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Behavioral rhythms are a key aspect of species fitness, since optimize ecological
activities of animals in response to a constantly changing environment. Cabled
observatories enable researchers to collect long-term biological and environmental data
in real-time, providing relevant information on coastal fishes’ ecological niches and
their temporal regulation (i.e., phenology). In this framework, the platform OBSEA (an
EMSO Testing-Site in the NW coastal Mediterranean) was used to monitor the 24-h and
seasonal occurrence of an ecologically iconic (i.e., top-predator) coastal fish species,
the common dentex (Dentex dentex). By coupling image acquisition with oceanographic
and meteorological data collection at a high-frequency (30 min), we compiled 8-years’
time-series of fish counts, showing daytime peaks by waveform analysis. Peaks of
occurrence followed the photophase limits as an indication of photoperiodic regulation
of behavior. At the same time, we evidenced a seasonal trend of counts variations
under the form of significant major and minor increases in August and May, respectively.
A progressive multiannual trend of counts increase was also evidenced in agreement
with the NW Mediterranean expansion of the species. In GLM and GAM modeling,
counts not only showed significant correlation with solar irradiance but also with water
temperature and wind speed, providing hints on the species reaction to projected
climate change scenarios. Grouping behavior was reported mostly at daytime. Results
were discussed assuming a possible link between count patterns and behavioral activity,
which may influence video observations at different temporal scales.

Keywords: day-night rhythms, photoperiodism, imaging, cabled observatories, visual predator, temporal niche,
habitat use, monitoring footprint

INTRODUCTION

Diel (i.e., 24-h based) and seasonal biological processes of species inhabiting temperate regions, are
synchronized to changes in photoperiod length and overall levels of environmental illumination
(Foster and Kreitzman, 2010; Visser et al., 2010; Helm et al., 2013; Kronfeld-Schor et al., 2013). In
marine coastal fishes, the photoperiod light intensity are among the most important environmental
variables controlling biological rhythms and overall phenology (Naylor, 2010). For example,
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environmental illumination determines the timing of activity of
predators and preys, that perform their ecological tasks according
to a trade-off between maximum opportunities of visual-based
feeding and minimum mortality risk (Daan, 1981; Reebs, 2002;
Brierley, 2014; Mittelbach et al., 2014). However, the exposure
of marine costal ecosystems to solar light produces a seasonal
co-variation of photoperiod length with other habitat variables
that also affect biological rhythms. For example, temperature can
have strong effects on fishes at day-night and seasonal scales
(Reebs, 2002; López-Olmeda et al., 2006). Combined photoperiod
length and temperature cycles regulate physiological processes
over the day-night alternation, resulting in global growth and
reproduction patterns at a seasonal level (Falcón et al., 2010;
Bulla et al., 2017; Cowan et al., 2017). Nevertheless, many marine
species can also follow the lunar or tidal cycle to carry out their
biological processes within the lunar day of 24.8-h (Naylor, 2010).
In particular, tidal rhythms in marine species were related to
locomotion and reproduction (Wagner et al., 2007; Aguzzi et al.,
2010).

The interaction of activity rhythms of all species within
a marine community may affect the estimation of its overall
biodiversity. This is particularly significant for ecologically
important species, such as top-predators, that play a critical
role in maintaining the structure and stability of communities
and affect ecosystem functioning (Heithaus et al., 2008, 2012;
Byrnes et al., 2021). Sampling should be repeated at a frequency
sufficient to grasp the whole alternation between consecutive
peak and through in population abundances as a product of
massive rhythmic displacement (Aguzzi et al., 2015b). Moreover,
that sampling has to be repeated in association with concomitant
data collection to understand how photoperiod length, light
intensity and other environmental variables modulate behavioral
responses (Aguzzi et al., 2020d). Similar temporal effects exist
on fish grouping behavior (Rodriguez-Pinto et al., 2020), whose
strategy can be related to foraging, spawning and predator
evasion (Ford and Swearer, 2013; Makris et al., 2019; Lear
et al., 2021). Moreover, environmental modulation of grouping
behavior of fish has been observed in association to photoperiod
changes (Meager et al., 2012; Georgiadis et al., 2014). Changes
on grouping behavior, driven by human activities such as fishing,
could affect the ecosystem functioning, and have repercussions
for biodiversity conservation and fisheries management strategies
(Sbragaglia et al., 2021).

Data on the phenology of marine fishes, as a product of
a variation in local abundances, can be studied by cabled
observatories for their capability to perform high-frequency,
continuous and long-lasting imaging along with a concomitant
multiparametric oceanographic data acquisition (Snelgrove et al.,
2014; Danovaro et al., 2017; Aguzzi et al., 2019, 2020a,b;
Rountree et al., 2020). In particular, cabled systems have
the capacity to host many environmental sensors at high
resolution, collecting many habitat variables, thus giving a
better instrumental field approach to fishes’ ecological niches
(Hutchingson, 1957). Stand-alone or lander-based cameras are
also good tools to study those aspects of species (e.g., Langlois
et al., 2020; Drazen et al., 2021). But, given to energy constrains, a
limited set of environmental variables is usually acquired. Each

environmental variable measured by the installed sensor (e.g.,
essential environmental variables) can add habitat information
for each imaged species (Aguzzi et al., 2020b). Time-lapse
imaging studies with that technology have been efficiently used
to describe diel and seasonal patterns in fish counts as a proxy
for behavior rhythms, resulting in projected abundance changes
at all depths of the continental margin (e.g., Juniper et al., 2013;
Doya et al., 2014; Matabos et al., 2014, 2015; Milligan et al.,
2020). In fact, in the marine three-dimensional scenario of the
seabed and the water-column, day-night and seasonal shifts in
populations bathymetric distributions, displacement ranges, and
overall activity, influence the number of collectable animals into
our sampling windows (e.g., Aguzzi and Company, 2010; Scapini,
2014; Chatzievangelou et al., 2021). A variation in counted
animals produce changes in estimated abundances for a species in
comparison to all the others (i.e., evenness; Aguzzi et al., 2015b).
When rhythmic abundance changes are not carefully considered
at sampling, their effect transcend to the computed biodiversity
(Doya et al., 2017).

