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The marine science community is engaged in the exploration and monitoring of
biodiversity dynamics, with a special interest for understanding the ecosystem
functioning and for tracking the growing anthropogenic impacts. The accurate
monitoring of marine ecosystems requires the development of innovative and effective
technological solutions to allow a remote and continuous collection of data. Cabled fixed
observatories, equipped with camera systems and multiparametric sensors, allow for a
non-invasive acquisition of valuable datasets, at a high-frequency rate and for periods
extended in time. When large collections of visual data are acquired, the implementation of
automated intelligent services is mandatory to automatically extract the relevant biological
information from the gathered data. Nevertheless, the automated detection and
classification of streamed visual data suffer from the “concept drift” phenomenon,
consisting of a drop of performance over the time, mainly caused by the dynamic
variation of the acquisition conditions. This work quantifies the degradation of the fish
detection and classification performance on an image dataset acquired at the OBSEA
cabled video-observatory over a one-year period and finally discusses the methodological
solutions needed to implement an effective automated classification service operating in
real time.

Keywords: concept drift, automated fish classification, automated fish detection, deep learning, underwater
imaging, underwater observing systems, cabled observatories
INTRODUCTION

The oceanic seabed and the overlying water masses constitute the largest and yet the less explored
biome on Earth (Danovaro et al., 2020). Today, the marine science community is engaged in the
exploration and monitoring of biodiversity and its processes (e.g. reproductive cycles, population
growth and mortality dynamics and migrations) in relation to environmental control and growing
anthropogenic perturbations (Levin et al., 2018; Levin et al., 2019). However, the marine
environment is hostile to the prolonged human presence and in situ experiments, especially
when the depth of the sea increases (Rountree et al., 2020), and the monitoring actions often need
in.org April 2022 | Volume 9 | Article 8400881
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the assistance of expensive support vessels. Within this
operational context, it is not easy to plan campaigns for data
acquisition that extend for long periods, reducing data sampling
capability and repeatability (Raffaelli et al., 2003). So, accurate
monitoring of marine ecosystems requires the development of
innovative and effective technological solutions to allow a remote
and continuous collection of high-frequency physical, chemical
and biological data (Aguzzi et al., 2010; Aguzzi et al., 2015;
Dañobeitia et al., 2020; Painting et al., 2020).

In this regard, cabled fixed observatories and their docked
mobile platforms (e.g. crawlers and AUVs), all equipped with
camera systems and multiparametric bio-geochemical and
oceanographic sensors, allow for a non-invasive acquisition of
biological and environmental data, at a frequency of seconds or
higher, over consecutive years (Aguzzi et al., 2019; Del Rio et al.,
2020). This biological and environmental highly integrated
monitoring activity is about to produce new relevant ecological
information to sustain innovative ecosystem management
approaches and policies (Danovaro et al., 2017). Those data
refer mainly to megafauna species identification and their
individual counts (e.g., Juniper et al., 2013; Bicknell et al.,
2016; Danovaro et al., 2020).

Many marine observing systems acquire and store terabytes
of data that need to be processed (Painting et al., 2020). As a
consequence the marine research community is urging for the
implementation of services, based on artificial intelligence
methodologies, aimed at the automated extraction of relevant
biological information, especially from image data (e.g. animals
identification, tracking, classification and counting) (Marini
et al., 2018b; Canonico et al., 2019; European Marine Board,
2020; Aguzzi et al., 2020; Lopez-Vasquez et al., 2020; Beyan and
Browman, 2020; Malde et al., 2020; Zuazo et al., 2020). The
achievement of this goal can be resumed by the definition of
novel self-aware observing systems capable of sensing the
surrounding environment and intelligently processing the
acquired data (Aguzzi et al., 2022; European Marine Board,
2020; Jahanbakht et al., 2021), also through edge computing
techniques (Shi et al., 2016; Marini et al., 2018a) to process the
acquired data onboard intelligent observing systems. Such an on-
board processing approach needs to face the problems of
multiparametric data acquisition and integration, relevant
knowledge extraction and interpretation, transmission latency
and bandwidth lack, when the information is remotely sent to a
shore server (European Commission, 2018; Malde et al., 2020;
European Marine Board, 2020;Jahanbakht et al., 2021; Aguzzi
et al., 2022).

