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Arctic summer sea ice extent is decreasing and thinning, forming melt ponds that cover
more than 50%of the sea ice area during the peak of themelting season. Despite of this, ice
algal communities in melt ponds are understudied and so are their contribution to the Arctic
Ocean primary production and carbon turnover.Whilemelt ponds have been considered as
low productive, recent studies suggest that accumulated ice algal potentially facilitate high
and yet overlooked rates of carbon turnover. Here we report on ice algal communities
forming dense mats not previously described, collected from melt ponds in the northern
Barents Sea in July. We document on distinct layered and brown colored mats with high
carbonassimilationandnetprimaryproduction ratescompared to icealgal communitiesand
aggregates, in fact comparable to benthicmicroalgae at temperate tidal flats. Rates of gross
and net primary production, as well as community respiration rates were obtained from
oxygen micro profiling, and carbon assimilation calculations were supported by 14C
incubations, pigment analysis and light microscopy examinations. The melt pond algal
mats consisted of distinct colored layers and differed from aggregates with a consisted
layered structure. We accordingly propose the term melt pond algal mats, and further
speculate that thesedense ice algalmatsmayprovidean important yet overlooked sourceof
organic carbon in the Arctic food-web. A foodweb component likely very sensitive to climate
driven changes in the Arctic Ocean and pan-Arctic seas.

Keywords: ice algae, melt ponds, oxygen production and consumption, photosynthesis, carbon turnover,
Arctic Ocean
INTRODUCTION

Ice algae residing at the bottom of the sea ice and in brine channels contribute about 10% of the total
marine-produced organic carbon in the Arctic Ocean (Arrigo, 2017). In the permanently ice covered
central ArcticOcean, their relative contribution is likelymuchhigher and have been reported to 57%of
the entire primary production (water column and sea ice, Gosselin et al., 1997). The total primary
production in the central Arctic Ocean was in 1997 estimated to 15 g C m−2 year−1, a value upgraded
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more than 10 times relative to previously reports (English, 1961;
Gosselin et al., 1997). More recently, the central Arctic primary
production and net carbon fixation rates have been suggested to
range from 1 to 25 g C m–2 year–1 comprising phytoplankton and
sympagic ice algae productivity in and underneath the sea ice
(Boetius et al., 2013). The contribution of ice algae is, however, not
well constrained ranging from 0 to 80% (Boetius et al., 2013) and
showing large variability (Campbell et al., 2022).

Timing of the ice algae production is crucial to the food web as
being a key organic carbon source for higher trophic levels in
permanently ice-covered regionsandduring ice-coveredperiods in
early spring, when the pelagic productivity is low (Leu et al., 2015).
For instance, it has been shown that 70 to 100% of polar bears’
(Ursus maritimus) carbon intake relied on sympagic production
(Brown et al., 2018), stressing the importance of ice algae in
sustaining the Arctic ecosystem. This production is generally
located at or near the bottom of the sea ice (Arrigo, 2017), where
ice algae have adapted to extreme low light conditions (Hancke
et al., 2018). Also, ice algae have been demonstrated an important
carbon source for the benthic food web in the deep-sea
(Tamelander et al., 2009; Boetius et al., 2013; Lalande et al.,
2019). In recent years, there has been an enhanced research focus
on ice algae communities and algae aggregates (Katlein et al., 2015)
which float below the sea ice (Assmy et al., 2013), in leads
(Fernández-Méndez et al., 2014), and in melt ponds (Lee et al.,
2011). The aggregates consist generally of agglutinated diatoms of
the common Arctic diatomMelosira sp. and show comparatively
high carbon production rates (Assmy et al., 2013).

Arctic marine ecosystems are experiencing dramatic
environmental changes (Babin, 2020), including warming at
rates two to four times faster than the global average (Meredith
et al., 2019). This leads to thinning and loss of sea ice in the Arctic
Ocean (Cavalieri and Parkinson, 2012; Wunderling et al., 2020),
with pronounced consequences for ice algal productivity, carbon
turnover, and the Arctic food web (Leu et al., 2015). Warming is
also accelerating the formation of melt ponds, that have been
estimated to covermore than50-60%of the sea ice areaduringpeak
of the melting season (Lee et al., 2020). Despite of this, ice algae
communities in melt ponds are understudied and so is their
contribution to Arctic primary production and carbon turnover.