The use of cabled observatories for the monitoring of
economically or ecologically important fish species is of relevance
for the international conservation strategy agendas (Aguzzi et al.,
2020c). Here, we used a coastal cable observatory to video-
monitor the 24-h and seasonal occurrence of a top-predator,
the common dentex (Dentex dentex; hereafter refers to as
Dentex), at an artificial reef at high frequency over almost a
decade. This species represents an iconic study case also for its
value in commercial and recreational fisheries (Marengo et al.,
2014; Sbragaglia et al., 2020), and a previous time-lapse study
at the same artificial reef using the same cabled observatory
suggested a relationship of fish presence with temperature,
salinity and photoperiod length (Sbragaglia et al., 2019). Here,
we moved a step forward and attempted to measure the
association of count patterns over the 24-h to the photoperiod
length, scaling this phenomenon over the whole seasonal cycle
(i.e., photoperiodism). In doing so, we evaluated which of the
measured oceanographic and meteorological variables mostly
affected the reported count patterns. At the same time, we
innovatively quantified the occurrence and the temporal dynamic
of grouping behavior, also relating this phenomenon to the
environmental variation.

MATERIALS AND METHODS

The OBSEA Platform Location and
Equipment
The coastal Seafloor Observatory (OBSEA1) is a cabled
observatory platform located at 4 km off Vilanova i la
Geltrú (Catalonia, Spain) at 20 m depth within the Colls
i Miralpeix Natura 2000 area (Aguzzi et al., 2011; Del Rio
et al., 2020; Figures 1A,B). The observatory is equipped with
an OPT-06 Underwater IP Camera (OpticCam), which can
acquire images/footages of the surrounding environment with a
resolution of 640 × 480 pixels.

1www.obsea.es
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FIGURE 1 | Location of the OBSEA video platform in the NW Mediterranean (A) with specifications for the Catalan coasts, indicating its position off the harbor of
Vilanova i la Geltrú (B). The OBSEA platform is connected to shore with an Ethernet powering/data transfer cable (C.a), camera focusing on the artificial reef (C.b),
where the number of individuals per photo of D. dentex can be observed and counted within a constant field of view (D).

OBSEA is also equipped with two custom developed white
LEDs (2,900 lumen; color temperature of 2,700 K), located
besides the camera (with an angle of 120◦) at 1 m distance from
each other to allow image acquisition at night (Aguzzi et al.,
2011). A procedure controlling the ON-OFF status of lighting
immediately before and after image acquisition, was performed
because of the artificial photic footprint on species (e.g., Aguzzi
et al., 2010; Matabos et al., 2011). The lights were switched ON
and OFF (lasting for 3 s) by a LabView application that also
controlled their white balance.

Image Acquisition, Fish Counting and
Environmental Data Processing
We acquired 70,254 images with a 30 min time-lapse mode,
continuously during 8 years (2012-2019), preserving the same
field of view, centered on the artificial reef at 3.5 m in front of
the OBSEA (see Figure 1C). Individuals of Dentex were manually
counted for each image (Figure 1D) by a trained operator
following procedures by Condal et al. (2012) and Aguzzi et al.
(2013).

Temperature (◦C), salinity (PSU), and depth (m) were
measured by the CTD probe installed aside the camera (Aguzzi
et al., 2011). Furthermore, we collected data of air temperature
(◦C), wind speed (km/h), and wind direction (deg.) from the
meteorological station located on SARTI (Development Center

of Remote Acquisition and Information Processing Systems)
rooftop in Vilanova i la Geltrú. We also gathered sun irradiance
(W/m2) and rain (mm) from the Catalan Meteorological Service
station in San Pere de Ribes (6 km away from the OBSEA).
Time series for all the environmental data compiled by selecting
and extracting only readings contemporary to the timing of all
acquired images.

We applied range filters for the fluctuation of environmental
variables in order to remove out-layer data (i.e., due to
instruments malfunctioning). Guillén et al. (2018) was referenced
for water temperature and salinity (i.e., ranges of 11-28◦C and
36.80-39.67 PSU, respectively), since authors have a 10 years’ time
series of readings from a nearby station in Barcelona (Spain).
For air temperature and wind speed (ranges of 3-31◦C and 0-
60 km/h, respectively) we used an online website2 with 30 years
of hourly weather modeled data. Rain and solar irradiance were
not filtered since downloaded from an Institutional and already
filtered source3.

Multivariate Analysis
Prior to the multivariate analysis, we transformed the number of
individuals of Dentex per photo into nominal presence/absence

2www.meteoblue.com
3www.meteo.cat
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response variable (Zuur et al., 2007). In order to obtain an
optimized model for fish presence/absence, we then executed a
correlation analysis on the environmental variables, to group the
highly-correlated ones, removing the lesser representative from
further analyses (Zuur et al., 2007). We used a General Linear
Model (GLM) and a General Additive Model (GAM) using a
binomial distribution, to identify which selected environmental
variables mostly affected fish presence/absence, and compared
the results between those analyses. We tested both methods
because we did not have a priori reason for using a particular
model.

