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The queen conch, Aliger gigas, is an endemic and iconic marine gastropod of the Wider
Caribbean region that has been harvested for thousands of years. Conch are slow-moving
and require contact to mate; overfishing has reduced populations in many areas
compromising its rates of reproduction. Long-range dispersal and mixing between
distinct populations occur in the queen conch’s early life history stages, when pelagic
larvae are transported by oceanic currents. Genetic studies suggest that gene flow
between populations decreases as the distance between populations increases. Here, we
assessed how the population connectivity of conch changes with spatially variable
patterns of fishing exploitation by simulating larval dispersal and comparing the
potential connectivity under an unexploited and a contemporary exploited reproductive
scenario. Results demonstrate that reduced egg production, due to heterogeneous
fishing pressure and localized depletion, significantly alters population connectivity
patterns as well as the structuring of populations and metapopulations across the
species’ range. This strongly suggests that estimates of contemporary demographic
rates, together with estimates of reproductive output need to be included in population
connectivity studies. The existence of self-sustained metapopulations of queen conch
throughout the Wider Caribbean suggests that replenishment through larval dispersal
occurs primarily within sub-regional spatial scales, emphasizing the need for regional and
local conservation and management measures to build and protect reproductively active
populations and nursery habitat across multiple jurisdictions.
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INTRODUCTION

The queen conch (Aliger gigas, Maxwell et al., 2020) is an iconic
marine gastropod endemic to theWider Caribbean Region (WCR).
The species has been harvested for subsistence, economic, and
cultural purposes for thousands of years. The queen conch has been
listed in Appendix II of the Convention on International Trade in
Endangered Species (CITES) since 1992 due to the significant
decline of its populations throughout the Caribbean. Intense
fisheries and illegal harvest of queen conch have had a significant
impact on population recovery (Stoner and Appeldoorn, 2021).
Management of conch fisheries is highly variable across the
Caribbean region, including strategies such as marine protected
areas, minimum shell lengths and/or lip thicknesses for harvest,
fisheries quotas, gear restrictions, and closed seasons (Prada et al.,
2017). However, despite these regulations, populations appear to be
overfished and in a continuing decline inmany Caribbean locations
(Stoner and Appeldoorn, 2021).

Adult conch are found over a wide range of habitats,
particularly on sand flats and grass beds, but also on rubble and
gravel, mostly at depths of 20 meters or shallower (Stoner et al.,
1994; McCarthy, 2007; Stoner and Davis, 2010). Queen conch, as
all gastropods, are slow-moving organisms (Doerr and Hill, 2013)
and require direct physical contact for reproduction (Randall,
1964). Consequently, adult (i.e., mature) density is an important
factor governing mating success and reproductive output. The
principle of inverse density dependence at low densities is referred
to as an Allee effect (Allee, 1931). Recent simulation models
(Farmer and Doerr, 2022) indicate that the lack of mating
observed at low densities may be attributed to low encounter
rates of adults (Stoner and Ray-Culp, 2000) and limited sexual
facilitation leading to delayed functional maturity (Gascoigne and
Lipcius, 2004). When reproductive fitness declines such that the
per capita population growth rate becomes negative, localized
extinctionmay result (Allee, 1931; Courchamp et al., 1999). Long-
term observations of depleted populations indicate that even with
total fishing moratoria, recovery may take decades or longer
(Stoner and Appeldoorn, 2021). Consequently, it is critical for
fisheriesmanagement to identify how localized depletion patterns,
which decrease conch densities and reproductive output, may
affect the population throughout its entire distribution.

Unfortunately, inconsistent fishery-independent surveys
using different methodologies only provide limited information
on current conch densities throughout the WCR (Prada et al.,
2017). While there is genetic evidence of stock mixing
throughout the Caribbean with some localized population
isolation patterns (Pérez-Enriquez et al., 2011; Zamora-
Bustillos et al., 2011; Márquez-Pretel et al., 2013; Machkour-
M’Rabet et al., 2017; Truelove et al., 2017; Blythe-Mallett et al.,
2021), little is known about the ecological connectivity of queen
conch throughout its range. The species is largely sessile; thus,
most long-distance connections occur during the planktonic
early life stages (Davis, 2005; Kough et al., 2019). Indeed,
spatial genetic structure has been detected at different spatial
scales, both between and within territorial waters of Caribbean
jurisdictions, suggesting that queen conch do not form a single
panmictic population in the greater Caribbean and that variation
Frontiers in Marine Science | www.frontiersin.org 2
in marine currents, surface winds, and meteorological events can
either promote larval dispersal or act as barriers enhancing local
larval retention (Pérez-Enriquez et al., 2011; Zamora-Bustillos
et al., 2011; Márquez-Pretel et al., 2013; Machkour-M’Rabet
et al., 2017; Truelove et al., 2017; Kitson-Walters et al., 2018;
Blythe-Mallett et al., 2021). While modeling studies of larval
dispersal of queen conch corroborate these findings at regional
scales (Kough et al., 2019; Souza and Kough, 2020), these studies
focused on elucidating connectivity patterns mostly around The
Bahamas. Thus, it is still unknown how the interplay of physical
processes, biological traits, and localized depletion patterns affect
the demographic patterns of queen conch throughout the WCR.
Moreover, it is unknown if contemporary adult densities,
emerging particularly from localized exploitation patterns, can
affect population-wide demographics, as suggested for some
populations (Zamora-Bustillos et al., 2011; Márquez-Pretel
et al., 2013).

Here we aim to understand how fisheries can alter the
population structure and demographics of the queen conch by
estimating ecological connectivity under an “unexploited”
historical density scenario and an “exploited” contemporary
scenario that incorporates realistic localized density patterns.
Estimated connectivity patterns are compared among different
scenarios of reproductive output to evaluate how localized harvest
patterns can affect the population-wide demographics of the
species. This is the first effort to identify connectivity patterns of
the species throughout the Wider Caribbean Region and
incorporate viable reproduction using a comprehensive set of
adult densities. The results should inform collaborative
management among the various Caribbean states and territories
for one of the region’s most economically important species.
METHOD

Model Configuration
Connectivity Modeling System
To estimate the population connectivity of queen conch, we used
the Connectivity Modeling System (CMS), a community multi-
scale modeling system, with an Individual-Based Model and
stochastic Lagrangian framework (Paris et al., 2013). The CMS
simulates complex biophysical dispersive processes during the
pelagic early life history of marine organisms, producing estimates
of probabilistic connectivity among populations. Our simulations
thus captured the queen conch’s early pelagic life-history stages,
from hatching to the settlement of competent veligers.

In CMS, embryos and larvae are advected by deterministic
velocity fields from hydrodynamic models and by a stochastic
component representing unresolved sub-grid scale processes. The
velocity field is interpolated for each individual location and time
step using a tricubic scheme and integrated to the next time step
with a unique spatiotemporal forth-order Runge-Kutta scheme; the
stochastic movement is given by a random walk model, scaled by
the diffusivity coefficient of the system (Okubo, 1971). CMS also
simulates biological traits affecting an organism’s dispersal, such as
ontogenetic vertical migration (OVM). Spawning and settlement
habitats are represented in the model by 2D discrete polygons.
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Larvae are advected for the time defined as their maximum pelagic
larval duration (PLD), and those older than a defined competency
period that are found within polygon boundaries are considered
settled and removed from the simulation. The CMS saves individual
larval positions and attributes through time, together with files with
the spawning and settlement sites and times of successful settlers,
allowing for the estimation of dispersal and connectivity patterns.

Ocean Velocity Fields
We used velocity fields from two well-established hydrodynamic
products, the hindcast and reanalysis of the Global HYCOM and
the Mercator GLORYS12v1 reanalysis (Figure 1, hereafter
HYCOM and GLORYS, respectively). By considering different
hydrodynamic models, we could capture stochastic changes in
flow patterns and explicitly address the uncertainty of connectivity
estimates due to the underlying hydrodynamic flow fields. Our
model domain extended from 8°N to 37°N and from 98°W to 59°
W, and our temporal range was fromMarch to December of 2013
to 2017, capturing both the spatial distribution of the conch and
the seasonality of its spawning season. The five-year range is
adequate to capture interannual variability in the physical
oceanography and stochastic patterns of dispersal.

The Global HYCOM + NCODA Global Ocean Forecasting
System (GOFS, Chassignet et al., 2007) uses the Navy Coupled
Ocean Data Assimilation (NCODA) system (Cummings and
Smedstad, 2013) for data assimilation. NCODA assimilates
available satellite altimeter and temperature observations, surface
and vertical temperature and salinity profiles fromXBTs, Argo floats,
and buoys. The Global-HYCOM presents 41 vertical layers and a 1/
12° (ca. 8 km) horizontal resolution throughout our domain, and we
used a 12-hour temporal resolution. HYCOMoutputs were obtained
from the 3.1 GOFS Reanalysis (expt. 53.X) for the years 2013–2015
and for years that reanalysis was not available, 2016–2017, from the
GOFS Analysis (expts. 57.2, 92.8, 57.7, and 92.9).