Species detection and classification in a real-world scenario
requires supervised-learning methods that allow a computer
system to automatically make predictions based on a series of
examples (e.g., see Marini et al., 2018a; Marini et al., 2018b;
Lopez-Vazquez et al., 2020; Malde et al., 2020). Unfortunately,
the effectiveness of such automated approaches incurs into the
“concept drift” phenomenon, consisting in a progressive
decrease over time of the detection and classification
performance (Hashmani et al., 2019; Jameel et al., 2020; Din
et al., 2021). The concept drift is largely investigated in the
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community of computer vision and artificial intelligence, but
very few contributions are available in the marine science context
(Langenkämper et al., 2020; Kloster et al., 2020).

This work analyses and quantifies the degradation of the fish
detection and classification performance on the image data
acquired at the OBSEA cabled video-observatory (Del Rıó
et al., 2020) over a one-year period. Images were analysed by
using deep learning methodologies aimed at fish detection and
classification, and the experiments, for assessing the performance
degradation, were designed to reproduce an automated
classification service installed on the observatory. A ground-
truth dataset was generated through the visual inspection of the
image dataset, and every fish was tagged with its corresponding
bounding box and its species label. The ground-truth dataset was
used for training the algorithms on the first four months of the
image data stream of the observatory, then the detection and
classification performance was evaluated on a monthly basis on
the remaining data. The results show a continuous degradation
of both the detection and the classification performance over the
studied period. Finally, the methodological approaches for
mitigating the concept drift phenomenon are presented
and discussed.
MATERIALS AND METHODS

Study Area
The Western Mediterranean Expandable SEAfloor Observatory
(OBSEA; http://www.OBSEA.es) is a cabled video-observatory
located at 20 m depth, 4 km off Vilanova i la Geltrù (Catalonia,
Spain) (Aguzzi et al., 2011; Del Rıó et al., 2020) (Figures 1A–C).
The observatory is equipped with an Underwater IP Camera
(OPT-06; OpticCam), acquiring colour images/video footage
with 640 x 480 pixels resolution (see next section). Two
custom white LEDs (2900 lumens; colour temperature of 2700
K) are located beside the camera, at 1 m distance from each
other, projecting the light beam with an angle of 120°. Light ON-
OFF (lasting for 3 s) occurs immediately before and after image
acquisition by a LabView application that also controls their
white balance.

With this setup we acquired 14025 images, one image every
30 minutes between January and December 2014, constantly
focussing on the artificial reef, located 3.5 m from the camera. A
change of camera occurred on December 11, 2014. The new one
was an Axis P1346-E camera, acquiring colour images/video
with 3 megapixels resolution. Figures 1D, E shows two examples
of acquisition conditions characterised by turbid water and
biofouling on the porthole of the camera (i.e., growth of algae
or other encrusting organisms) and an image acquired during the
night using the artificial lights of the observatory.

Ground-Truth Definition
The images acquired at the OBSEA were visually inspected by a
trained operator, in order to recognize the fish specimens, within
the field of view, by following the procedures described in Condal
et al. (2012) and Aguzzi et al. (2013).
April 2022 | Volume 9 | Article 840088

http://www.OBSEA.es
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


1https://image-net.org/challenges/LSVRC/2015/

Ottaviani et al. Concept Drift and Cabled Observatories
For each individual in the image, a bounding box was drawn
and labelled with the corresponding species. The results of this
manual processing were encoded into a text file including: the
image file name, the corresponding timestamp, the position of
the four vertices of the oriented bounding-box and the
species label.

The biofouling phenomenon and the water turbidity,
sensibly affects the automated recognition of fishes (Marini
et al., 2018b) and presents difficulties also during the visual
inspection of the images (see Figure 1D as an example). The
inspection was also difficult to perform when the individuals
appeared too far from the camera or during the nighttime,
when the field of view was illuminated only by the lighting
system of the observatory. Those individuals, whose species
could not be attributed with sufficient confidence, were
included in the “unknown” category.