We proceeded with the same multivariate analyses to describe
the grouping behavior of Dentex. In order to do so, we firstly
ranked images depending on variable number of pictured
individuals (i.e., starting from 1). That frequency of groups
of individuals was compiled into a frequency histogram plot.
Then, we transformed the number of individuals into a nominal
variable for grouping or not grouping behavior (i.e., “0” when in
the photo there was only one individual, and “1” there was more
than one individual). Then, we added this column of values to
the temporal variables (i.e., hours, months and years), to detect
any temporal pattern for this social behavior and identify which
environmental variables affect it. We interpreted the data based
on ethological common use of the wording (as per the general
definition Pitcher, 1983). Thus, we consider the occurrence of the
grouping behavior as the co-presence of fishes in the same field of
view of the camera.

The correlation analysis was carried out with the library
“PerformanceAnalytics,” and GLM and GAM models were
executed using the libraries “gdata” and “mgcv” of R software.

Time Series Analysis
In order to obtain a global overview of Dentex diel and seasonal
behavioral rhythms across consecutive years, we first plotted
the 8-years visual counts time series computing the means and
standard errors (SE) values per each month of the time series.
Temporal gaps in image acquisition were evidenced by line
discontinuity. Time series analysis was performed separately
for time series of fish counts and each relevant environmental
variable for the presence/absence of Dentex evidenced by GLM
and GAM modeling (see previous Section). All graphic outputs
were again plotted in local time.

Waveform analysis was carried out to describe the diel and
seasonal pattern of activity rhythm of the species. Waveforms
computing was as follows: time series of visual counts were
subdivided in 30 min time-series and averaged together over a
standard 24-h period (i.e., 48 values per segment). A consensus
averaged fluctuation over that standard 24-h period was then
obtained by averaging all values of the different segments
at the corresponding timings. The resulting means (± SE)
were plotted to identify peaks and troughs in the waveform
profile. The peaks temporal amplitude (i.e., the phase) was
then computed according to the Midline Estimating Statistic of
Rhythm (MESOR) method (Aguzzi et al., 2006), by re-averaging
all waveform averages and the resulting value was represented
as a threshold horizontal line superimposed onto the waveform
plot. The Onset and Offset timings of activity (delimiting peaks
intervals) were estimated by considering the first and the last

waveform value above the MESOR. The peak was considered as
continuous if no more than 3 values occurred below the MESOR
(Aguzzi et al., 2020d). All waveform analyses were carried out
using the library “ggplot2” of R software.

That waveform analysis was firstly conducted on the fish 8-
years count time series and solar irradiance data, to visualize
the general peaks as a proxy for the solar-driven, behaviorally
induced changes in abundance as a product of behavioral activity
(i.e., the photic character of the species ecological niche). Then,
the same waveform analysis was repeated for each month and
each season, by joining time series counts for winter (i.e.,
December, January, and February), spring (i.e., March, April,
and May), summer (June, July, and August), and autumn (i.e.,
September, October, and November), to assess peaks’ timings and
amplitude variations as marker of photoperiodic regulation of
behavioral rhythms. Moreover, to better describe the seasonal
behavior of Dentex, and its relation with the photoperiod,
we plotted the mean values (± SE) and MESORs of number
of counts and solar irradiance of each month of the year.
Finally, the same waveform analysis was performed for those
environmental variables selected by models of presence/absence
data (see previous Section).

Additionally, we assessed precisely the average values of those
environmental variables selected by GLM and GAM modeling for
presence/absence data (see previous Section) at Dentex waveform
peaks crossing MESOR (see above), in order to add information
on the species multidimensional niche (sensu Pocheville, 2015).
At the same time, to better describe the environmental and
temporal pattern of grouping behavior, we additionally plotted
conditional densities of the environmental variables selected
by GLM and GAM models of grouping or not grouping
behavioral data.

An integrated chart depicting the temporal relationships of
waveform peaks (i.e., the phases) in fish counts and the solar
irradiance was created month by month over the whole 8 years
of data acquisition (Aguzzi et al., 2012, 2015a). The values of each
monthly waveform were compared with the respective MESOR
through an inequality function in Excel (i.e., each waveform
value per 30 min automatically resulted as “major” or “minor”
in relation to the MESOR). All waveforms values identified as
greater than the MESOR (i.e., the peak duration) were then
plotted as horizontal continuous bar per each month. That
operation was repeated for solar irradiance.

RESULTS

A total of 140257 photos should have been obtained during 8-
years of monitoring (i.e., one per 30 min, from 2012 to 2019), but
due to several malfunctioning problems creating gaps in the time
series, we were able to analyze only 7,0254 photos (50.09% out of
the total expected photos). The 95.99% of analyzed images (67438
photos) contained no Dentex (i.e., has “zero” as count value), and
a few observations had high abundance (e.g., in only 5 photos
there were more than 8 individuals; 0.18%).

We counted a total of 3,747 individuals of Dentex. The three
months with the highest number of individuals were (Table 1):
August with 649 number of individuals of Dentex (17.32%),
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TABLE 1 | Monthly D. dentex visual counts number (N), average and relative percentage (%) out of the total within the 2012-2019 monitoring period.