The Mercator GLORYS version 12v1 is the reanalysis from
the Copernicus Marine Environment Monitoring Service
(CMEMS), largely based on the CMEMS real-time forecast
system (Lellouche et al., 2018; Lellouche et al., 2021). It
presents global coverage at 1/12° (ca. 8km) horizontal
resolution and 50 vertical levels, and it is available at daily
intervals for our study period. The model component is
version 3.1 of the NEMO (Nucleus for European Modelling of
the Ocean) model, driven at surface by ECMWF ERA-Interim
reanalysis. It uses a reduced-order Kalman filter to assimilate sea
level anomaly, sea surface temperature, and sea ice concentration
from satellite measurements, and in situ temperature and salinity
vertical profiles from the CORA (Coriolis Ocean Database
ReAnalysis, Lellouche et al., 2018). It also corrects large-scale
bias in temperature and salinity.

Habitat
The majority of queen conch spawning habitat occurs in waters
less than 20 m depth, in areas of coarse sand and rubble,
sometimes with mixed seagrass (Salley, 1986; Berg Jr. et al.,
1992; Boidron-Metairon, 1992; Stoner and Sandt, 1992; Stoner
and Schwarte, 1994; Delgado and Glazer, 2020). Nursery habitat
for queen conch is found in shallower sheltered back reef areas,
Frontiers in Marine Science | www.frontiersin.org 3
primarily associated with native seagrass meadows (Stoner, 1989;
Stoner et al., 1994; Stoner et al., 1996; Jones and Stoner, 1997;
Doerr and Hill, 2018; Boman et al., 2019). Juveniles are mostly
found in seagrass but can also recruit to shallow habitats such as
algal flats (Glazer and Berg Jr., 1994).

To represent spawning and nursery habitat of queen conch.
We used a spatially explicit conch habitat map (Figure 2)
composed of 1359 8 × 8 km polygons (Holstein et al., 2014)
based on coral reef locations from the Millennium Coral
Mapping Project (Spalding et al., 2001; IMaRS-USF 2005;
IMaRS-USF and IRD 2005; Andréfouët, 2008; UNEP-WCMC
et al., 2021). The polygons covered both spawning and settlement
habitat where queen conch occur, including seagrass, sand, and
reefs (Kough et al., 2019; Souza and Kough, 2020). Thus,
A

B

FIGURE 1 | Average surface velocity fields (m s-1) and eddy kinetic energy
(EKE, m2 s-2) for HYCOM reanalysis and analysis (A) and GLORYS12v1
reanalysis (B). Figures are based on surface velocity fields from 2013 to 2017
(March to December), the same time period used for the simulations of
dispersal. A span of 5 years was chosen to capture the interannual variability
in the circulation and derived connectivity patterns. Arrows represent average
surface velocity and background color the EKE. Labels in the top panel
identify major oceanographic features in the region (CC, Caribbean Current;
PCG, Panama-Colombia Gyre; YC, Yucatán Current; LC, Loop Current; FC,
Florida Current; GS, Gulf Stream; AC, Antilles Current).
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spawning and settlement in our model occurred within the same
polygons. Since the majority of conch habitat is restricted to
shallow depths of less than 20 m (Salley, 1986; Berg Jr. et al.,
1992; Boidron-Metairon, 1992; Stoner and Sandt, 1992; Stoner
and Schwarte, 1994; Delgado and Glazer, 2020), our habitat grid
was comprised only of polygons with centroid depth between 0
and 20 m (Figure 2).

We compared our habitat area estimates to published seagrass
habitat cover and conch fishing areas (SI Figure 3) including
compilations of global geomorphic zones (UNEP-WCMC and
Short 2021; Allen Coral Atlas, 2020; McKenzie et al., 2020; Schill
et al., 2021); studies focused on jurisdictions or regional levels
(Wabnitz et al., 2008; Tewfik et al., 2017; León-Pérez et al., 2019)
and fishing sites (compiled in Prada et al., 2017). Estimates of
seagrass area by jurisdiction were highly variable, and estimates of
conch fishing areas were generally much lower than the highest
estimates of seagrass cover. Overall, our habitat area estimates were
much lower than total seagrass area estimates per jurisdiction and
ranged from~30% to 100% of the area of the fishing bank estimates
(SI Figure 3). Our habitat areas were thus a conservative
measurement of conch habitat throughout the Caribbean.

To ensure that known spawning sites, including putative
deep-water spawning locations, were included in the habitat
Frontiers in Marine Science | www.frontiersin.org 4
layer, we ground-truthed our habitat map with spawning sites
reported in the literature (Randall, 1964; D'Asaro, 1965;
Brownell, 1977; Davis et al., 1984; Weil and Laughlin, 1984;
Coulston et al., 1987; Wilkins et al., 1987; Wicklund et al., 1991;
Berg Jr. et al., 1992; Garcıá-Escobar et al., 1992; Stoner and Sandt,
1992; Márquez-Pretel et al., 1994; Lagos-Bayona et al., 1996;
Pérez-Pérez and Aldana-Aranda, 2003; Garcia-Sais et al., 2012;
Cala et al., 2013; de Graaf et al., 2014; Meijer zu Schlochtern,
2014; Wynne et al., 2016; Truelove et al., 2017). Following this
review, we incorporated 13 shallow-water polygons not initially
present in our habitat layer in St. Eustatius, USVI, Colombia,
Florida, Mexico, Jamaica, Saba, Bonaire, and The Bahamas
(Randall, 1964; Coulston et al., 1987; Garcıá-Escobar et al.,
1992; Márquez-Pretel et al., 1994; Meijer zu Schlochtern, 2014;
Truelove et al, 2017). We also included an additional 14 putative
deep spawning sites, located outside of our polygons, as
spawning sources exclusively for Venezuela, Cuba, The
Bahamas, USVI, Turks and Caicos Islands (TCI), Saba,
Colombia, Belize, Honduras, Puerto Rico and Jamaica (i.e.,
Pedro Bank) (Randall, 1964; Brownell, 1977; Davis et al., 1984;
Weil and Laughlin, 1984; Wicklund et al., 1991; Stoner and
Sandt, 1992; Lagos-Bayona et al., 1996; Aiken et al., 2006; Garcia-
Sais et al., 2012; Cala et al., 2013; de Graaf et al., 2014; Truelove
FIGURE 2 | Map of spawning and settlement habitat (polygons), color-coded by jurisdiction. Conch habitat is represented of 1359 8×8 km polygons (Holstein
et al., 2014) based on shallow (depth less than 20 m) coral reefs locations from the Millennium Coral Mapping Project (Spalding et al., 2001; IMaRS-USF 2005;
IMaRS-USF and IRD 2005; Andréfouët, 2008; UNEP-WCMC et al., 2021). Individual habitats are buffered to facilitate visualization and are not represented to
scale. Due to close proximity, some jurisdictions are referred by their regional location, as follows: 1) the Greater Antilles is composed by the Cayman Islands,
Cuba, Dominican Republic, Haiti, Jamaica, Puerto Rico; 2) the Leeward Islands are Anguilla, Antigua and Barbuda, British Virgin Islands, United States Virgin
Islands, Guadeloupe, Montserrat, Saba, Saint Barthélemy, Collectivity of Saint Martin, Sint-Eustatius, Saint Kitts and Nevis; 3) the Windward Islands are
composed by Barbados, Dominica, Grenada, Martinique, Saint Lucia, Saint Vincent and the Grenadines, Trinidad and Tobago.
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et al., 2017). We assumed that all spawning sites within a given
jurisdiction contributed equally to conch biomass and thus
spawning, except for The Bahamas, Colombia, and Puerto
Rico, where sub-jurisdiction designations were used because
studies showed significant variation in conch densities and
separate sub-jurisdictional estimates could be compiled.

Adult Densities
Data for adult densities were obtained from a recent
comprehensive literature review which compiled fishery-
Frontiers in Marine Science | www.frontiersin.org 5
independent densities of adult conch populations for each of
the 42 jurisdictions in our study area (Horn et al., 2022,
Figure 3). Jurisdiction here was defined as any state, territory,
collectivity, municipality, or country within the species range
having management authority over queen conch stocks. For each
of the 42 jurisdictions, all available comprehensive survey-level
estimates of adult queen conch per hectare were compiled to
generate cross-shelf adult conch density estimates.

Data availability was variable among jurisdictions, and some
estimates reflect recent studies which conducted randomized
FIGURE 3 | Estimated adult conch densities for the jurisdictions considered in this study (reproduced from Horn et al. 2022, sources listed in Appendix 1). Data
points are sized relative to densities; green symbols indicate conch populations with >100 adult conch/ha, gold symbols indicate 50-99.9 adult conch/ha, and red
symbols indicate <50 adult conch/ha. Countries without density data are indicated with an X - data for these countries were interpolated from the nearest neighbor.
Gray circles represent the 95% confidence interval (2.5 - 97.5% bounds) of density estimates for each jurisdiction. Where densities are summarized on a jurisdiction
level, the points appear at the approximate center point of the jurisdiction; where densities are summarized on a subregional level the points appear at the location of
fishing banks or subregions (i.e., The Bahamas and Puerto Rico). Please refer to Horn et al. 2022 for more details on the methodology.
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surveys over multiple habitat and shelf areas, while others reflect
punctual surveys or data from workshops (SI Appendix 1, Horn
et al., 2022). Cross-shelf surveys likely generate more suitable
estimates of overall queen conch populations, and cross-shelf
surveys seem to be a widely used monitoring method for queen
conch stocks. Thus, intra-aggregation density data (e.g., from the
few surveys conducted within spawning aggregations) were
removed from the dataset (SI Appendix 1).