The visual inspection task resulted in 62038 individuals, of
which 29497 belonged to 30 species, with very different
abundances. Table 1 summarises the taxonomic names of
those species (Condal et al., 2012; Aguzzi et al., 2013; Aguzzi
et al., 2015).
Frontiers in Marine Science | www.frontiersin.org 3
Automated Image Fish Classification
The image content classification was performed by using a Deep
Learning (DL) approach (LeCun et al., 2015), following the
current trend in the scientific community (Malde et al., 2020).
The DL methods are well suited for image classification and
achieved human-like performances in many visual tasks, as
reported in many surveys (e.g., He, 2020). Among the
Convolutional Neural Network (CNN) architectures proposed
in literature, we have chosen to experiment the fish classification
problem with ResNet (He et al., 2016), as it is a compact, effective
and consolidated network (Tan and Le, 2019) and because
demonstrated good performance by winning the ImageNet
competition in 2015, a large classification competition on over
1000 classes and 10 million images1.

Differently from the traditional approaches for image
classification, DL operates directly on pixel values, without any
kind of pre-processing or feature extraction stage, and learns the
optimal mapping between data (i.e. images) and object classes
(i.e. fish species) (LeCun et al., 2015). Moreover, CNN can be
FIGURE 1 | The location of the OBSEA observatory in the Mediterranean Sea (A, B); The field of view of the camera installed in the observatory (C); Two examples
of images acquired by the OBSEA camera, during the daylight (D) and during the night (E), using the artificial lighting system of the observatory.
April 2022 | Volume 9 | Article 840088
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used in different application contexts through the transfer
learning approach (Pan and Yang, 2010; Rawat and Wang,
2017), where the neural network can be trained for a general
purpose task and then specialised to a more specific task only, by
changing a small part of its architecture.

Taking advantage of the transfer learning approach, we
experimented with a few ResNet networks, pretrained on more
than a million images from the general purpose ImageNet
database2 and then selected the ResNet18 (He et al., 2016) as
the main fish species classification algorithm.

For training the specialised fish classifier, the ground-truth
dataset was structured according to both the fish species and the
acquisition date, as reported in Table 2. Images of fishes far from
the camera were not considered in the training process. This is
because the reduced size of the image regions containing these
specimens do not provide enough information to effectively
characterise the fish species. Differently, a human observer
performs classification of fish species in the image not based
only on the pixel values, but based also on previous experience
and a priori knowledge of the time and space distribution of
individuals (Sbragaglia et al., 2019).

Moreover, we observed that, even if the total number of
classes was high, there were too few observations for certain
species, making the learning process not effective. As a
consequence, we decided to carry out the classification
experiment only on the categories with a number of
individuals larger than 200, in order to reduce the class
imbalance. For this reason, we focused on the following 14
classes: f1, f2, f3, f4, f6, f7, f9, f11, f14, f15, f17, f23, f25 and
f31, whose temporal distribution is represented in Figure 2A,
and a representative individual of each species is reported as an
example in Figure 2B.

Although the temporal distribution of specimens was very
inhomogeneous (see Table 2 and Figure 2), we decided to keep
the data sets unbalanced in order to reflect a real-word image-
monitoring situation, where the abundance of a species in the
2https://www.image-net.org/
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env i r onmen t n a t u r a l l y d ep end s on s e v e r a l and
unpredicted factors.

The image dataset described in Table 2, was split into training
and validation sets as detailed in the next sections. This partition
was made for each class, in order to mirror the relative
abundance of each species. Solutions were also adopted for
minimising the overfitting on the training set and maximising
the generalisation capability of the classifier: shuffling the
training dataset at every epoch; augmenting the data by
random image flipping along horizontal or vertical direction;
setting a learning rate decay option (a piecewise decay starting
with an initial value of 10-3 and a drop factor of 0.1 after
5 epochs).