N Average % MESOR Onset Offset Irr.
onset

Irr.
offset

Water Temp.
onset

Water Temp.
offset

Wind speed onset Wind speed
offset

January 93 0.016 2.48 0.012 7:00 16:30 3.64 7.42 13.96 13.97 4.55 6.83

February 39 0.007 1.04 0.007 7:00 16:30 25.34 57.25 13.10 13.12 5.06 8.50

March 102 0.016 2.72 0.015 6:30 17:30 48.37 14.83 13.21 13.26 4.21 7.71

April 181 0.031 4.83 0.028 5:30 17:30 31.40 61.87 14.16 14.25 3.57 8.36

May 405 0.065 10.81 0.062 5:00 18:30 39.83 14.23 15.33 15.51 2.75 6.59

June 312 0.052 8.33 0.049 5:00 19:00 59.24 6.36 17.30 17.54 2.47 5.41

July 615 0.092 16.41 0.083 5:00 18:30 38.01 35.27 20.07 20.32 2.72 5.72

August 649 0.135 17.32 0.122 5:30 18:30 47.04 7.19 22.96 23.30 2.74 5.37

September 474 0.104 12.65 0.092 6:00 18:00 39.59 1.65 22.95 23.16 3.00 5.39

October 494 0.078 13.18 0.068 6:30 17:00 40.79 4.40 20.78 20.84 2.93 4.85

November 223 0.036 5.95 0.029 6:30 16:30 6.28 1.28 17.69 17.68 3.71 4.86

December 160 0.027 4.27 0.020 8:00 16:30 76.30 0.49 15.24 15.22 3.73 4.01

Total 3747 0.053 100 0.049 5:30 18:30 3.00 4.50 17.00 17.13 3.35 5.58

N was estimated by summing counts from all equivalent months in the 8-years’ time series. Additional parameters per month are (i.e., averaging together equivalent
months): Midline Estimated Statistic of Rhythm (MESOR), the starting and ending hours of the phase of activity (onset and offset, respectively), and average values of
environmental variables selected by statistical models for presence/absence data of D. dentex at those onset and offset values.

FIGURE 2 | Mean values and standard errors (± SE) per each month of the D. dentex counts time series during 8 years (from 2012 to 2019) of monitoring at the
OBSEA video platform. Temporal gaps in image acquisition are evidenced by line discontinuities.

July with 615 counts (16.41%), and finally October with 494
individuals of Dentex counted (13.18%).

By compiling this time series into monthly estimates (± SE),
we observed a consistent seasonal trend in Dentex counts
(Figure 2). A major peak occurred in spring-summer and its
height progressively increased over the consecutive years.

Multivariate Statistic
From the correlation analysis among the environmental
variables, we observed a significant relationship between water
and air temperatures (Correlation Index = 0.69) (Figure 3).
Accordingly, we removed the air temperature as explanatory
variable from the further analysis. We did not eliminate water

temperature because it was considered a more biologically
important variable for Dentex.

We observed that in both GLM and GAM models on
presence/absence data all the variables were significant at the 5%
level, except for salinity, wind direction and rain (Supplementary
Table 1). Both approaches gave a model where water temperature,
wind speed and solar irradiance were selected (Table 2 and
Supplementary Table 2). So, we selected these variables for the
next time series analysis.

To study the grouping behavior of Dentex, we computed
the percentage on the total number of images where it was
present (2816 photos; Figure 4). Mostly, it was observed as
solitary (2231 photos; 79.23%), but more rarely it appeared in
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FIGURE 3 | Correlation chart among the environmental variables. The name of each variable is shown on the diagonal. Below the diagonal the bivariate scattered
plots with the fitted line in red are displayed. Above the diagonal the value of the correlation plus the significance level as stars: to p-values of 0, 0.001, 0.1, 0.05, 0.1,
and 1 correspond respectively “***”, “**”, “*”, “.”, and “”.

pairs or in larger groups. In particular, in 395 photos (14.03%)
it occurred in pairs, in 169 photos (6%) it occurred in groups
of 3-5 individuals. Finally, it was observed in groups of 6-8 or
more individuals (i.e., 16 and 5 photos respectively, equal to 0.57
and 0.18%). The maximum number of individuals in a single
photo has been detected during 27th July 2019 at 8:00 in a group
of 11 individuals.

Afterward, we carried out correlation analysis between
environmental and temporal variables observing that there was
a significant relationship between water and air temperature
(Correlation Index = 0.69) (Supplementary Figure 1). As before,
we removed air temperature as explanatory variable.

Then, we performed GLM and GAM models on the grouping
or not grouping behavioral data (respectively when Dentex
was observed alone or in group of two or more individuals)
with the selected environmental and temporal variables. In
both models all the variables were significant at the 5% level,
except for wind speed and direction, solar irradiance, rain

TABLE 2 | Results from the most representative GAM modeling for the
presence/absence data of D. dentex, where metrics are also indicated: SE is the
Standard Error of the estimated fitted mean parameter.

Estimate SE z value Pr (> |z|)

(Intercept) −6.15 1.16*10−1 −53.03 < 2*10−16

Water Temperature 1.42*10−1 5.61*10−3 25.34 < 2*10−16

Wind Speed 2.63*10−2 2.43*10−3 10.83 < 2*10−16

Solar Irradiance 1.21*10−3 6.68*10−5 18.08 < 2*10−16

z value is the value of the statistic used for testing the hypothesis that the regression
coefficient is zero, and Pr (> |z|) is the p-value.

and hours (Supplementary Table 3). We observed in both
approaches that water temperature, solar irradiance, hours,
months and years were selected as relevant variables for the
grouping behavior of the Dentex (Table 3) (Supplementary
Table 4). It has to be noted that solar irradiance and month
were slightly less significant than the other variables regarding
the p-values (respectively Pr (> | z|) = 1.27∗10−02 and Pr (> |
z|) = 3.82∗10−03).

We decided to report only GAMs upon GLMs results for both
presence/absence and grouping or not grouping behavioral data,
even if the two methods obtained same outputs, because GAMs
models were considered an extension of GLMs.

Diel and Seasonal Fish Count Patterns
The waveform analysis on the 8-years’ time series showed
the occurrence of a solid diurnal peak, defining an increase

TABLE 3 | Results from the most representative GAM modeling for the grouping
or not grouping behavioral data of D. dentex, where metrics are also indicated: SE
is the Standard Error of the estimated fitted mean parameter.