Priority was given to using surveys carried out after 2000;
when this was not possible (Bermuda, Dominican Republic),
surveys from the 1990s were used. For jurisdictions where no
data were available, densities from the nearest neighbor
jurisdiction were used (Costa Rica, Curaçao, Dominica,
Grenada, Montserrat, Saint Kitts and Nevis, Saint-Barthelemy,
Trinidad and Tobago). When available, we also considered
available information regarding the status of stocks and local
exploitation/consumption of conch. However, for most
jurisdictions, there were multiple independent estimates
available (SI Appendix 1). In such cases, we fitted a
distribution to the independent estimates of mean conch
density (see Horn et al., 2022 for details) and then used the
median of the distribution as a best estimate of mean adult queen
conch density for each jurisdiction. For jurisdictions with large
shelf areas and with data available across multiple regions,
significant differences across regions were assessed. Densities
for The Bahamas, Colombia, and Puerto Rico were significantly
different among regions, and separate density estimates were
created for these areas. For The Bahamas, the difference is
considered between regional banks (Little Bahama Bank,
Western Great Bahama Bank, Central Great Bahama Bank,
Jumentos and Ragged, and Cay Sal); for Colombia, the division
is between nearshore sites and offshore banks located hundreds
of miles away (Serranilla, Quitasueño and Serrana Banks); and
for Puerto Rico is between shallow sites and a putative
mesophotic spawning site at the Abrir La Sierra mesophotic
reef (located in the southeast of the Mona Passage, Garcia-Sais
et al., 2012).

The compiled density (Figure 3, Horn et al., 2022) showed that
most jurisdictions, or regional divisions of jurisdictions (31 out of
46 jurisdictions), present populations with adult densities varying
from 0-50 conch/ha, four jurisdictions present densities from 50-
100 conch/ha, and 11 present adult densities over 100 conch/ha.

Spawning Behavior
Queen conch exhibit a seasonal spawning pattern, which varies
with latitude across our study region. In our model approach we
used a standardized annual spawning curve for all jurisdictions,
varying the month of onset and peak of spawning for each
jurisdiction. Annual seasonal cycles of spawning activity were
derived from five studies which evaluated annual egg production
(Weil and Laughlin, 1984; Stoner et al., 1992; Appeldoorn, 1993;
Delgado and Glazer, 2020), and each was fit to a series of curves
(Normal, Weibull, Lognormal, and Gamma). The Weibull curve
was the best fit overall, and the best-fit Weibull curve parameters
were then averaged to create a single curve that could be applied
to all jurisdictions, representing that the ramping up of spawning
Frontiers in Marine Science | www.frontiersin.org 6
occurs at a slightly higher rate than the ramping down of
spawning after the peak (SI Figure 1). We compiled the month
of spawning peak and onset for each jurisdiction from published
visual surveys of reproductive output and gonadal histological
studies (Randall, 1964; D'Asaro, 1965; Hesse, 1976; Brownell,
1977; Davis et al., 1984; Appeldoorn, 1985; Cruz, 1986; Salley,
1986; Corral and Ogawa, 1987; Coulston et al., 1987; Berg et al.,
1992; Stoner et al., 1992, Appeldoorn, 1993. Márquez-Pretel et al.,
1994; Aldana-Aranda et al., 2003; Avila-Poveda and Baqueiro-
Cárdenas, 2009; Bissada, 2012; Appeldoorn and Baker, 2013; Cala
et al., 2013; Aldana-Aranda et al., 2014; Meijer, 2014; de Graaf et
al., 2015; Wynee, 2016; Boman et al. 2018; Tiley et al. 2018;
Delgado and Glazer, 2020). Expected spawning activity was then
interpolated over all months of the year by using the Weibull
curve representing the annual cycle, shifting it temporally such
that the peak of the curve matched the reported peak. The
expected spawning activity was thus expressed as a series of
percentages by month, with the sum of all months equal to 100%.
This extrapolation method produced patterns of spawning in
space and time that are very similar to other reports (Boman et al.,
2018; Stoner and Appeldoorn, 2021). The derived percentages
were then applied so that the number of particles released in the
simulation follows the specified annual pattern (SI Table 1).

Unexploited and Exploited Spawning Scenarios
To account for the spatially heterogeneous patterns in
exploitation and density-dependent processes (Allee effects), we
considered two distinct scenarios. For the first set of simulations,
the total number of larvae released from each polygon centroid is
constant across all countries, with spawning varying over time to
capture local seasonality. This set of simulations reflects a
historical virgin or “unexploited” population, whereby the
density of queen conch spawning biomass is constant across all
areas. The actual densities of conch spawning biomass that can be
supported will be dependent on habitat attributes of each area;
however, we lacked a comprehensive map of habitat types across
our wider study region, as well as information on the
relationships between habitat types and their respective conch
densities at carrying capacity, as they vary across the region. In the
absence of such detailed information, we assumed that equal
spawning biomass densities and consistent per-capita fecundity
rate across the region are reasonable approximations for
understanding overall connectivity patterns in a pre-
exploitation (i.e., unexploited) scenario.

For the second set of simulations, densities of adult conch
populations for each of the 42 jurisdictions of our study area
(Horn et al., 2022, Figure 3) were used to scale the conch
reproductive output. We applied an additional penalty for very
low densities to account for reduced reproductive success at these
levels (i.e., Allee effects). This simulation represents the expected
connectivity under contemporary exploitation rates. To adjust
the number of egg releases on a per-area basis, we used Equation
1, where N is the number of particles released in each year of the
simulation per area a, S is a constant scalar to adjust the overall
number of particles to computationally viable quantity for the
simulation, D is the median of the mean adult conch densities for
July 2022 | Volume 9 | Article 841027
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each jurisdiction c, and f(A) is a function representing the
reduction in reproductive output due to Allee effects.

Na = SDcf Að Þ (Equation 1)

The few studies that have investigated simultaneously the
relationship between adult density and reproductive rates found
varying results, particularly because the density is dependent on
the scale over which observations are recorded (Stoner and Ray-
Culp, 2000; Gómez-Campo et al., 2010; Stoner et al., 2012; Cala
et al., 2013; Doerr and Hill, 2018; Appeldoorn, 2020). However,
field studies suggest a cross-shelf minimum density of 50–100
adults/ha (Stoner and Ray-Culp, 2000; Stoner et al., 2012) or a
spawning aggregation (i.e., intra-aggregation) density of 200-300
adults/ha (Delgado and Glazer, 2020) is necessary for successful
encounters and mating. For our simulations, we assumed that
jurisdictions with cross-shelf densities >100 conch/ha had full
reproductive activity [f(A) from Equation 1 is set to 1], with
reproductive output decreasing linearly for jurisdictions
harboring between 50-100 conch/ha and assumed no
reproduction for jurisdictions with densities <50 conch/ha (SI
Figure 2). The number of particles released per polygon and
jurisdiction was distributed across the annual cycle using the
same derived percentages used in the unexploited, uniform
spawning, simulation (SI Table 1). Applying this function to
our contemporary estimates of adult queen conch density limited
spawning to just 15 of the initial 42 jurisdictions (Figure 3 and
SI Figure 4).
Vertical Migration Behavior
Hatching of veligers occurs from egg masses on the seafloor.
Hatched veligers possess two lobes which are used to
immediately swim up to the ocean surface and remain in these
layers (Brownell, 1977). Because hatched veligers would reach
the surface in a relatively brief amount of time, we did not
simulate the process of hatching and swimming to the surface,
instead simulating releases directly from surface waters where
the early-stage larvae occur more frequently.

We did not simulate diel vertical migration since there is
disagreement among studies as to whether significant patterns in
diel distributions exist (Chaplin and Sandt, 1992; Stoner and
Davis, 1997). However, the body of literature on conch early life
history is largely in agreement that distributions shift as veligers
become older, and thus we simulated this ontogenetic shift based
on the comprehensive surveys from Stoner and Davis (1997).
Stages of development were differentiated in the Stoner and
Davis (1997) study as newly hatched (300-500 mm length), mid-
stage (500-900 mm), and late-stage (>900 mm) larvae. To
determine the timing of these phase changes in terms of time
elapsed since hatching, we plotted reported ages and lengths
from a suite of nine different studies (D’Asaro, 1965; Brownell,
1977; Boidron-Metairon, 1992; Davis et al., 1993; Davis, 1994;
Davis et al., 1996; Davis, 2000; Brito-Manzano and Aldana
Aranda 2004; Davis, 2005). The relationship between shell
length and days post-hatching is linear and highly correlated
(R2 = 0.95). We used the relationship as defined by linear
regression to translate shell length to estimated age at the
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transitional phases, which resulted in an estimated transition
to mid-stage at 5.6 days post-hatching and transition to late stage
at 15.5 days post-hatch. The initial vertical distributions (newly
hatched veligers) are based on the averages of larval distributions
with depth for newly hatched veligers from Tables 1, 2 in Stoner
and Davis (1997). The vertical distributions of mid- and late-
stage veligers were extracted from Stoner and Davis (1997),
where day and night vertical densities were averaged to
determine an overall distribution. The data compilation
showed that most early-stage larvae are found in the surface
layer, with some distributed slightly deeper within the top 15 m,
whereas the mid-stage and late-stage larvae are distributed
slightly further down in the water column (from 5-30m), and
to a lesser extent in the deeper layers (up to 100m, SI Figure 5).
This summary is consistent with other reports of OVM behavior
of veligers (Brownell, 1977; Barile et al., 1994; Davis and Stoner,
1994; Stoner et al., 1997; Stoner and Smith, 1998).

