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INTRODUCTION

Sea cucumber (Apostichopus japonicus) is a representative economic aquaculture species of
echinoderms with a unique phylogeny and evolutionary classification. In China, the sea cucumber
industry covered ∼246,745 hectares, and the output was 171,000 tons (2020 China Fisheries
Yearbook). Genetic resources include nucleotide and amino acid sequences, novel functional gene
information, transcript isoforms, and molecular markers. Utilizing genetic resources provides
materials for analyzing biological characteristics or performance traits. In A. japonicus, genome
and transcriptome sequences provided genetic resources to investigate its morphological evolution,
visceral regeneration, saponin biosynthesis, and aestivation regulation (Zhang et al., 2017; Li et al.,
2018). The construction of genetic resources can also play a critical role in the breeding industry
and germplasm preservation for sea cucumber. For instance, in molluscan aquaculture, genomic
resources are helpful for selective breeding and produce new combinations of genotypes with
enhanced performance (Guo, 2009). In addition, the genetic resources of wild fish species provide a
large amount of initial genetic material for germplasm preservation and supplemental brood stock
of new strains (Lind et al., 2012).

Transcriptome sequencing is one of the fundamental genetic resources to study gene expression
and transcriptional regulatory mechanisms in A. japonicus. Since 2011, transcriptome sequencing
of A. japonicus has been conducted by 454 sequencing (Sun et al., 2011) and Illumina HiSeqTM

2000 platform (Zhou et al., 2014). In A. japonicus, an extensive set of protein-coding genes
and potential genetic markers were identified using transcriptome analysis (Zhou et al., 2014,
2016b). Furthermore, transcriptome analyses have revealed the global expression patterns during
critical developmental processes or cellular responses to environmental factors. For instance,
transcriptome analysis of sea cucumber during the anti-bacterial process provided a valuable
database of the interactions of mRNA-miRNA and gene expression regulatory mechanisms (Zhang
et al., 2013). Comparative transcriptome analysis of multiple sea cucumber tissues revealed the
molecular mechanisms of larval development (Boyko et al., 2019), growth variation (Gao et al.,
2017), color variation (Jo et al., 2016), tissue-specific expression (Zhou et al., 2016a), tissue
development (Zhan et al., 2019) and regeneration (Sun et al., 2011), responses to environmental
stress (Li et al., 2019), aestivation (Yang et al., 2021), evisceration behavior (Ding et al., 2019),
tenderization (Dong et al., 2019), and immune responses (Guo et al., 2021).
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The first generation of sequencing technology-Sanger
sequencing, has been used to explore the gene sequences and
structure in a few studies of sea cucumber. As second-generation
sequencing has lower sequencing costs, higher sequencing
throughput, and sequencing speed (Kchouk et al., 2017), many
studies have been conducted with next-generation sequencing
to investigate physiological and biological processes. However,
the second-generation sequencing only provided short reads
(Kchouk et al., 2017), which could not include the full-length
transcripts and splicing isoforms. This problem has been solved
by the third generation of sequencing, Pacbio Single Molecular
Real-Time (SMRT) sequencing (Rhoads and Au, 2015). Pacbio
SMRT Sequencing is a new high throughput sequencing strategy
to explore longer reads (average 10–16 kb for PacBio RSII,
average 10–14 kb for PacBio Sequel per SMRT cell) (Ardui
et al., 2018) in either genomic or transcriptomic levels of
organisms. Comparing with first and next generation sequencing
technologies, Pacbio sequencing is real-time sequencing, which
obtains the sequences of a target DNA molecule through the
replication process (Rhoads and Au, 2015). During replication,
4 fluorescent-labeled dNTPs produce different light pulse that
can identify the bases (Rhoads and Au, 2015). This technology
has been widely used in sequencing genomes for many marine
organisms. For example, Pacbio SMRT sequencing was used
to obtain long reads and promote the sea cucumber reference
genome assembly (Zhang et al., 2017; Li et al., 2018).

Without assembly via bioinformatic tools, the full-length
transcriptome could provide complete transcripts (5′UTR,
3′UTR, polyA) without sequence fragmentation (Minoche et al.,
2015). In addition, full-length transcriptome could identify
alternative splicing isoforms (Arzalluz-Luque and Conesa, 2018)
and novel functional genes (Wang et al., 2019). Full-length
transcriptomes of several marine organisms were built in the last
few years, including fishes (Ge et al., 2021) and shrimp (Katneni
et al., 2020), etc. In these two species lacking a reference genome,
without assembly from short reads, Pacbio sequencing helps
construct an ideal full-length reference transcriptome to further
analyze transcriptional regulation under various conditions or
functional studies of desired economic traits (Katneni et al.,
2020; Ge et al., 2021). However, a full-length transcriptome of
an Echinoderm species, such as sea cucumber, is still lacking.
Therefore, the full-length transcripts resources of A. japonicus
could be a valuable database for diverse splicing isoforms,
RNA processing status, the landscape of coding sequences,
transcriptional factors, lncRNAs, and novel markers as SSRs in
A. japonicus.