Estimate SE z value Pr (> |z|)

(Intercept) −3.87*102 44.6 −8.668 < 2*10−16

Water Temperature 6.18*10−2 1.50*10−2 4.136 3.53*10−5

Solar Irradiance −4.25*10−4 1.71*10−4
−2.493 0.01267

Hour 4.63*10−2 1.30*10−2 3.575 0.00035

Month −6.57*10−2 2.27*10−2
−2.893 0.00382

Year 1.91*10−1 2.21*10−2 8.61 < 2*10−16

z value is the value of the statistic used for testing the hypothesis that the regression
coefficient is zero, and Pr (> |z|) is the p-value.
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FIGURE 4 | Histogram depicting the relative percentage of images with variable number of individuals of D. dentex, where fishes of this species were present, as a
quantification of grouping behavior.

FIGURE 5 | Global waveform analysis output plot for the D. dentex visual count and solar irradiance time series from 8 years (i.e., 2012–2019) of monitoring at the
OBSEA video platform. The dashed horizontal line is the MESOR.

of occurrence in the light hours (Figure 5). That waveform
analysis repeated at the seasonal level (Figure 6) evidenced the
photoperiodic regulation of occurrence with transient uni- and
bimodality in counts peaks: crepuscular and diurnal peaks during
respectively short and long photophases (i.e., autumn-winter
versus spring-summer). Also peaks temporal limits are following
irradiance temporal limits.

In the plotting of mean counts per month of Dentex vs. mean
solar irradiance depicting the overall seasonal fluctuation trend
in local abundance evidenced a general increase from winter to
summer, with two peaks, a major on August and a minor on May
(Figure 7). The increase of the solar irradiance follows a similar
pattern but with a peak in June (Figure 7). In accordance, the
waveforms MESORs values of Dentex for the different months
(see Table 1) is increasing from February, when this average
value is at the minimum, to August, when this average value
is at the maximum (i.e., 0.007 and 0.122 individuals per photo,
respectively). At the same time, the MESORs values of the
solar irradiance are increasing from a minimum in December

to a maximum in June (i.e., from 76.23 to 297.95 W/m2,
respectively) (Table 4).

In the integrated chart comparing Dentex waveforms peaks
(i.e., means values higher than the MESOR as horizontal
continuous band) (Figure 8 and Supplementary Figures 2, 3)
we could observe counts increases form December to June, with
onset and offset timings that shift form 8:00 and 16:30, to 5:00
and 19:00, respectively (see Table 1). For solar irradiance peaks
amplitude also varied from December to May, with onset and
offset at 8:00/15:00 and 7:00/16:30, respectively (see Table 4).
The integrated chart (see Figure 8) indicated that Dentex counts
followed the solar irradiance pattern, with values of onset and
offset that could anticipate and are delayed to the irradiance onset
of maximum 2 and 2.5-h, respectively.

In order to describe the photic niche of Dentex, we noted that
the average values of irradiance when Dentex averaged counts
start spiking (i.e., is becoming active) as the peak onset; these
are between 3 and 76.3 W/m2 (see Table 1 and Supplementary
Figures 2, 3). Inactivity (i.e., offset) occurs for average values
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FIGURE 6 | Waveform analysis output plots for visual counts of D. dentex and solar irradiance during different seasons (i.e., winter, spring, summer, and autumn)
from 8 years (i.e., 2012–2019) of monitoring at the OBSEA video platform. The dashed horizontal line is the MESOR.

FIGURE 7 | Plot of mean counts (± SE) per each month of the year of D. dentex visual counts and solar irradiance recorded during 8 years (i.e., 2012–2019) of
observations at the OBSEA. The dashed horizontal line is the MESOR.

of solar irradiance between 0.49 and 61.87 W/m2 (Table 1 and
Supplementary Figures 2, 3).

Environmental Cycles
In Table 4, we reported MESOR values, onset and offset per
each month of the year for the environmental variable previously
selected by GLM and GAM models for presence/absence data
(i.e., water temperature, wind speed, and solar irradiance).
The temporal dynamic of those variables is described below,
but not for solar irradiance that was already described (see
previous Section).

The water temperature cycle (Supplementary Figures 4, 5)
had a phase shift to early hours from January, with an onset
and offset at 15:30 and 6:30 respectively, to December, with
onset and offset at 0:00 and 17:00 respectively. Furthermore,
we reported that the water temperature had a minimum and a
maximum MESOR value in February and August (i.e., 13.11◦C
and 23.14◦C, respectively). One should notice that those two
months also correspond to the minimum and maximum for
Dentex.

The wind speed cycle (Supplementary Figures 6, 7) followed
the same pattern of solar irradiance and fish visual counts
(see previous Section). Its onset anticipated its timing from
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TABLE 4 | Midline Estimated Statistic of Rhythm (MESOR), onset and offset timings (hours) per each month, within the 2012-2019 monitoring period, for the
environmental variables selected by GLM and GAM modeling for presence/absence data.

Wind speed (km/h) Water temperature (◦C) Solar irradiance (W/m−2)

Off-set On-set MESOR Offset Onset MESOR Offset Onset MESOR

January 23:30 11:00 5.52 6:30 15:30 13.96 15:30 8:30 86.91

February 23:30 10:30 6.34 3:30 15:30 13.11 15:30 8:00 121.94

March 21:00 10:00 6.15 23:30 11:30 13.24 16:00 7:30 181.39

April 19:00 9:30 6.21 23:30 13:30 14.20 16:00 7:00 220.02

May 19:30 9:00 5.62 23:30 10:30 15.43 16:30 7:00 269.95

June 20:00 8:30 5.09 23:00 11:00 17.43 16:30 7:00 297.95

July 19:00 9:00 4.87 21:30 10:30 20.20 16:30 7:00 288.77

August 20:00 9:30 4.61 22:00 9:00 23.14 16:00 7:00 245.68

September 19:30 9:30 4.80 21:00 10:00 23.04 16:00 7:30 186.15

October 20:00 10:00 4.08 20:00 13:00 20.78 15:30 7:30 131.59

November 17:00 7:30 4.37 7:30-15:00 0:00-11:30 17.69 15:00 8:00 94.42

December 16:30 7:00 3.18 17:00 0:00 15.22 15:00 8:00 76.23

January at 11:00 to June at 8:30. Whilst, the offset progressively
delayed from December at 16:30 to June at 20:00. Furthermore,
we noticed that wind speed has a minimum and a maximum
MESOR value in December and February of 3.18 km/h and
6.34 km/h, respectively.