To evaluate the performance of the classifier, a confusion
matrix was calculated (Lopez-Vazquez et al., 2020; Zuazo et al.,
2020; Harrison et al., 2021). The entry (i,j) of the matrix
represents how many individuals belong to the class i have
been classified into class j. The more the matrix entries are
concentrated on the diagonal, the better is the classification
performance. Besides the confusion matrix, other five criteria
were used to evaluate the classification performance
(Fawcett, 2006):

• the recall or True Positive Rate (TPR), as the number of
individuals correctly classified in a given class (TP), with
respect to the total number of individuals in that class (P),
defined as recall = TPR = TP

p ;

• the False Negative Rate (FNR), being complementary of the
TPR and representing the number of individuals of a given
class wrongly classified in other classes (FN) with respect to
the total number of individuals in that class (P), defined as
FNR = 1 − recall = FN

p ;

• the precision, being the number of individuals correctly
classified in a given class (TP) with respect to the total
number of individuals classified in that class plus
individuals of other classes wrongly classified in that class
(FP), defined as precision = TP

TP+FP
• the False Discovery Rate (FDR), being complementary of

precision and representing the number of individuals wrongly
TABLE 1 | Species expected and observed in the OBSEA site: list by scientific names and the number of observed individuals.

Code Scientific name Individuals Code Scientific name Individuals

f1 Diplodus vulgaris 10623 f16 Symphodus tinca 12
f2 D. sargus 2362 f17 S. mediterraneus 206
f3 D. puntazzo 272 f19 S. cinereus 104
f4 D. cervinus 558 f23 Coris julis 1818
f5 D. annularis 106 f24 Thalassoma pavo 6
f6 Oblada melanura 6731 f25 Serranus cabrilla 409
f7 Dentex dentex 667 f26 Epinephelus marginatus 4
f8 Sparus aurata 47 f27 Sciaena umbra 38
f9 Sarpa salpa 289 f28 Seriola dumerili 97
f10 Boops boops 18 f30 Gobius vittatus 2
f11 Spondylosoma cantharus 631 f31 Apogonidae 555
f12 Pagrus pagrus 76 f32 Atherinidae 24
f13 Pagellus sp. 3 f36 Mugilidae 1
f14 Spicara maena 1247 f38 Murena helena 4
f15 Chromis chromis 2771 f39 Scorpaena sp. 86
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classified into a class (FP) with respect to the total number of
individuals wrongly classified in that class plus the individuals
correctly classified in that class (TP), defined as FDR =
1 − precision = FP

FP+TP;
• the accuracy, being the total number of correct classifications

performed on the whole dataset with respect to the total
individuals of the dataset, defined as accuracy = TP+RN

P+N .
Automated Image Fish Detection
While the image classification task is aimed at associating a class
label to each relevant subject (i.e. the identified fish), the image
detection task is aimed at recognizing the relevant subjects
without associating them with the class they belong to. In this
work, the object detection task is aimed at recognizing the fish
specimens (without any class labelling) with respect to the image
background. As for the image classification task, the image
detection task can be achieved using the DL approach (Cui
et al., 2020). Among the DL methods suitable for the image
detection task, we selected the FasterRCNN network, which has
proven to be very effective in several competitions, like for
example the ImageNet Large Scale Visual Recognition
Challenge3. Although the object detection task seems to be
simpler than the classification task, within the CNN
computational paradigm, the FasterRCNN detection method is
built upon a classification network (e.g. the ResNet), adding
more layers to compute the bounding box of each object inside
the given image (Ren et al., 2015; Li et al., 2017).

Within the fish detection task, the fasterRCNN was trained
for detecting a single fish against the image background. Images
where one or more fishes overlap other fishes were not used for
training. In this way, the detection algorithm learned the fish
shape features shared among all the individuals used for the
training, without an explicit reference to a specific species. The
fish detection performance was estimated by comparing the
bounding box coordinates automatically extracted from the
images with those encoded in the ground-truth dataset through
3https://image-net.org/challenges/LSVRC/2015/
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the use of the Intersection over Union (IoU) approach (Zhu
et al., 2021).

Classification and Detection Experiments
Three experiments were designed in order to assess the
degradation of the detection and classification performance.

In the first experiment, the full image dataset was split into two
random partitions, 50% for training and 50% for testing, with the
aim of assessing the global performance of the classification
approach. Aim of this experiment was the assessment of the
generalisation properties of the ResNet18 classifier in real
applications, where no hypothesis can be assumed on the
species assemblage and on the quality of the acquired images.

The aim of the second experiment was the simulation of an
automated classification service, where the data stream is
processed in real-time for the production of time series
abundance of fish species. In this second experiment, a different
training set was designed. For each species, the 30% of the
individuals were randomly sampled from the first four months
of the one-year image set and then used for training the fish
classifier. The remaining images were used to test the performance
of the learnt classifier on a monthly basis, in order to evaluate the
possible degradation and its temporal progression.