Settlement
Minimum pelagic duration is reported in three field studies to be
18 days (Brownell, 1977; Salley, 1986; Davis, 1994) and thus, we
set the minimum duration to this value. Upper limits for pelagic
larval duration range from 21 to 30 days (D'Asaro, 1965;
metapoluation Brownell, 1977; Salley, 1986; Davis, 1994; Paris
et al., 2008) with a mean of approximately 25 days; this value was
used for the upper range of the allowable PLD in the simulation.

Post-Processing Analysis
Connectivity
CMS saves individual larval positions and attributes through
time, together with connectivity files with the spawning and
settlement sites of successful settlers. The connectivity output is
used to generate transition matrices of connectivity (i,j), where
the rows (i) represent the spawning sites and the columns (j)
represent the settlement sites (Bodmer and Cavalli-Sforza, 1968;
Paris et al., 2007). By normalizing the connectivity matrix by
columns, i.e., by the total settlement originating from each
spawning site (i), we obtain the probability of settlers from a
spawning site i to reach a settlement site j (Pij), and the matrix
main diagonal (Pij, j=i) represents the probability that larvae
settle within the same jurisdictional boundaries in which they
were spawned (Paris-Limouzy, 2011). When the transition
matrix is normalized by rows, or by the total settlement at
each settlement site (j), the main diagonal of the matrix (Pji,
i=j) represents self-recruitment, or the fraction of settlers
spawned locally over all settlers in a reef (sensu Paris and
Cowen, 2004; Botsford et al., 2009; Burgess et al., 2014; Drury
et al., 2018). We also calculated the local retention, which is given
by the number of settlers in their natal reef (or jurisdiction) over
all larvae spawned in a reef (or jurisdiction, sensu Paris and
Cowen, 2004; Botsford et al., 2009; Drury et al., 2018). Together
these measures give an indication of how reliant any given
jurisdiction is on larvae sourced from other jurisdictions.

Based on the transition matrix, we used graph theory to
identify ecological corridors. Graph theory is the study of
relationships between objects in a dynamic system, which can
range from metapopulations to social or road networks (West
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2001). A graph is composed of nodes and the connections
between nodes are represented by edges. Thus, graphs are apt
representations of the connections between populations created
by larval dispersal (Cowen et al., 2006; Treml et al., 2008; Urban
et al., 2009; Thomas et al., 2014; Saunders et al., 2016), where the
populations are the “nodes’’ and the connections between
populations are the “edges.” Several network metrics can be
derived from graphs and here we calculate the betweenness
centrality (BC), which measures the relative “centrality” of a
node in relation to other nodes of the network. For each
population (i), their BC is defined as the number of shortest
paths (i.e., the shortest routes) between all population pairs
which passes through the target population (i) over the
number of shortest paths between all nodes in the graph. Thus,
BC is a relevant measure of overall “connectedness,” since the
shortest paths include both direct and indirect - or
multigenerational - connections (Treml et al., 2008; Holstein
et al., 2014). Jurisdictions with high BC are generally important
for maintaining genetic diversity - if reproductive output from
jurisdictions with high centrality were to decline significantly, we
would expect reduced genetic mixing over the region. Other
metrics, such as in-degree and out-degree (number of
connections towards and from a population, respectively), are
also estimated. We used the Matlab-bgl package (Gleich, 2008)
for all graph analyses. We also estimated a source-sink index
(Holstein et al., 2014), which relates the number of settlers
leaving or arriving at each jurisdiction’s reefs (SS = settlersout -
settlersin/settlersout + settlersin). This index allows the
characterization of relative sinks and sources within the region.

We calculated transition matrices using all the conch habitat
polygons in the region (1359 polygons), and then grouped the
polygons by jurisdiction of origin to calculate transition matrices
and conduct other analyses. To create jurisdiction categories, we
used boundaries from Exclusive Economic Zones (EEZ) from the
Maritime Boundaries Geodatabase (Flanders Marine Institute,
2019). We defined population units within these geographical
boundaries because: 1) both habitat and densities of queen conch
were available by jurisdiction, and we are unable to provide
robust input within jurisdictions and 2) these are the units of
management throughout the queen conch distribution. To
facilitate the description of results and discussion, the islands
and jurisdictions of the Lesser Antilles (Windward and Leeward
Islands, and the Leeward Antilles) are often described together,
as color-coded and described in Figure 2.

Uncertainty Analyses
To account for the variable range of adult densities observed by
fishery-independent surveys at each jurisdiction, we conducted
an uncertainty analysis. From the above-mentioned jurisdiction-
specific distributions of adult conch densities, we randomly drew
100 draws for each jurisdiction, and then translated the
randomly drawn densities of adults to reproductive output as
with previous simulations. We then estimated larval exchange
between spawning and settlement jurisdictions by multiplying
the probabilistic connectivity matrix of the unexploited release
case by each reproductive output (egg production * connectivity,
Kool et al., 2010; Kool et al., 2011). The results of the 100
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transition matrices were aggregated for two extremes: minimum
and maximum estimated connectivity. The matrices for each
scenario were based on locating the minimum (or maximum)
number of larvae exchanged between each spawning-settlement
pair for the 100 different possible connectivity results.

Metapopulation
To identify clusters of highly isolated spawning and settlement
sites of queen conch within the Wider Caribbean, we applied the
graph theory method described in Jacobi et al. (2012). This
method is a minimization algorithm that recursively seeks
solutions that minimize connections between clusters, while
maximizing connections within clusters (Jacobi et al. (2012),
Garavelli et al., 2014). Briefly, it minimizes an objective function
consisting of the connectivity between populations and a penalty
parameter to avoid aggregating sites i.e., to avoid the optimal
minimization solution of the connectivity matrix, which would
be achieved considering only one cluster composed of all
spawning and settlement sites. We used the Jacobi et al. (2012)
minimization algorithm from the open-source R-package
ConnMatTools (Kaplan et al., 2017). We did 10 different
iterations of the algorithm using different penalty parameters
(Jacobi et al., 2012). From these iterations, we selected the
solution yielding the least amount of connectivity between
clusters while resulting in the highest self-recruitment within
the cluster. For this, we selected the solution where the
connectivity between clusters normalized by the self-
recruitment resulted in the smallest values, a value termed
“quality” (Jacobi et al., 2012).

Given the distribution of habitat (patches of habitat on coasts,
islands, and banks) within the queen conch distribution area, we
assumed that each one of these clusters, as characterized by the
minimization algorithm and estimated larval dispersal, acts as a
metapopulation (sensu Wells and Richmond, 1995). Thus,
metapopulations were the results of the clustering analyses,
populations were defined by jurisdictional divisions, and distinct
banks within a population were considered subpopulations.

Estimation of Genetic Distance
From the probability matrices, we also derived the connectivity
distance between each spawning-settlement pair for several
generations. We did this by a forward projection of the matrix
using amodifiedmodel ofmigration based on Bodmer and Cavalli-
Sforza (1968) as described in (Kool et al. 2010; Kool et al. 2011) and
Foster et al. (2012). In the unexploited scenario, we assumed that all
habitats in our model have the same carrying capacity and
reproductive output, and thus, the forward matrix with the allele
frequencies expected at time t (Qt) is given byQt = M + It, whereM
is the connectivity matrix, I is an identity matrix of the same
dimension as M, and the bar denotes row-normalization (Kool
et al., 2010). While the connectivity matrix reflects single dispersal
events between populations during one generation, the forward
projection of thematrix captures indirect connections overmultiple
generations. We then estimated the Nei’s DA genetic distances
(Nei’s angular distance, as defined in Nei et al., 1983) between sites
using the forward matrices, following Kool et al. (2010). The
estimated Nei’s DAs are used for comparisons to the linearized
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GST (GST/(1- GST)) of a Caribbean-wide genetic study (Truelove
et al., 2017) by means of a Mantel-r test (Mantel, 1967; Legendre
and Legendre, 2012) to test for isolation by distance using the R
package adegent v2.1.1 (Jombart et al., 2008).
RESULTS

Connectivity Patterns
The probabilities of connectivity for both hydrodynamic fields
(HYCOM and GLORYS, Figure 4) show that larval exchange
tends to follow the main pattern of currents in the Caribbean,
Gulf of Mexico, and North Atlantic (Figure 1). In the
unexploited scenario, all network nodes (jurisdictions) were
generally well connected, with multiple pathways of dispersal
for both exporting and receiving larval subsidies - the median
number of exporting connections (considering all jurisdictions
and both hydrodynamic models) was 9, while the median
number of incoming connections was 7. The connectivity from
both hydrodynamic products also presented a high likelihood of
self-settlement. However, the level of self-retention varied for
some jurisdictions by model, e.g., Turks and Caicos Islands,
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which exhibited a higher likelihood of self-settlement when
dispersed with the HYCOM than the GLORYS. Moreover,
both networks showed that the only completely isolated node
in the network is Bermuda, which did not receive nor provide
larval subsidies to any other jurisdiction.