In order to describe the ecological niche of Dentex, we
annotated the average values of the detected relevant variables
from the statistical models when Dentex started and finished its
active phase (i.e., onset and offset, respectively) (see Table 1 and
Supplementary Figures 2–7). Indeed, when this species started
to spike (i.e., is becoming active) as the peak onset, the values
of water temperature and wind speed were, respectively, between
13.1-22.96◦C and 2.47-5.06 km/h (see Table 1). Instead, inactivity
(i.e., offset) occurs, in average values, between 13.12-23.3◦C water
temperature, and 4.01-8.5 km/h wind speed.

Plotting conditional densities for the most important
explanatory variables of the grouping or not grouping behavioral
data of Dentex (i.e., the distribution of the nominal variable
for the grouping behavior of Dentex given a certain value of
environmental and temporal driver) (Supplementary Figure 8),
we observed that Dentex form groups during the day or at
dusk and down, but not during the night. Moreover. The
frequency of grouping increased along the years of observation.
No particular seasonal pattern along the months of the year has
been observed for grouping behavior. Furthermore, we could
not obtain particular information on the relationship between
grouping and the environmental variables selected by the models
for this behavior.

DISCUSSION

We described the occurrence of diel and seasonal behavioral
patterns in a coastal marine top predator, Dentex, by analyzing
8-years of high-frequency and continuous time series of visual-
counts plus concomitant multiparametric oceanographic and
meteorological data. Firstly, we detected a relationship between

fish counts and the solar irradiance as a proxy for rhythmic
activity. Then, a seasonal variation in video-counts was evidenced
with a major peak in August and a minor one in May, suggesting
for local abundance changes, possibly linked to population
dynamics (e.g., seasonal migration). Also, the species counts
were significantly correlated to water temperature and wind
speed. Finally, we detected the occurrence of grouping behavior
correlated to solar irradiance and water temperature, suggesting
an effect of the environment as a regulator of grouping behavior.

Limitations in Cabled Observatory
Monitoring Strategies
Cabled observatories provide a spatially limited data acquisition
(a single platform can provide a relatively narrow field of view
of few m2). Another problem is that with this methodology it
is not possible to separate the influence of abundance variation
from activity variation, and the first one certainly affects the
results of the second. Anyway, general inferences can be made
on activity rhythms with spatially limited sampling windows
(Hansteen et al., 1997; Refinetti et al., 2007; Bu et al., 2016;
Gaudiano et al., 2021). Even trawling, which is the more spatially
representative tool, is still anyway limited in comparison to the
real extent of marine species distributions (Cama et al., 2011;
Sonnewald and Türkay, 2012; Ünlüoğlu, 2021). Furthermore,
Campos-Candela et al. (2018) recently reviewed some methods to
inference abundance from visual counts with cameras stating that
averaged estimates of animal density do not show any substantial
improvement after an adequate sampling effort (i.e., number of
cameras and deployment time).

In our monitoring, fish were observed during daytime and
this could cause more observations per day in summer than
in winter, being the photoperiodic difference between months
the cause for an increased probability in observing fishes in a
summer day rather than in a winter day. In any case, there are
diurnal species that are sampled more in winter for a reason
that is related to an increase in their abundance and not to the
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FIGURE 8 | Integrated chart depicting the temporal relationships of D. dentex
active phase between months of the year (black), and periods of the diel cycle
when the solar irradiance showed significantly increased values along the
different months of the year (gray).

possible effect of increasing photoperiod (Condal et al., 2012;
Aguzzi et al., 2015a). Here, it is difficult to methodologically
distinguish this abundance/activity/photoperiod phenomenon
with the present methodology.

In order to acquire more representative results on rhythmic
movements and habitat use of fishes at the scale of species
distribution a better spatial coverage in monitoring would be
needed (Holt, 2009). Networks of cameras with synchronous
image acquisition routines may be required to track the species
movements across different levels of habitat heterogeneity (e.g.,
Doya et al., 2017; Aguzzi et al., 2020b; Rountree et al., 2020).
Such a synchronous image acquisition could clarify if the peaks
in video counts of Dentex in different areas are associated to a
different habitat uses (e.g., preying vs. resting), and then could be
used to relate this information to the activity rhythms. Inspiration
on how to set the network monitoring may be drown from
spatially extended surveys with camera traps, aiming at the visual
census of fauna in terrestrial environments (e.g., Beaudrot et al.,
2016; Norouzzadeh et al., 2018).

OBSEA data collection could be implemented with other
complementary actions within the monitoring area, such as the
classic visual census sampling by divers (Samoilys and Carlos,
2000; Grane-Feliu et al., 2019), and collected data could be
cross-checked with information provided by telemetry. This
technology allows the tracking of particular individuals over large
period of times (Hussey et al., 2015; Villegas-Ríos et al., 2017;
Brownscombe et al., 2020; Matley et al., 2021). Acoustic telemetry
could help achieving continuous long-term tracking of single
individuals to study the habitat use of fish species (Hussey et al.,
2015; Dominoni et al., 2017; Lennox et al., 2017), overcoming
the spatial and temporal bias of fixed-point video monitoring
for a reliable evaluation of population demography and local
biodiversity (Aguzzi et al., 2020a,b). It is impossible with fixed
cameras imaging technologies to support for fish “site fidelity”
when this area specificity is not a clear life trait of the species
(e.g., territoriality, burrowing, etc.). We have no morphological
tools to identify the individuals, whose position and orientation
changes within the field of view. For this reason, we may need
acoustic tagging coupled with imaging to enforce such a site
specificity study.