For both experiments, only the fully connected final layers of
the ResNet18 network were trained, for 10 epochs, by shuffling
the elements of the training set after each epoch with the aim to
ensure that the network sees training data of all classes mixed
arbitrarily. To minimise the loss function during the training
phase, we used the stochastic gradient descent algorithm, with
mini batches of 16 elements and a constant learning rate equal to
0,001. The training was performed on a GPU (NVIDIA
GEFORCE RTX 2070) and each experiment lasted about one
or two hours, depending on the size of the dataset itself.

The third experiment was aimed at assessing the degradation
of the fish detection performance. Similarly to the previous
experiments, the fish detection network (fasterRCNN) was
trained by randomly sampling the 30% of fish specimens,
occurring in the first four months of the dataset. The obtained
fish detector was then tested on the remaining data, providing
detection accuracy over time as in the experiment n.2.
TABLE 2 | The monthly occurrence of fish individuals per species and months.

Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

f1 141 93 292 351 1242 836 500 995 2569 2937 221 29 10206
f6 1199 1417 794 578 266 485 244 262 285 278 265 648 6721
f15 42 93 44 153 385 479 266 270 198 377 94 370 2771
f2 88 77 41 28 91 106 232 648 534 428 71 8 2352
f23 51 32 68 138 227 513 273 185 153 130 38 4 1812
f14 126 34 56 81 136 202 18 4 2 4 218 364 1245
f7 4 4 0 55 58 78 153 164 93 50 6 2 667
f11 27 70 19 8 6 0 2 36 52 196 161 52 629
f4 7 9 8 9 19 2 141 191 141 20 7 2 556
f31 8 0 0 0 0 0 9 2 158 273 103 2 555
f25 5 0 2 0 6 7 74 45 122 106 42 0 409
f9 0 0 0 2 2 14 6 259 5 0 1 0 289
f3 31 15 47 25 26 14 42 36 4 12 5 15 272
f17 0 0 3 14 36 46 48 20 12 23 3 0 205
Total 1729 1844 1374 1442 2500 2782 2008 3117 4328 4834 1235 1496 28689
April 202
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RESULTS

In this section, we report the results obtained by the ResNet18 for
automatic fish classification and by FasterRCNN for automated
fish detection.

Experiment n.1
Fish classification with training on a randomly sampled dataset:
The confusion matrix resulting from this experiment is shown in
Figure 3. The data partition being completely random and
unrelated with time, this result represents an estimate of the
best performance achievable with this kind of images. The overall
accuracy is 93.7% and only 4 classes (i.e., f3, f9, f11 and f17) have
an FNR larger than 20%. The results obtained in this experiment
were considered the benchmark required to compare the time-
dependent tests performed in the second experiment.

Experiment n.2
Fish classification with training on a time-ordered dataset: The
confusion matrix for this experiment is shown in Figure 4. The
overall accuracy is 72.6% and many classes show poor global
performances. For these classes, the first 30% of images used for
the training phase does not carry enough information to produce
Frontiers in Marine Science | www.frontiersin.org 6
a classifier capable of generalising the whole yearly data stream.
Figure 5 shows the monthly accuracy of the classifier, clearly
expressing how classification performance decreases over
the time.

A sensible drop of classification performance occurred in
December (see Figure 5), due to a hardware change in the
acquisition system, where a new camera with a different colour
balance mechanism substituted the old one. Figure 6 shows few
image examples of individuals belonging to the same species,
acquired with the old and the new camera, just showing an
improvement of the image quality. Removing the data gathered
in December, the mean accuracy rises from 72.6% to 88.8%
showing a sensible incrementation of the detection performance.