DATA DESCRIPTION

Sample Collection, Library Preparation,
and Pacbio SMRT Sequencing
Healthy adultA. japonicuswere sampled fromWeihai, Shandong
Province, China. Five tissue samples (intestine, respiratory tree,
muscle, gonads, calcareous ring) were, respectively, dissected
from female and male sea cucumber and immediately frozen in
liquid nitrogen and stored in −80◦C freezer. The broodstock

of A. japonicus were also collected from Weihai, and artificially
spawned by flowing sea water at 16◦C stimulation, then placed
in the plastic buckets. The embryos were collected and cultured
in filtered seawater at 18◦C, and the developmental stages were
examined using a light microscope. Fertilized embryos and
different developmental stages (blastula, gastrula, Auricularia,
doliolaria, pentactula) were collected, flash-frozen, and stored
in −80◦C freezer. An equal amount of total RNA from each
sample was pooled together, and Poly-A selection was used to
remove rRNA efficiently. The cDNA library was constructed
by using the SMARTer PCR cDNA Synthesis Kit for Pacbio
SMRT sequencing. SMRT libraries were constructed following
the standard protocols. The quality passed libraries were
sequenced using the Pacbio Sequel platform. Low-quality reads
(Qphred <=20), adapter-related reads, and ambiguous reads
(N ratio>10%) were filtered from raw reads. The classification
of raw reads was listed in Supplementary Figure 1: clean reads
(97.13%), reads containing N (0.20%), low-quality reads (0.31%),
and adapter-related reads (2.36%).

Full-Length Transcriptome
The sequencing data was analyzed using PacBio SMRTlink V7.0.
LoRDEC was used to accurately and efficiently correct long
read errors (Salmela and Rivals, 2014). CD-HIT v4.6.8 was
used to reduce sequence redundancy and improve the quality
of full-length transcriptome (Fu et al., 2012). The similarity
threshold was set at 95%, and the parameters were -c 0.95;
-T 6; -G 0; -aL 0.00; -aS 0.99; -AS 30. The statistics of the full-
length transcriptome are listed in Figure 1A. The full-length
transcriptome of A. japonicus is ∼85.75 Gbp, including 41,792
transcripts in total. The mean length of the transcripts is
2,052 bp. The minimum length of the transcripts is 95 bp,
whereas the maximum length is 11,812 bp. The N50 of the
full-length transcriptome is 2,524bp, and N90 is 1,116 bp.
Approximately 39.16% of transcripts (16,366 transcripts) and
32.63% of genes (4,804 genes) are in the length interval of 1 k−2
kbp (Supplementary Figure 2).

Gene Annotation and Classification
The sequences after reducing sequence redundancy by CD-
HIT were annotated against NCBI non-redundant protein
sequence (NR), NCBI nucleotide sequence (NT), KEGG,
Karyotic Ortholog Groups (KOG) (Tatusov et al., 2003), and GO
(Ashburner et al., 2000) databases. We used diamond v0.8.36
for annotation against NR, KOG, and KEGG, and ncbi-blast-
2.7.1+ against NT, and custom perl against GO. The full-
length transcriptome was annotated with Nr (8,984 genes), Nt
(3,295 genes), KOG (6,655 genes), KEGG (8,767 genes), GO
(6,879 genes). We conducted BUSCO analyses to evaluate the
non-redundant full-length transcriptome, and the assessment
indicated that 59.2% of conserved genes were found using
eukaryote lineage. A total of 9,831 genes are annotated based
on five databases, which was ∼1/3 of total annotated genes
in the genome assembly (Zhang et al., 2017; Li et al., 2018).
A total of 30,350 protein-coding genes were annotated in the
genome assembly version (Zhang et al., 2017), whereas 29,451
protein-coding genes in another version of genome assembly
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FIGURE 1 | (A) Statistics of Apostichopus japonicus full-length transcriptome; (B) Gene annotation and Venn diagram of A. japonicus full-length transcriptome; (C)

Classification of annotated genes using KOG databases.

Frontiers in Marine Science | www.frontiersin.org 3 February 2022 | Volume 9 | Article 834255

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Yang et al. Transcriptome Resource for Sea Cucumber

FIGURE 2 | Utilization of A. japonicus full-length transcriptome. (1) Isoform number per gene in A. japonicus full-length transcriptome. (2) Coding region length

distribution of A. japonicus full-length transcriptome. (3) Distribution of SSR motifs. (4) Venn diagram of lncRNA prediction; (5) Transcriptional factor prediction of A.

japonicus full-length transcriptome.
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(Li et al., 2018). A total of 2,129 genes are shared and found
in five databases (Figure 1B). Using multiple databases (Nr, Nt,
KEGG, KOG, and GO) for gene annotation, the full-length
transcriptome of sea cucumber was well-annotated and ready
for transcriptome analyses. After gene annotation with NR
databases, genes in the full-length transcriptome of A. japonicus
share the highest similarity with corresponding genes (over
4,000 genes) in the sea urchin Strongylocentrotus purpuratus
(Supplementary Figure 3).