Cabled observatory imaging equipment could have some
monitoring footprint on coastal areas for the introduction of
light at nocturnal image sampling, which can induce behavioral
disturbance on the local fauna (e.g., Davies et al., 2015; Kurvers
et al., 2018; Czarnecka et al., 2019; Lucena et al., 2021).
Nevertheless, in our case it is unlikely that the OBSEA lightening
system, active every 30 min for about 3 s, affected the reported
Dentex count patterns, being the individuals of this species absent
at nighttime all the yearlong (see previous Section). However,
the environmental footprint of future long-term monitoring
could be reduced with the use of acoustic multi-beam cameras
(Aguzzi et al., 2019).

Despite the evidenced monitoring limitations, we would like
to stress out that one positive aspect of cabled observatory use is
the low-invasive character at data collection. For example, visual
census obtained by divers implies a factor of disturbance on the
organisms as human presence (Harmelin-Vivien and Francour,
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1992; Januchowski-Hartley et al., 2011; Assis et al., 2013; Azzurro
et al., 2013; Emslie et al., 2018; Pais and Cabral, 2018).

How to Interpret Day-Night Rhythms in
Dentex Visual Counts
Counts peaks timing and amplitude followed the photophase.
In our case, the interpretation of video-counts peaks in terms
of increase or decrease activity should be carried out with
precaution. A similar precaution is adopted when evaluating
the ecological meaning of species peaks in catches or visual
census; i.e., animals captures or spotting are provoked by their
increased availability in the sampling area for their resting or
because of their activity (Aguzzi and Bahamon, 2009; Aguzzi
and Company, 2010). Notwithstanding, many species of fishes
display activity rhythms (e.g., Eriksson, 1978; Muller, 1978;
Helfman, 1986) that drive changes in abundance between day
and night in coastal areas, as detected by different sampling
systems and methodologies (e.g., Aguzzi et al., 2013; Hawley et al.,
2017; Schalm et al., 2021). Diurnal, nocturnal, and crepuscular
activity is often described as a product of fish behavioral
response to solar irradiance variations (Helfman, 1986; Coles,
2014).

In this scenario, almost no Dentex was consistently detected
at nighttime over several consecutive years. This observation
suggests that video-counts peaks are a product of an increase
activity at daytime. Laboratory data on fish behavior and
physiology may provide a first insight on this phenomenon,
assuming a link between visual counts and activity. Photoperiodic
regulation of fish physiology and swimming behavior occur
for the modulation that light intensity and temperature exert
on the production of hormones (e.g., Pavlidis et al., 1999;
Cowan et al., 2017; Sánchez-Vázquez et al., 2019). Fish melatonin
measures environmental light levels and, as a result, variable rates
of swimming occur (Saha et al., 2019).

A daytime activity increases for Dentex resulting in the
increment of video-spotting at the OBSEA can be postulated
for the following reasons. First, animals rest at nighttime within
Posidonia seagrass beds (Zabala et al., 1992). Second, the species
has a home range of less than 1 km2 in specific period of the year
(Aspillaga et al., 2019), with the exception of moments in which
a migration may follow bathymetric changes related to optimal
water temperature (Aspillaga et al., 2017; see next Section). Third,
Dentex is a visual predator whose prey spotting is optimized
during light hours (Marengo et al., 2014).

Our data suggest an increase of activity during daytime
(and consequent resting at night), which implies a visual-
oriented hunting strategy as already indicated by Marengo et al.
(2014). This diurnal temporal character of Dentex ecological
niche (i.e., sensu Hut et al., 2012) matches the daytime video-
occurrence increases of its fish preys within the Spariformes
order (Morales-Nin and Moranta, 1997), that were spotted
at the OBSEA (Aguzzi et al., 2013), but also observed to be
present in other Mediterranean areas (D’Anna et al., 1994;
Azzurro et al., 2007; Lök et al., 2008; Witkowski et al.,
2016). For example, Diplodus vulgaris, Oblada melanura, and
Spicara maena are preys of Dentex (Morales-Nin and Moranta,

1997) with diurnal increases in presence and activity that are
sustained also at twilight conditions (Santos et al., 2002; La
Mesa et al., 2013; Witkowski et al., 2016). Predators and preys
seek for temporal overlapping (predators) or avoidance (preys)
of their activity phases over the 24-h cycle (e.g., Kronfeld-
Schor and Dayan, 2003; McCauley et al., 2012; Kerr et al.,
2015; Andersen et al., 2017; Olivares et al., 2020; Priou et al.,
2021).

Seasonal Fluctuation in Fish
Video-Counts
Here, we reported a seasonal rhythm in visual counts of Dentex,
with a significant increase in August and a second minor peak
in May, as consistent across multiple years. In the past study of
Sbragaglia et al. (2019) at the OBSEA, the major peak in counts
of Dentex on August was detected, but not the minor one of
May. This points out the strategic importance of a prolonged
monitoring activity at the OBSEA. That seasonal pattern has been
also detected with recreational fishing data for the Italian coasts
(Sbragaglia et al., 2020).

We interpreted the first large peak of August as the product
of thermocline regulation on fish behavior. Dentex shows a
preference for warm suprathermoclinal waters, whose shallowest
depths (i.e., between 20-30 m) are usually reached in our
monitoring geographic zone (i.e., the NW Mediterranean) in
July and August (Aspillaga et al., 2017). The OBSEA is placed
within that depth range and this fact may explain the count
increase of summer.