Experiment n.3
Fish detection with training on the time-ordered dataset: Within
this experiment all the available data was used, including those
fishes whose class was undetermined (i.e. the unclassified
category). This experiment produced an average recall equal to
72.6%. The Figure 7 depicts the distribution of the recall over the
different months of the year, showing a decay of performances
over time, similar to experiment two, while the Figure 8 shows
some examples of fish detection, where the red boxes represent
A

B

FIGURE 2 | (A) Temporal distribution of the species covering the 90% of the whole set of species reported in Table 2; (B) Representative individuals of the fish
species presented in Table 2.
April 2022 | Volume 9 | Article 840088
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the ground-truth bounding boxes, and the yellow boxes
represent the bounding boxes automatically detected.
DISCUSSION

In this work, we assessed the problem of the concept drift for the
automated classification and detection of fishes at a coastal
Frontiers in Marine Science | www.frontiersin.org 7
cabled observatory. The results of the proposed study
confirmed that an effective underwater monitoring system can
be realised by exploiting an automatic learning procedure based
on the DL approach, being able to count individuals and classify
them in a way similar to what could be done by a human expert.
The results obtained in the experiment shown in Figure 3, prove
that the system is robust with respect to the fish shapes variations
and motion. It is also robust to the light changes due to the day/
FIGURE 3 | Confusion matrix resulting from the first classification experiment (50%-50% training/test partition). The two columns on the right of the confusion matrix
represent the recall (blue) and the False Negative Rate (orange), respectively; the two rows below the confusion matrix represent the precision (blue) and the False
Discovery Rate (orange), respectively.
FIGURE 4 | Confusion matrix resulting from the second classification experiment (30%-70% training/test partition). The two columns on the right of the confusion
matrix represent the recall (blue) and the False Negative Rate (orange), respectively; the two rows below the confusion matrix represent the precision (blue) and the
False Discovery Rate (orange), respectively.
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night and seasonal photo-period dynamics, as well as to the
application of the artificial lighting system of the observatory.
Nevertheless, both the classification and detection algorithms
showed a concept drift when the data was streamed over a long
Frontiers in Marine Science | www.frontiersin.org 8
(i.e. months) time period (see Figures 4, 5 and 7). Such a drift is
caused by both natural and artificial factors. Though the camera
was periodically maintained, the drop of performance was
caused both by the presence of fouling onto the porthole, due
FIGURE 5 | Monthly progressive decrease of the averaged accuracy resulting from the experiment N.2 (30% training, 70% test).
FIGURE 6 | Four examples of fish images before (left) and after (right) the substitution of the OBSEA camera with the new one with improved colour balance.
April 2022 | Volume 9 | Article 840088
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FIGURE 7 | Monthly averaged recall for fish detection with the progressive decreasing trend.

FIGURE 8 | Four examples of automated fish detection. The red boxes represent the ground-truth bounding boxes, while the yellow boxes represent the automated
fish detection.
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to the natural increase of the seasonal temperatures, and by
the change of the species present in the surrounding of the
observatory, as reported in Figure 2A. In fact, during the training
phase of the classification and detection experiments the number
of specimens and the proportion among the species changed
sensibly with a prevalence of specimens of the species Oblada
melanura (f6) in the first three months and an increase of fishes
of the species Diplodus vulgaris (f1), Diplodus saragus (f2),
Chromis cromis (f15) and Coris julis (f23), in the remaining
months used as test set. Very variable numbers of individuals for
different video-detected species are usually reported in coastal
image monitoring with fixed cameras. In fact, species
assemblages can be affected by relevant variations over the
year, depending on seasonal biological and physical parameters
(Aguzzi et al., 2013; Aguzzi et al., 2015; Sbragaglia et al., 2019).
Moreover, a sensible drop of classification performance occurred
in December (see Figure 5), when a new camera with a different
colour balance mechanism substituted the old one. The classifier
was trained before the change of the camera and could not
FIGURE 9 | The complete fish classification pipeline for a future automated service at t
automated service; the dotted blue lines and boxes represent annotation and training a

Frontiers in Marine Science | www.frontiersin.org 10
manage this modification. As a consequence, the accuracy
dropped down significantly. A different behaviour resulted for
the fish detection task (Figure 7), where the effect of the concept
drift is sensibly reduced with respect to the fish classification task.
The detection algorithm was trained in order to recognize a fish
with respect to the image background, without taking care of the
visual characteristics needed to discriminate among species. As a
consequence the concept drift effect, caused by the change of the
camera setup, was sensibly mitigated. In fact, even if the image
colour balance changed in December, the detection algorithm
was still capable of detecting the learnt fish shapes.