The other databases, including SwissProt, Pfam, Clusters
of Orthologous Groups of proteins (COG), are used for
gene classification. In addition, further analyses such as GO,
KOG, and KEGG enrichment analysis of A. japonicus full-
length transcriptome were conducted. Annotated with the KOG
database, matched genes are categorized into function classes
such as signal transduction mechanisms and posttranslational
modification, protein turnover, chaperones (Figure 1C). GO
term analyses of annotated genes from full-length transcripts
are listed in Supplementary Figure 4. KEGG annotation of sea
cucumber full-length transcriptome (Supplementary Figure 5)
showed that 523 genes are categorized into transport and
catabolism in cellular processes. Six hundred and eighty six genes
are associated with signal transduction in the environmental
information processing category. In the genetic information
processing category, 384 genes are annotated in translation
function. In terms of metabolism, 296 genes are associated with
carbohydrate metabolism. In terms of organismal systems, 382
genes are endocrine system-related genes.

Isoforms and Gene Structure Analysis
Utilizing Full-Length Transcriptome
The full-length transcriptome provides a data resource for gene
isoforms in A. japonicus, which will be helpful for alternative
splicing analyses under different conditions or desired economic
traits. In other species, the full-length transcriptome was used
to investigate novel transcripts and isoforms in unfertilized
eggs (Mehjabin et al., 2019), early gametogenesis (Zhang et al.,
2020), sex differentiation (Cui et al., 2021), economically
phenotypes (Ali et al., 2021), environmental stress (Shi et al.,
2020), and immune response (Zhang et al., 2019), etc. After
removing redundant sequences, the isoform number per gene
of 14,721 genes has been obtained from A. japonicus full-
length transcriptome. Among the full-length non-redundant
transcripts, a total of 8,299 genes have only one isoform
(Figure 2). The other genes have more than one isoform, in
detail, 2,481 genes (two isoforms), 1,281 genes (three isoforms),
699 genes (four isoforms), 452 genes (five isoforms), 289 genes
(six isoforms), 218 genes (seven isoforms), 172 genes (eight
isoforms), 135 genes (nine isoforms). The number of genes
was decreased with the increase of isoform number per gene.
Moreover, approximately 695 genes have more than ten isoforms
(Figure 2).

The gene structure analysis was conducted based on CDS
prediction, SSR analysis, lncRNA prediction, and transcriptional
factor analysis. CDS prediction analysis was conducted using
ANGEL software (Shimizu et al., 2006). In CDS prediction, the

CDS length of over 90% is <2,500 bp (Figure 2). Additionally,
full-length transcriptome has been helpful for marker discovery
for simple sequence repeats. We used MISA (http://pgrc.ipk-
gatersleben.de/misa/misa.html) to identify SSRs. The primary
type of SSRs (>8,000 SSRs) was mono-nucleotide with 9–12
repeats, followed with di-nucleotide with 5–8 repeats (∼2,000
SSRs) and mono-nucleotide with 13–16 repeats (∼2,000 SSRs)
(Figure 2). Furthermore, we used four methods to predict
lncRNA in the full-length transcriptome. The lncRNAs were
predicted by CNCI (Sun et al., 2013), CPC (Kong et al.,
2007), Pfam (Finn et al., 2016), and PLEK (Li et al.,
2014). A total number of 8,516 lncRNAs were found in the
full-length transcriptome. A total of 6,317 lncRNAs, 5,951
lncRNAs, 6,951 lncRNAs, 4,950 lncRNAs were found using
CNCI, CPC, Pfam, and PLEK, respectively. A total of 3,656
shared predicted lncRNAs using four methods (Figure 2).
lncRNAs can interact with DNA, RNA, and proteins to
regulate RNA splicing and translation of adjacent and distinct
genes, and alter the chromatin structure and function (Statello
et al., 2021). A resource of lncRNAs in sea cucumber will
benefit the study of gene regulation by lncRNAs and their
functions. For length distribution of lncRNA and mRNA,
the peaks of lncRNA and mRNA are approximately 1,000
and 2,000 bp, respectively (Supplementary Figure 6). We also
conducted transcriptome-wide identification of transcription
factor families from A. japonicus full-length transcriptome using
animalTFDB2.0 (Zhang et al., 2015). The top three transcription
factor families are Zf-C2H2 (Zinc finger C2H2), TF_bZIP (basic
leucine zipper), and HMG (High Mobility Group) (Figure 2).
The analyses of transcription factor families in sea cucumber
will gain a deeper understanding of their interactions with target
genes and gene regulatory networks.

In the present study, the full length mRNA sequences
were obtained from both adult female and male samples,
including five tissues—intestine, respiratory tree, muscle, gonads,
circumoral nerve ring, and several critical developmental stages
(fertilized embryos, blastula, gastrula, Auricularia, doliolaria,
pentactula), which will become one of the important genetic
resources for both research and industry studies in sea cucumber
Apostichopus japonicus.
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