Another explanation could be that Dentex seasonal counts
increase are synchronized upon maximum abundances of its
preys (see previous Section), that augment in the OBSEA area
in spring-summer; e.g., D. vulgaris from June to October,
O. melanura in May and June, and S. maena from May to
July (Aguzzi et al., 2015a). Seasonally synchronic abundance
changes may occur between fish predators and preys (Fox and
Bellwood, 2011; Bustos et al., 2015; Mishra et al., 2020; Liu et al.,
2021). Possibly, the presence of artificial reef structures nearby
the OBSEA attract fish preys and consequently concentrate the
presence of the Dentex as well.

We observed a second, minor peak of Dentex counts in May
that can be discussed in relation to the phenology of breeding. If
from one side, the species migrates deeper to reproduce in areas
at 40-100 m depth from March to June (Marengo et al., 2014;
Grau et al., 2016), from the other we did not observe a temporally
concomitant drop in counts at the OBSEA location in May (as an
indication for a deeper migration of individuals in that period).
Possibly, some individuals that have finished the reproduction
(or with no mature gonads), return (or stay) to shallower depths
for foraging. In fact, regressing ovaries in females and late
developing testes of Dentex were already reported during May
(Grau et al., 2016).

Species Relationship With Water
Temperature and Wind Speed
The oceanographic and meteorological monitoring was dedicated
to understand the species tolerance to certain ranges in the
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variation of selected measured habitat variables, as an indication
of the effects that climate change may exert on fish’s phenology
(Stevenson et al., 2015). Those ranges have a practical value for
ecological monitoring, since indicate a roadmap to develop smart
sampling procedures in marine species: i.e., the optimum time
window when to expect a maximum presence of individuals,
according to the fluctuation status of key environmental drivers
(Aguzzi et al., 2020b).

Here, counts of Dentex were related to the water temperature,
being the seasonal peak always reported above an averaged
threshold of 13.1◦C. A past study at the OBSEA with
3 years’ time-series detected the increase in number counts
of Dentex above 20◦C (Sbragaglia et al., 2019). This highlight
the importance of pursuing the monitoring activities at the
OBSEA to better characterize the environmental preference
of this species.

The importance of water temperature as environmental driver
has already been described in many fish species (Vinagre et al.,
2016; Van Der Walt et al., 2021). Temperature deeply affects
fish presence (or absence), because it influences directly species
physiological performance (Cussac et al., 2009; Freitas et al.,
2016; Day et al., 2018; Waldock et al., 2019). Dentex can cope
with temperature range above our reported threshold, as also
indicated by the current trend of geographic expansion in
the North Mediterranean (Orozco et al., 2011; García-Rubies
et al., 2013). We confirmed that trend by a progressive increase
in counts over the years (i.e., see Figure 2), which would
possibly continue in the next decade, when temperature is
expected to grow in the NW Mediterranean (Bahamon et al.,
2020). This indicates the value of cabled-observatory assets to
disclose the occurrence of progressive trends in population
shifts beyond more contingent seasonal dynamics due to the
climate forcing.

We found a significant relationship between Dentex counts
and wind speed. This variable affects the population distribution
in some fish species (Daskalov, 2003; Teo et al., 2007; Bakun
and Weeks, 2008; Selleslagh and Amara, 2008; Brander, 2010;
Kuparinen et al., 2010), based on upwelling nutrient inputs
(Bakun and Weeks, 2008; Bellido et al., 2008; Brander, 2010)
although this phenomenon is not relevant in a shallow costal area,
such as the one where the OBSEA is deployed.

The changes in wind speed and direction could also affect
indirectly other environmental variables, that consequently affect
the marine biota. For example, it was observed that changes
in wind affected salinity in the North Sea and in the Baltic
Sea (Schrum, 2001), which had negative consequences on cod
recruitment in both areas (Brander, 2010). In our case, salinity
was not significantly associated to counts of Dentex nor to
wind. Hence, the same dynamic reported for cod recruitment
in the North Sea and Baltic Sea may not be valid in our
case. Notwithstanding, wind speed may resuspend and mix
seabed and water column nutrients at periods of blowing,
hence influencing the coastal food web with the consequent
overall increase of trophism at all predator levels of the trophic
food web (Bellido et al., 2008). For the overall increase in
pray abundance, Dentex counts may consequently increase at
moments of wind blowing.

The Grouping Behavior of the Species
We reported data on the grouping behavior of Dentex, that
showed a clear 24-h modulation. Here, the formation of
groups of Dentex significantly occurred more during daytime
(including twilight hours) than nighttime, given the broad phase
relationship between all visual counts and solar irradiance as
a proxy for diurnal activity rhythms (see previous Section).
Differently, no peaking was reported over different seasons.
A seasonality for Dentex grouping behavior was described in
rocky coastal areas for juveniles during summer (Chemmam-
Abdelkader et al., 2004; Sahyoun et al., 2013). We did not
observe this phenomenon, but we could not resolve if our
video-monitoring were composed by individuals in this stage
of development, since no tools for body sizing (e.g., lasers)
were present aside the camera; however, we can assume that
the majority of individuals were adults. Indeed, for adults
Dentex, groups of individuals may be detected during the
spawning season in spring, between 40 and 100 m depth
(Marengo et al., 2014), but, given the shallower depth of
OBSEA deployment, we did not observe this phenomenon (see
previous Section).

The grouping behavior of Dentex was associated to solar
irradiance and water temperature. Grouping has been already
broadly correlated to the environmental variation in previous
works for different fish species (Félix-Hackradt et al., 2010;
Meager et al., 2012; Georgiadis et al., 2014; Palacios-Fuentes et al.,
2020). In particular, the formation of fish groups has been related
to light intensity (Meager et al., 2012; Georgiadis et al., 2014) and
to water temperature (Power et al., 2000; Davoren et al., 2006;
Meager et al., 2012; Palacios-Fuentes et al., 2020). Also, the weak
increase of grouping behavior reported across consecutive years
of observations (see Supplementary Figure 8) is likely the result
of the increasing abundance of this species in the OBSEA area
(see also previous Section).
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