Fixed cabled observatories like the OBSEA platform, that is
part of the Joint European Research Infrastructure of Coastal
Observatories (JERICO) and is a testing site of the European
Multidisciplinary Seafloor and column Observatory (EMSO),
have high costs for deployment and maintenance. The
automated services for producing valuable scientific knowledge
are recognised to be relevant tools for optimising cost/benefit of
the infrastructure (Aguzzi et al., 2019). Nevertheless, the
he OBSEA observatory. The continuous red lines and boxes describe the
ctivities; the dashed green lines and boxes represent the transfer learning activities.
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reliability of such services to provide an effective tracking of life
components in marine ecosystems, is not yet proven at present
and the solution of the concept drift phenomenon is an obstacle
that needs to be urgently addressed.

Although the concept drift is a major concern for the
definition of automated services, very few studies address this
problem in the field of marine monitoring (Lagenkämper et al.,
2020; Kloster et al., 2020). The recent literature in the computer
vision and machine learning community proposes several
general purpose approaches useful to mitigate the concept drift
problem (Langenkämper et al., 2019). Among those, promising
research directions include active learning (Brust et al., 2020; Wu
et al., 2020) and incremental learning (He et al., 2020; Zhou et al.,
2021), with specific attention to emerging trends in self-
supervised and few-shot learning (Jaiswal et al., 2021; Ohri and
Kumar, 2021). The active learning approach consists in
techniques aimed at minimising the effort of human experts in
selecting new valuable unlabelled examples. These are used for
training a classifier based on machine learning, while the
incremental learning, depending on the classifier architecture,
uses a selected set of new examples to dynamically improve
classifier performance. Self-supervised and few-shot learning are
novel methodologies that strongly reduce the use of positive and
negative examples during the training of a machine-learning
based algorithm.

In the context of cabled observatories, the creation of a training
dataset for fish detection and classification is a bottleneck, even if
active learning sensibly reduces the effort for labelling the acquired
images. This process can be further improved by combining active
learning with the crowd sourcing data and labelling, produced by
citizen science activities as discussed in Støttrup et al. (2018) and
DiBattista et al. (2021). In this case, several categories spanning
from students to professional fisherman or amatorial divers can
efficiently contribute to the labelling of the acquired images and
combine this effort with active learning techniques to select the
most relevant images for training/updating the classifier, as
discussed in Sayin et al. (2021).

Thenewminimal and effective training set generated throughan
active learning task can be combined with an incremental learning
technique for updating the classifier (Delange et al., 2021; Liu et al.,
2021). The major challenge of the incremental learning task is to
improve the classifier even by learning new classes, possibly
characterised by few instances, without a catastrophic forgetting
of the previously acquired discrimination capabilities. This
capability is critical, especially when the input data originates
from a continuous stream as in the case of the OBSEA cabled
observatory (Delange et al., 2021; Din et al., 2021; Mai et al., 2022).

Figure 9 summarises the whole pipeline that could be
implemented for creating an automated service for a cabled
observatory. In the proposed diagram, the red lines and boxes
represent the tasks involved in the automated classification of the
acquired images and in the production of the abundance time
series for each species detected. As discussed in Section 2, the
Fish Classifier is obtained through a fine-tuning training activity
(dotted blue lines and boxes), aimed at specialising a classifier
previously trained on a general purpose image dataset, within a
Frontiers in Marine Science | www.frontiersin.org 11
transfer learning approach (dashed green lines and boxes). The
fine-tuning training activity is based on the annotation of the
acquired images by expert biologists, and since the annotation
task is really time consuming also citizen science activities could
be useful to ease the ground-truth generation process. According
to the literature, the incremental learning task could be activated
when the average classification confidence of the organisms
contained in the images decreases below a given threshold or
when the number of unclassified organisms exceeds a given
threshold (Zhou et al., 2021; Mai et al., 2022). The number of
unclassified organisms could be estimated using the confidence
level for each class already provided by the classifier. In this case,
a new training set obtained through an active learning approach
can be considered for updating the fish classifier.

Finally, the machine learning procedures used for the image
analysis can be easily generalised to other types of marine
organisms, as these methodologies are in no way linked to the
specific image details and can be applied to any type of visual-
based observing system.
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