Some key differences between the two ocean circulation
models were confined to regional scale connections. For
instance, the HYCOM estimated a higher likelihood of
exchange 1) between and within reefs in Cuba and The
Bahamas, and 2) from Cuba to Mexico and the Greater
Antilles, while the GLORYS simulations estimated a higher
likelihood of export from Cuba to the Bahamas. Transport
within the Windward and Leeward Islands also differed slightly
between the two sets of simulations. For the HYCOM, larvae
spawned on the Windward and Leeward Islands were estimated
to have a higher likelihood of settlement in Puerto Rico and the
Dominican Republic when compared to the high likelihood of
local settlement observed in the GLORYS for this region.

When we introduced realistic reproductive output levels
based on exploitation patterns (Figures 4B, D), connectivity
was largely reduced among regions for both models, as expected,
and differences in connectivity patterns between the two models
FIGURE 4 | Connectivity networks for queen conch for two different reproductive output scenarios: 1) unexploited, i.e. spawning uniform for each habitat polygon
(A, C left column); and 2) exploited, with spawning scaled by median adult densities reported per jurisdiction (B, D right column). Larvae were dispersed with
HYCOM (A, B, top row), and GLORYS (C, D, bottom row) velocities. Edges between nodes represent the strength of connections between sites, whereby the
direction of larval flow is given by the clockwise direction - concave edges represent export while convex represents import. Node sizes represent the probability of
self-settlement. Jurisdictions with no spawning in the exploited density scenario are marked with a triangle. The results for each model were based on 90 releases in
the period of five years (2013-2017).
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became less apparent. Notably, when considering exploited
densities (Figures 4, 6), there was a reduction in the likelihood
of self-settlement. Indeed, even the highest probability of self-
settlement in the exploited scenario (The Bahamas, Jamaica, and
Cuba) was smaller than observed in the historical scenario. Other
jurisdictions in the network are likely to export most of their
larval subsidies. By contrasting the connectivity networks for
unexploited and exploited densities, there was a clear reduction
of connections between the eastern and western Caribbean. It
was also clear that the lack of spawning in Belize andMexico, and
the reduced spawning in Nicaragua, further break the transport
to upstream sites, particularly the USA, The Bahamas, and
northern Cuba. The regions that remained mostly inter-
connected were the Central American jurisdictions (Costa
Rica, Honduras, Nicaragua), the westernmost Greater Antilles
Islands (Jamaica, Cuba, Turks and Caicos Islands), and the
offshore Serrana Bank. Larvae released in these regions were
exported to other regional reefs (Belize, Mexico, Panama,
Colombia, Haiti, Serrana, and Quitasueño Banks) for
both models.

Generally, the pattern of export or import of larvae for the
unexploited homogenous spawning scenario matched the
experiments with both hydrodynamic fields (Figure 6A,
“unexploited”). Mexico, Costa Rica, British Virgin Islands,
Anguilla, Saint Martin, and Saint Barthelemy presented a
higher likelihood of acting as relative sinks, while the
Windward Islands, Nicaragua, and Colombia’s Mesoamerican
offshore banks (Quitasueño, Serrana, and Serranilla) appeared as
(relative) sources. Once reproductive output was scaled by adult
conch densities (Figure 6A, “exploited”), the relative importance
of regions as a source and a sink also changed. Saba, Saint Kitts
and Nevis, Nicaragua, Serrana Bank, and Turks and Caicos
Islands were sources on both models, while Puerto Rico,
Honduras, and Cayman Islands became sinks. Two countries
with the largest habitat areas, Cuba and Jamaica, appeared as
neutral, which is expected since these countries also showed high
self-recruitment. The probability of The Bahamas acting as a
relative sink slightly increased in the exploited simulations.

The betweenness centrality (BC) for the unexploited scenario
(Figure 6B, “unexploited”) showed that despite differences in
connectivity patterns between the simulations using different
hydrodynamic products, the jurisdictions showing the highest
BC were mostly consistent among the two simulations. These
were the Dominican Republic, Puerto Rico, Jamaica, and Cuba.
Following these were also Honduras, Colombia, and the British
Virgin Islands. When considering exploited densities to scale the
spawning (Figure 6B, “exploited”), Jamaica and Cuba emerged
as central nodes for both hydrodynamic products. The Bahamas,
Nicaragua, and Honduras appeared as secondary nodes. A
notable change between the unexploited and exploited
scenarios was Puerto Rico - when exploited densities were
considered, the local reefs were unlikely to serve as an
ecological corridor between Caribbean regions.

For the unexploited spawning scenario, local settlers
comprised most of the settlers in several jurisdictions,
including the Greater Antilles Islands, some of the Windward
Islands (Figure 6C, “unexploited”), The Bahamas, Florida, and
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Bermuda, and results obtained with the two hydrodynamic
products largely agreed. When considering exploited
distributions (Figure 6C, “exploited”), local settlers comprised
most of the settlers in Nicaragua, Jamaica, Cuba, and Turks and
Caicos Islands, while largely important for The Bahamas and
Saint Kitts and Nevis. Many of the jurisdictions that appeared to
mostly rely on their own settlers in the unexploited experiment
did not exhibit spawning (e.g., Haiti, Dominican Republic,
Barbados, Trinidad and Tobago, Colombia, Belize, US,
and Bermuda).

Uncertainty Analyses
Based on the minimum exchange scenario for each jurisdiction
(Figures 5A, C), connectivity was further reduced from the
exploited scenario, with more countries not producing viable
settling larvae (or not spawning), including Honduras, Turks and
Caicos Islands, Serrana Bank, St. Kitts and Nevis, and Sint
Eustatius. However, the reduction in spawning did not further
alter the probability of connectivity with other jurisdictions
which were spawning, either for the HYCOM or GLORYS
simulations. However, there were differences in the strength of
connections and the number of larvae settling on their natal
reefs. There was a higher likelihood of self-settlement in Jamaica,
Cuba, and The Bahamas for both models. The connectivity
between the eastern and western Caribbean regions here was
further fragmented.

On the other hand, for the scenario considering the
maximum connectivity between two countries (Figures 5B,
D), spawning occurred in nine additional jurisdictions from
the sixteen in the exploited scenario, including the British and
US Virgin Islands, Guadeloupe, Colombia, Serranilla Bank,
Belize, Mexico, and The Bahamas (Western Great Bahama
Bank and Central Great Bahama Bank). As expected, this
scenario presented higher connectivity than the exploited
scenario (based on median values of densities), although a
break in larval transport between the western and eastern
Caribbean still emerged, since the centrally located Dominican
Republic and Haiti only served as settlement sites and did not
support reproductively active populations in this scenario.
Several countries also presented a higher likelihood of local
settlement in this case, particularly Jamaica, Cuba, The
Bahamas, and Colombia. Patterns of transport and local
settlement differed between the two hydrodynamic models for
the Windward and Leeward Islands, but generally there was a
higher likelihood of local settlement for the jurisdictions still
reproductively active in this case. The probability of connectivity
was still similar for the countries where conch were spawning in
the two scenarios. However, in this case, there was much more
exchange between the Western Caribbean jurisdictions and a
higher likelihood of export of larvae downstream of the local
currents, particularly to countries located downstream, such as
Mexico and Florida.

Metapopulation
Regional patterns of connectivity between distinct Caribbean and
North Atlantic regions showed changes between hydrodynamic
models and scenarios (Figure 7 and SI Table 3). The major
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differences in the unexploited scenario between models were
estimated in Cuba, south Florida, the Leeward Antilles, southern
Mesoamerica (Costa Rica and Panama), and the southern
Leeward Islands for the unexploited scenario and both
hydrodynamic models, with six metapopulations. For the
HYCOM simulations there were: 1) the Lesser Antilles and
Puerto Rico; 2) Venezuela, the Leeward Antilles, northwestern
Caribbean, Florida; 3) Haiti, Dominican Republic, The Bahamas,
Turks and Caicos Islands; 4) Cuba and Cayman Islands; and 6)
Bermuda. For the GLORYS: 1) Western Caribbean, Jamaica, and
Cuba; 2) Florida; 3) Puerto Rico and Northern Lesser Antilles; 4)
Southern Lesser Antilles; 5) The Bahamas, Turks and Caicos
Islands, and Venezuela; and 6) Bermuda.

