzzo et al. (2018), with robust calculations
of uncertainty.

The ensemble model exploits the strengths, while discounting
the weaknesses, of the different sources of information (empirical
study and the ESMs). In this study it learns about the short-term
variability from the empirical study, but the long-term changes
from the ESMs. Therefore the short-term dynamics in the future
are quite uncertain, but we have more confidence in the future
level of primary production being broadly similar to the past
May 2022 | Volume 9 | Article 828623
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(Table 1 and Figure 2). Despite the summaries of the ensemble
model giving relatively stable primary production in the future,
samples of potential primary production levels do show inter-
annual variability (Figure 3).

Alternative ways of combining the ESMs that assume that one
of the ESMs is correct (e.g. Bayesian model averaging), or that
the average of the ESMs is the truth, would fail to show this large
uncertainty, despite it being clear that none of the ESMs are able
to capture the inter-annual variability. We see this a positive
of the ensemble model of Spence et al. (2018), as it does not force
Frontiers in Marine Science | www.frontiersin.org 4
information when there is none, something that could result in
the uncertainty being underestimated which could have bad
consequences for management (Harwood and Stokes, 2003).
More generally, this demonstrates that one does not have to
decide whether to include specific modelling studies, something
that that is seen as a ‘major crux’ of ensemble modelling
(Jardim et al., 2021), as studies that do not give much
information will simply be ignored.

Some of the ESMs are better than others at modelling primary
production, possibly due to the aims of the individual ESMs, with
some ESMs having more complex representations of primary
production, however none of them seem able to capture the
observed behaviour, even when allowing for observational errors.
We chose the ESMs as they were the only models that were
available to us, however the ensemble model framework allows
additional models, and observations, to be included if they
became available (Spence et al., 2021). To reduce the
uncertainty in the effects of climate change on primary
production in the North Sea, effort should be focused on
developing regional models that can simulate primary
production changes on shorter time scales (Schrum et al.,
2016; Tittensor et al., 2018), as well as including regional
models (Holt et al., 2014) and other empirical studies, such as
satellite data (Tucker and Sellers, 1986) in the ensemble model,
but this is beyond the scope of the study. In addition, future work
could investigate the sensitivity of choices in how short-term
discrepancies evolve in the ensemble model. Alternative models,
such as auto-regressive models of higher orders or moving
average models, could be used instead although we do not
imagine the results would change much here.

Primary production projections for the North Sea under the
two scenarios from the ensemble model and the code are available
at https://github.com/michaelspence/EnsemblePP. We envisage
FIGURE 2 | The empirical study from Capuzzo et al. (2018) in black and the
ensemble model’s median projection of the true primary production [ exp ( y
(t) ) ] for SSP370 and SSP585 in blue and red respectively. The dshed lines
are the 5th and 95th percentiles.
A

B

FIGURE 1 | The ESMs’ projections in grey for a) SSP370 and b) SSP585. The empirical study from Capuzzo et al. (2018) is the black solid line with the 5th and
95th percentiles being the black dashed lines.
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that the primary production projections generated in this study
could be used as inputs to other empirical and modelling studies.
The approach demonstrated here provides an appropriate way to
statistically downscale the ESMs, exploiting the information given
in each ESM. The methods used in this study are applicable to
other geographical locations and are not limited in application to
primary production. This resource will benefit future studies by
reducing their dependence on a single model or data scenario and
facilitating the provision of robust estimates of the variables of
interest, and their associated uncertainties.
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TABLE 1 | Probability (to 3 decimal places) that the decade on the row will have a higher mean primary productivity than the decade on the column under future
projection SSP585.

1990s 2000s 2010s 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s

1990s NA 1.000 1.000 0.994 0.992 0.996 0.997 0.998 0.999 0.997 0.997
2000s 0.000 NA 0.075 0.013 0.010 0.017 0.018 0.028 0.052 0.035 0.032
2010s 0.000 0.925 NA 0.190 0.207 0.236 0.239 0.284 0.348 0.308 0.291
2020s 0.006 0.988 0.809 NA 0.485 0.530 0.535 0.579 0.628 0.601 0.584
2030s 0.008 0.991 0.793 0.515 NA 0.540 0.544 0.588 0.642 0.604 0.597
2040s 0.004 0.983 0.763 0.470 0.460 NA 0.517 0.548 0.606 0.567 0.560
2050s 0.003 0.982 0.761 0.464 0.456 0.482 NA 0.553 0.618 0.564 0.560
2060s 0.002 0.972 0.717 0.422 0.412 0.452 0.447 NA 0.569 0.521 0.507
2070s 0.001 0.949 0.652 0.372 0.358 0.394 0.382 0.432 NA 0.440 0.448
2080s 0.003 0.965 0.693 0.399 0.396 0.434 0.436 0.479 0.560 NA 0.490
2090s 0.004 0.968 0.709 0.416 0.404 0.440 0.440 0.493 0.552 0.509 NA
Ma
y 2022 | Volum
e 9 | Article 8
The diagonals are not applicable (NA).
FIGURE 3 | A single sample from the ensemble model’s projection of the
true primary production [ exp ( y (t) ) ] for SSP370 and SSP585 scenarios in
blue and red respectively.
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