When spawning was reduced according to the relative
exploited densities of conch, connections were decreased by
the lack of spawning in exploited jurisdictions, as particularly
evident in Florida, Mexico, Haiti, and the Dominican Republic.
However, the entire region was still connected by larval dispersal
through connections within the central regions of the network.
When exploited densities were considered, there was an increase
of metapopulations for the HYCOM (from 6 to 7
metapopulations, SI Table 3) and a decrease for the GLORYS
Frontiers in Marine Science | www.frontiersin.org 11
(from 6 to 4 metapopulations). Remarkably, for both models, the
jurisdictions harboring the largest conch populations (Cuba,
Jamaica, and The Bahamas) became metapopulations by
themselves (Jamaica) or only with their nearest neighbors
(Cuba and Cayman Islands, The Bahamas, and Turks and
Caicos Islands). Both models also diverged in the number of
connections exhibited by each node.

The metapopulations obtained with the uncertainty analyses
(SI Figure 6) suggested that the metapopulation organization of
queen conch is highly dependent on the spatial patterns of
reproductive output. The metapopulations obtained with the
minimum connectivity (SI Figures 6A, C) were highly distinct
for the two hydrodynamic models. While six connected
metapopulations were identified for the HYCOM, only two
isolated metapopulations emerged for the GLORYS - one
encompassing the western Caribbean, and another for the
easternmost region (Windward and Leeward Islands and
Puerto Rico). For the maximum exchange, the number of
metapopulations remained the same for the HYCOM, although
with changes to its spatial structure. The number of
metapopulations greatly increased for the GLORYS, which
showed eight distinct clusters of mostly self-contained habitat.
FIGURE 5 | Connectivity network for queen conch considering uncertainty of contemporary (exploited) conch densities, for larvae dispersed with HYCOM (A, B, top
row) and GLORYS12v1 (C, D, bottom row) velocities. Panels exhibit the minimum (A, C, left column) and maximum (B, D, right column) potential connectivity based
on possible ranges of adult conch densities (from Horn et al., 2022). Minimum (maximum) potential connectivity is obtained from an uncertainty analysis, where we
multiply the probabilistic connectivity matrix of the unexploited release case by 100 spawning distributions drawn from the density curves of adult conch per
jurisdiction and use the smallest (biggest) number of larvae exchanged between each spawning-settlement pair to generate the probabilistic connectivity. Edges
between nodes represent the strength of connections between sites, whereby the direction of larval flow is given by the clockwise direction - concave edges
represent export while convex represents import. Node sizes represent the probability of self-settlement.
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Metapopulations were more similar among the models, i.e.,
Panama, The Bahamas, and Jamaica were individual
metapopulations for both models. Similarly, output from both
models resulted in a cluster formed by jurisdictions not exhibiting
reproductive activity and that showed a low probability of
receiving larval subsidies from other metapopulations.
Ecological and Genetic Connectivity
The origin of settlers at each discrete habitat unit was grouped
by the genetic divisions characterized by Truelove et al. (2017,
Figure 8). The unexploited spawning scenarios (Figures 8A, B)
corresponded well to the patterns observed by Truelove et al.
(2017) given that larvae within each region identified by the
authors were most likely locally originated. The exception was
the high probability of larval exchange between The Bahamas
and Turks and Caicos Islands and the Greater Antilles, which
occurred for both hydrodynamic models. In the exploited
reproductive output scenario, we considered that six of the
twelve jurisdictions sampled by Truelove et al. (2017) were not
reproductively active. Due to the lack of spawning, it was
expected that not all connectivity patterns could be
reproduced. Indeed, in this case, the high self-settlement
observed for Mexico, Belize, and Florida (Figures 8C, D) was
absent due to the lack of reproductive activity. The genetic
connectivity analyses subsequently focused only on the results
of the unexploited simulations since the results of the exploited
Frontiers in Marine Science | www.frontiersin.org 12
density scenario were insignificant due to the reduced number of
data points.

The results of the Mantel-r test between GST values from
Truelove et al. (2017) and the Nei’s DA genetic distance derived
from our connectivity matrices for 10, 50, and 100 generations
(SI Table 2) showed that the Mantel-r increased with the
number of generations considered. By considering the averages
of the Nei’s DA genetic distances calculated for each individual
hydrodynamic product, the Mantel-r increased for 50 and 100
generations, while the p decreased. This approach captured the
uncertainties of the hydrodynamic field estimated by each
individual model and improved our estimations (Figure 9 and
SI Figure 7). Results of both the Mantel-r tests (SI Table 2), the
scatter plot between the estimated Nei’s DA genetic distances and
linearized GSTs from Truelove et al., (2017, Figure 9), and plots
of distances between sites (SI Figure 7) suggested that queen
conch populations exhibit a distance-by-isolation pattern. Our
model explained part of the variability and the consideration of
conch specific biological traits improved the results obtained
solely by considering oceanographic distances between sites.
DISCUSSION

Connectivity Patterns
The connectivity network (Figure 4) of queen conch for both
hydrodynamic models used generally follows the main surface
A

B

C

FIGURE 6 | (A) Relative Source-Sink (SS) Index for each jurisdiction in the queen conch network. Positive values of SS Index represent relative source areas while negative
represent relative sink areas. (B) Relative betweenness centrality (BC) for each jurisdiction in the queen conch network. BCmeasures the fraction of shortest paths passing
through a node (jurisdiction) - higher values represent most central nodes, or ecological corridors. (C) Probability of self-recruitment for each jurisdiction in the queen
conch network, defined as the proportion of settlers spawned locally in each jurisdiction (local settlers over all settlers in a given jurisdiction). Simulations considered two
different reproductive output scenarios: 1) unexploited, i.e., uniform spawning for all habitat polygons; and 2) exploited, with spawning scaled by median adult densities
reported per jurisdiction. Larvae dispersed with the HYCOM and the GLORYS12v1 velocities. When considering exploited density of adults, areas with no spawning are
colored gray on a). Each node represents all polygons from individual jurisdictions, organized in a clockwise direction from Haiti towards Bermuda. Each model’s results
are based on 90 releases in the period of five years (2013-2017).
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currents in the region - Caribbean Current, Yucatán Current,
Loop Current, and Florida Current (Figure 1) - flowing in a
clockwise direction from the Lesser Antilles to the Florida Straits.
In the northern part of the Greater Antilles, the Antilles Current
flowing northwestward favors connections within the Windward
and Leeward Islands with the Greater Antilles and Bahamas.
Despite the remarkable footprint of this current system, the
circulation in the Inter-American Sea is highly variable. The
intensity and extension of the currents change at seasonal and
inter-annual scales and numerous sub-mesoscale and mesoscale
features facilitate recirculation, settlement of larvae close to their
spawning sites, and larval exchange with neighboring
jurisdictions (Paris and Cowen, 2004; Paris et al., 2005; Kough
et al., 2013; Kough et al., 2016; Lopera et al., 2020). Indeed,
numerous recurrent gyres are known to occur in the region,
notably the semi-permanent cyclonic Panama-Colombia Gyre
(Lopera et al., 2020), the transient Honduras and Cozumel Gyres
(Carrillo et al., 2015), and the anti-cyclonic gyre around Cayman
Islands (Molinari, 1980). Thus, differences in connectivity
between the hydrodynamic products reflect the variability of
these surface and subsurface flow patterns, particularly around
the Lesser and Greater Antilles, which affect the connectivity
Frontiers in Marine Science | www.frontiersin.org 13
patterns between The Bahamas, Cuba, and the Windward and
Leeward Islands. However, the most apparent differences in
connectivity are between our exploitation scenarios, and not
between our hydrodynamic products.

The most apparent differences between the unexploited and
exploited connectivity emerged from the fact that most
jurisdictions were estimated to currently hold conch densities
well below the critical threshold for reproduction (Figure 3,
Horn et al., 2022), and thus were here considered to be
reproductively non-functional (SI Figure 4) . These
jurisdictions, therefore, could only act as sinks for larvae, not
providing larval subsidies for other locations or themselves. The
connectivity patterns emerging from the exploited scenarios,
considering any range of densities (maximum, minimum, or
median Figures 4, 5), are thus drastically different than expected
from uniform spawning in the unexploited scenario. For
example, due to their up-current position, the Leeward and
Windward Islands (i.e., Lesser Antilles) were estimated to be
historically important for contributing larval input to other
jurisdictions, particularly the Leeward Antilles, Venezuela, and
the Greater Antilles. However, due to overfishing, most of these
jurisdictions are no longer likely to provide larval subsidies in the
FIGURE 7 | Connectivity network analyses for queen conch metapopulations identified with a minimization algorithm (Jacobi et al., 2012; Garavelli et al., 2014), for two different
reproductive output scenarios: 1) unexploited, i.e., uniform spawning for all habitat polygons (A, C left column); and 2) exploited, or spawning scaled by median adult densities
reported per jurisdiction (B, D right column). Metapopulations are identified by the habitat polygon colors (gray habitat represents nonreproductive populations, i.e., where no
spawning occurs). Larvae are dispersed with HYCOM velocities (A, B, top row), and GLORYS12v1 reanalysis (C, D, bottom row). Edges between nodes represent the strength
of connections between regions, whereby the direction of larval flow is given by the clockwise direction - concave edges represent export while convex represents import. Node
sizes represent the probability of self-settlement - their location is given by the mean latitude and longitude of all habitat polygons in that specific metapopulation. Colors vary
between scenarios, since the number and configuration of metapopulations also change.
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exploited scenarios and are relatively isolated from
outside replenishment.

Other patterns in comparing the unexploited and exploited
simulations were more subtle, but locally significant. For
example, historically the Turks and Caicos Islands were
estimated to have received subsidies from the Dominican
Republic and Haiti. However, due to overfishing in these
source jurisdictions, the exploited scenario suggests that the
Turks and Caicos Islands are now dependent on reduced local
production, which is less likely to be locally retained, with a large
percentage of larvae being exported to The Bahamas. Likewise,
the unexploited simulation suggests that Florida was dependent
on relatively high local retention, with other significant input
coming from Mesoamerica (particularly Nicaragua, Belize, and
Mexico). These jurisdictions now have estimated densities below
the critical reproductive threshold; thus, Florida currently has no
significant sources of larvae, except a small likelihood of
receiving larvae from Cuba. This could explain why, despite a
moratorium on fishing for several decades, Florida’s conch
population has not recovered (Delgado and Glazer, 2020).

Heterogeneous fishing pressure and localized depletion also
significantly influenced the role of each jurisdiction in the conch
network (Figure 6), as exemplified by the changes in the
betweenness centrality of the Dominican Republic and Puerto
Rico (Figure 6B). These jurisdictions presented some of the
highest centrality measures in the unexploited scenario yet no
longer function as important connectors in the exploited
scenario. An almost complete break in the network was
apparent based on the exploited scenario, with the Dominican
Republic receiving limited larvae from Cuba, Turks and Caicos
Frontiers in Marine Science | www.frontiersin.org 14
Islands, and from a deep mesophotic reef off the west coast of
Puerto Rico. The channel between Puerto Rico and the
Dominican Republic, the Mona Passage, has been previously
shown to act as a transport barrier or filter between these two
jurisdictions (Baums et al., 2006; Beltrán et al., 2017). However,
the flow in the channel is highly variable (Metcalf et al., 1977),
allowing for a small likelihood of periodic connections between
populations across the passage (Baums et al., 2006; Beltrán et al.,
2017; Prakash et al., 2018, Willis et al., 2022). Since our putative
mesophotic spawning site was located at the Abrir La Sierra reef
(Garcia-Sais et al., 2012), on the eastern edge of the Mona
Passage, it is expected that probabilities of cross-channel
connections might be observed in the explored scenario.

While the Dominican Republic and Puerto Rico nodes have
been removed from the chain of larval supply, Jamaica and Cuba
remained as important connectors in the western portion of the
range, and some of the offshore banks in Colombia remained as
functional connectors. Although connections have been lost in
other locations due to localized overfishing, there were still
connection points, albeit reduced, that would allow some
exchange of larvae and maintenance of some genetic diversity
over time.

Ecological and Genetic Connectivity
Localized patterns of conch overfishing also affected the conch
network in the Wider Caribbean Region and could influence
both conch demographics and genetic population structure. As
shown by the clustering analyses of sub-populations under
unexploited and exploited reproductive output (Figure 7 and
SI Figure 6), changing the reproductive output dramatically
A

B

D

C

FIGURE 8 | Origin of larvae per settlement polygon, for two different reproductive output scenarios: 1) unexploited, i.e., spawning uniform for all habitat polygons
(A, B); and 2) contemporary (exploited), with spawning scaled by median adult densities reported per jurisdiction (C, D). Larvae dispersed with HYCOM (A, C), and
GLORYS12v1 (B, D) velocities. Origin areas are relative to genetic divisions identified by Truelove et al., (2017).
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changed metapopulation clusters within the distribution range of
queen conch. Comparisons between the GST (from Truelove
et al., 2017) and Nei’s DA estimated from the larval dispersal
simulations showed that the inclusion of conch life cycle
characteristics improved the Mantel-r compared to purely
oceanographic distance (Truelove et al., 2017), indicating the
importance of considering species-specific biological traits and
spatial patterns of fecundity in larval simulation models. By
aggregating the estimated Nei’s DA for both hydrodynamic
models into an ensemble value, we reduced the uncertainties of
the hydrodynamic field improving our connectivity estimations.

In the unexploited scenario, individual settlement habitat
units (i.e., polygons) in Mexico and Belize showed a high level
of self-recruitment (Figure 6C), which corroborated the genetic
patterns observed by Truelove et al. (2017). However, when
considering larval exchange probabilities at a jurisdiction level,
this pattern was not clear and the populations were not isolated,
as also demonstrated by the metapopulations emerging from the
metapopulation analyses (Figure 7 and SI Figure 6).
Furthermore, these patterns disappear when considering
exploited contemporary density estimates of adult conch,
highlighting a disconnect between genetic and ecological (or
demographic) connectivity of this population.
Frontiers in Marine Science | www.frontiersin.org 15
This disconnect is not unexpected since genetic and ecological
connectivity explore processes spanning different spatiotemporal
scales. The ecological connectivity covers the shorter scales of early
planktonic stages, examining the exchange of individuals between
populations (Kough et al., 2017). Typical studies of genetic
connectivity unveil patterns occurring through multiple
generations or even evolutionary timescales and characterize the
gene flow between these populations (Thomas et al., 2014; Brown
et al., 2017; Carr et al., 2017). Whereas simulations of larval
dispersal can inform the evolutionary connectivity of organisms,
characterizing, for instance, transport barriers and isolated
populations (Cowen et al., 2006; Baums et al., 2006; Truelove
et al., 2017), dispersal models are particularly useful to help
elucidate patterns of ecological connectivity (Jones et al., 2009).
Indeed, our results reflect the different spatial-temporal scales
unveiled by the genetic and ecological connectivity. By comparing
similarities for multiple generations obtained from the unexploited
scenarios to genetic divergence (linearized GST), we found these to
be significantly correlated. However, once we considered localized
depletion patterns, these correlations disappeared, suggesting that
the genetic results reported by Truelove et al. (2017) could have
captured patterns of connectivity that no longer exist under the
(conservative) depletion scenarios considered in our study.
A

B

FIGURE 9 | Scatter plot of Nei’s DA genetic distance (from simulations) and pairwise genetic differentiation (linearized GST, based on GST from Truelove et al., 2017)
for Aliger gigas. The simulated Nei’s DA genetic distance is an average of the genetic distances obtained with the HYCOM and GLORYS12v1 velocities for (A) 50
generations and (B) 100 generations. The trend line is shown in blue, and dots are color-coded by the sampling jurisdiction (or the source jurisdiction for the larval
dispersal model).
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Management Implications
The objective of this study was to explore how localized harvest
patterns affect the probabilistic ecological connectivity of the
queen conch throughout its range. The lack of detailed
demographic and habitat information (e.g., population
distribution, age structure, adult densities, fecundity, carrying
capacities) precludes a direct estimation of the strength of larval
recruitment. Regional cooperative management efforts have
advocated for a more consistent and uniform collection of
these data across the WCR (Prada et al., 2017). These data
would allow us to calculate the persistence and replenishment
rates of individual populations (Leis, 2006; Burgess et al., 2014;
Lowerre-Barbieri et al., 2017; Hamilton et al., 2021). Moreover,
the interpretation of ecological and genetic connectivity has
important spatial management implications. While small and
sporadic exchanges of a few individuals might lead to panmixia
of distant sub-populations, a population requires a steady and
strong source of larval subsidies for its support (Wright, 1931;
Botsford et al., 2003; Lowe and Allendorf, 2010; Paris-Limouzy,
2011; Hawkins et al., 2017). Therefore, ecological connectivity
projections provide vital information for management by
delineating areas that are self-reliant on their recruits to
support their populations and in identifying relative sources
and sinks (Botsford et al., 2003; Botsford et al., 2009; Hawkins
et al., 2016).

Here, we characterized distinct metapopulation delineations
for queen conch for the scenarios considered in our study (distinct
hydrodynamic models and assumptions of adult densities)
throughout its range. The existence of these self-sustained
metapopulations implies the need for effective management
measures within these regions. Here we showed that
configuration of such metapopulations is strongly affected by
localized depletion patterns, more so than by oceanographic
patterns, given the changes in the metapopulation configurations
in the homogenous and depleted scenarios (Figure 7). As these
metapopulations cover multiple jurisdictions, their management
would thus require international cooperation (Kough et al., 2017).

Connectivity processes have been explored in many studies
using larval dispersal simulations in the last decades; however,
studies still consider uniform spawning populations, despite the
noted importance of the effects of variable spatio-temporal
fecundity on connectivity patterns (Hughes and Tanner, 2000;
Karnauskas et al., 2011; Lowerre-Barbieri et al., 2017; Castorani
et al., 2017; Johnston et al., 2018; Hamilton et al., 2021). We found
that the inclusion of realistic present-day patterns in reproductive
output changes connectivity patterns and the structuring of queen
conch sub-populations and metapopulations across their range,
which must be considered in future studies.

Overharvest not only can change the patterns of connectivity,
as addressed in this study, but also lower the genetic diversity of
fisheries populations (Pinsky and Palumbi, 2014). A reduction in
diversity due to conch overharvest has been suggested by
Zamora-Bustillos et al. (2011) investigating genetic diversity
and structure of two populations along the Yucatán peninsula
in Mexico, and by Kitson-Walters et al. (2018) studying the
genetic differentiation within the Jamaican EEZ. Truelove et al.
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(2017) also observed a reduction in allele frequencies in Mexico
and Anguilla, however, it is unclear whether these changes are
due to isolation by distance, regional overharvest, local
overharvest, or their combined effect. The results of our
theoretical “virgin stock” simulations, however, suggested that
there are no complete barriers to conch larval transport in our
study area and thus, exploited patterns of isolation and
inbreeding could be related to anthropogenic actions, such as
habitat destruction and overharvest. This is a topic which
warrants further investigation.

The simulations relied on several assumptions regarding the
spatial structure and demographics of conch populations in the
Caribbean. As illustrated by our results (Figures 4-7), estimated
ecological connectivity patterns are sensitive to assumptions
regarding both the distributions of queen conch populations
and their reproductive output. Thus, we highlight the need for
updated demographic and habitat information for queen conch,
strongly corroborating needs identified in previous studies
(Prada et al., 2017; Kough et al., 2017; Truelove et al., 2017;
Kitson-Walters et al., 2018; Boman et al., 2021). To refine larval
connectivity estimates and fully understand conch demographics
– at both broad and smaller spatial scales within jurisdictions –
the following are needed: 1) representative surveys of conch
population densities across a range of habitats, along with a
precise understanding of the areas over which these densities can
be extrapolated (Prada et al., 2017; Kough et al., 2017); 2)
densities of individuals categorized as juveniles and adults and/
or detailed stock size structure reported; 3) detailed maps and/or
areal estimates of conch habitat (i.e., areas where the species
currently or has historically occurred) in each jurisdiction; and 4)
surveys of conch populations located in depths below the typical
range of fishing (i.e., >30m) to assess the contribution of
mesophotic populations that might serve as deep refugia for
shallow populations and which remain largely excluded from
conch surveys (Boman et al., 2021).

Overall, our results support that estimates of contemporary
demographic rates, and thus of fecundity, need to be considered
for ecological connectivity studies (Lowe and Allendorf, 2010;
Castorani et al., 2017; Johnston et al., 2018). Moreover, our
results strongly corroborate advice for international
management and conservation of queen conch, as well as
research needs identified in previous conch studies (Prada
et al., 2017; Kough et al., 2017; Stoner et al., 2019; Delgado and
Glazer 2020; Boman et al., 2021). However, given the high
likelihood of local settlement and distribution of distinct
metapopulations, replenishment processes through larval
dispersal are likely to occur only within the metapopulation
spatial scales. Our simulations showed that local sub-population
success would depend on effective local management, but also on
the management of specific upstream source populations. The
combination of local self-seeding and distant larval transport are
both required for success throughout the species’ range. Regional
management efforts are working to implement many of the
management plans and measures detailed by Prada and
collaborators (2017). Local measures of conservation and
management are thus critical to protect individual
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reproductively active sub-populations and nursery habitat across
multiple jurisdictions.
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Cala, Y. R., de Jesús-Navarrete, A., Ocaña, F. A., and Oliva-Rivera, J. (2013).
Density and Reproduction of the Queen Conch Eustrombus Gigas
(Mesogastropoda: Strombidae) at Cabo Cruz, Desembarco Del Granma
National Park, Cuba. Rev. Biol. Trop. 61 (2), 645–655. doi: 10.15517/
rbt.v61i2.11165

Campton, D. E., Berg, C. J.Jr., Robison, L. M., and Glazer, R. A. (1992). Genetic
Patchiness Among Populations of Queen Conch Strombus Gigas in the Bimini.
Fish. Bull. 90(2), 250–259.

Carrillo, L., Johns, E. M., Smith, R. H., Lamkin, J. T., and Largier, J. L. (2015).
Pathways and Hydrography in the Mesoamerican Barrier Reef System. Part 1:
Circulation. Conti. Shelf. Res. 109, 164–176. doi: 10.1016/j.csr.2015.09.014

Carr, M. H., Robinson, S. P., Wahle, C., Davis, G., Kroll, S., Murray, S., et al.
(2017). The Central Importance of Ecological Spatial Connectivity to Effective
Coastal Marine Protected Areas and to Meeting the Challenges of Climate
Change in the Marine Environment. Aquat. Conserv.: Mar. Freshw. Ecosyst. 27,
6–29. doi: 10.1002/aqc.2800

Castorani, M. C. N., Reed, D. C., Raimondi, P. T., Alberto, F., Bell, T. W.,
Cavanaugh, K. C., et al. (2017). Fluctuations in Population Fecundity Drive
Variation in Demographic Connectivity and Metapopulation Dynamics. Proc.
R. Soc. B.: Biol. Sci. 284 (1847), 20162086. doi: 10.1098/rspb.2016.2086

Chaplin, J., and Sandt, V. J. (1992). “Vertical Migration and Distribution of Queen
Conch Veligers: Progress Report,” in Proceedings of the 42nd Gulf and
Caribbean Fisheries Institute, vol. volume 42. (North Fort Pierce, FL: Gulf
and Caribbean Fisheries Institute), Pages 158–160.

Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J.,
Wallcraft, A. J., et al. (2007). The HYCOM (Hybrid Coordinate Ocean Model)
Data Assimilative System. J. Mar. Syst. 65, 60–83. doi: 10.1016/
j.jmarsys.2005.09.016

Corral, J. L., and Ogawa, J. (1987). “Cultivo Masivo De Larva De Caracol Strombus
Gigas En Estanques De Concreto,” in Proceedings of the 38th Gulf and
Caribbean Fisheries Institute, vol. volume 38. (North Fort Pierce, FL: Gulf
and Caribbean Fisheries Institute), Pp. 345–352.

Coulston, M. L., Berey, R. W., Dempsey, A. C., and Odum, P. (1987). “Assessment
of the Queen Conch (Strombus Gigas) Population and Predation Studies of
Hatchery Reared Juveniles in Salt River Canyon, St. Croix, U.s. Virgin Islands,”
in Proceedings of the 38th Gulf and Caribbean Fisheries Institute, vol. volume
38. (North Fort Pierce, FL: Gulf and Caribbean Fisheries Institute), Pages 294–
306.

Courchamp, F., Clutton-Brock, T., and Grenfell, B. (1999). Inverse Density
Dependence and the Allee Effect. Trends Ecol. Evol. 14 (10), 405–410. doi:
10.1016/S0169-5347(99)01683-3

Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of Connectivity in
Marine Populations. Science 311 (5760), 522–527. doi: 10.1126/
science.1122039
Frontiers in Marine Science | www.frontiersin.org 18
Cruz, S. ,. R. (1986). “Avances En La Experimentacion De Producción Massiva De
Coracol En Quintana Roe, Mexico,” in Proceedings of the 37th Gulf and
Caribbean Fisheries Institute, vol. volume 37. (North Fort Pierce, FL: Gulf
and Caribbean Fisheries Institute), Pages 12–20.

Cummings, J. A., and Smedstad, O. M. (2013). “VariationalData Assimilation for
the Global Ocean,” in Data Assimilation for Atmospheric, Oceanic and
Hydrologic Applications. Eds. S. K. Park and L. Xu (Berlin, Heidelberg:
Springer Berlin Heidelberg), 303–343.

D'Asaro, C. N. (1965). Organogenesis, Development, and Metamorphosis in the
Queen Conch, Strombus Gigas, With Notes on Breeding Habits. Bull. Mar. Sci.
15 (2), 359–416.

Davis, M. (1994a). “Mariculture Techniques for Queen Conch (Strombus Gigas
Linne): Egg Mass to Juvenile Stage,” in Queen Conch Biology, Fisheries and
Mariculture. Eds. R. S. Appeldoom and B. Rodriguez (Caracas, Venezuela:
Fundacion Cientıfica Los Roques), Pages 231–252.

Davis, M. (1994b). Short-Term Competence in Larvae of Queen Conch Strombus
Gigas: Shifts in Behavior, Morphology and Metamorphic Response. Mar. Ecol.
Prog. Ser. 104 (1–2), 101–108. doi: 10.3354/meps104101

Davis, M. (2000). The Combined Effects of Temperature and Salinity on Growth,
Development, and Survival for Tropical Gastropod Veligers of Strombus Gigas.
J. Shellf. Res. 19 (2), 883–890.

Davis, M. (2005). Species Profile: Queen Conch, Strombus Gigas (Southern
Regional Aquaculture Center Publication No. 7203:College Station, TX.).

Davis, M., Bolton, C. A., and Stoner, A. W. (1993). A Comparison of Larval
Development, Growth, and Shell Morphology in Three Caribbean Strombus
Species. Veliger 36, 236–244. https://www.biodiversitylibrary.org/item/
134374#page/256/mode/1up

Davis, M., Hodgkins, G. A. A., and Stoner, A. W. (1996). A Mesocosm System for
Ecological Research With Marine Invertebrate Larvae. Mar. Ecol. Prog. Ser.
130, 97–104. doi: 10.3354/meps130097

Davis, M., Mitchell, B. A., and Brown, J. L. (1984). Breeding Behavior of the Queen
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