Here we report on ice algae mat-like communities not
previously described in the Arctic, with the objective to quantify
the rate of carbon assimilation and net primary production. The
matswere collected frommelt ponds in thenorthernBarents Sea in
July, and observations are compared with published data on
microalgal productivity. We speculate that these melt pond algal
mats constitute an unexplored carbon source that could be
important for the biogeochemical cycling in the Arctic Ocean.
MATERIALS AND METHODS

Study Area, Sampling, and Experimental
Setup
Clearly layered mats of dense microalgae communities, hereafter
referred to as melt pond algal mats, were collected from sea ice
Frontiers in Marine Science | www.frontiersin.org 2
melt ponds at N 82° 24.9 and E 30° 26.2 during a cruise in the
Barents Sea in July 2004 (Figures 1A, B) as part of a large Arctic
ecosystem research project (CABANERA, Wassman et al., 2008).
The mats were initially between 3 and 10 cm wide but broke up
in smaller pieces (1-3 cm across) during sampling even at gentle
handling. The mats were 3.5 to 4 mm thick with distinct and
coherent layers stacked in visually recognized brown colored
layers (Figure 1C). The sea ice melt ponds from where the mats
were sampled were open at the bottom, i.e. there was a free flow
of water between the melt pond and the ocean below. The melt
pond was located near the center of the ice floe characterized as
pack ice due to the occurrence of ridges and hummocks, and ice
thickness varied from 1 to 1.5 m. During the available time on the
ice we collected 10 to 15 algal mats from five melt ponds on the
same ice flow, that were subsequently brought back to the onboard
lab. The mats was gently sampled in cleaned polyethylene
containers with in situ water from the melt pond, having a
salinity of 34.0 and a temperature of ~0°C. The sampling
location is further described in Wassmann et al. (2008).

Photosynthesis and respiration rates were measured after
installing intact pieces of the algal mat in a microcosm that
mimicked the in situ conditions within half an hour after
sampling (Figure 1D). Three mats were sequentially installed
and measured in the microcosm. The microcosmos was
established inside a cold room (2.0°C) on board the research
vessel and the microcosms temperature was secured at 0°C using
an additional cooling device, in a setup equivalent to what was
used by Hancke and Glud (2004). The algal mat was carefully
pinned to a white styrofoam plate submerged in the microcosms
that mimicked the light reflection properties of sea ice and kept
the mat in a fixed position during measurements. Flushing gently
with an air pump ensured both a stable diffusive boundary layer
(DBL) of 300 to 500 mm over the mat and keeping the oxygen
(O2) concentration of the water at atmospheric saturation level.
The mat surface was exposed to a photosynthetically active
radiation (PAR) of 400 µmol photons m–2 s–1 during
photosynthesis measurements by a halogen lamp with an
optical fiber (Schott KL 1500). The irradiance was chosen to
represent average light conditions in the melt ponds based on
measured ambient light, which diel variations between 200 and
1200 µmol photons m–2 s–1 and an average of ~400 µmol
photons m–2 s–1 at sampling time in July. Incident PAR was
measured with a LiCor cosine-corrected quantum sensor and
logger (LiCor LI-190SA, LiCor LI-1000, LiCor, US.).

Oxygen Production and Consumption
Oxygen micro profiles were measured using electrochemical O2

microsensors with a guard cathode (Revsbech, 1989) provided by
RN Glud’s laboratory (University of Southern Denmark, DK).
Gross and net photosynthesis, and dark community respiration
were estimated from profiles measured using electrodes with tip
diameters <15 mm, stirring sensitivity <1% and a 90% response
time <0.5 s. Electrodes were calibrated by a 2-point calibration
performed in both anoxic and air-saturated samples at ambient
temperature. See Glud et al. (2000) and Hancke and Glud (2004)
for additional details of the microsensor setup.
April 2022 | Volume 9 | Article 841720
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Gross photosynthesis was measured by the light-dark shift
method (Revsbech and Jorgensen, 1983; Glud et al., 1992), by
estimating the gross O2 production from the initial concentration
decline after a sudden eclipse of light (triplicates, with 3 min
intervals). Total gross photosynthesis of the mat was calculated
from integrating stepwise measurements down through the mat.
Gross O2 production was eventually converted to gross C fixation
by multiplying with the molecular weight for C (12), the
photosynthetic coefficient (1.4), and assuming 24h of daylight.

Rates of community net photosynthesis and dark respiration
were calculated from the derived slope coefficient of the oxygen
concentration profiles across the diffusive boundary layer and the
top layer of the algal mat during light and dark, respectively
(Jørgensen and Revsbech, 1985, Figure 2). Net photosynthesis
Frontiers in Marine Science | www.frontiersin.org 3
equaled the flux of O2 out of the illuminated mat, while
respiration equaled influx during darkness. The community
net photosynthesis and respiration rates were calculated from
the sum of the upward and downward flux rates, derived from
the linear concentration gradient during steady-state conditions,
using Fick’s first law of diffusion (Jørgensen and Revsbech, 1985).
Rates were corrected for the molecular diffusion coefficient
according to Broecker and Peng (1974) and for temperature
and salinity (Li and Gregory, 1974). Oxygen profiles varied little
laterally across several investigated mats pieces and all derived
rates were obtained from triplicated profiling. Flux rate
calculations and the underlying principles are further described
in Jørgensen and Revsbech (1985); Kühl et al. (1996); Glud et al.
(2002) and Hancke and Glud (2004).
FIGURE 1 | Ice floe at the sampling site where the ice algal mats were collected (marked with blue arrow) with open and closed melt ponds (A), and the sampling
position at N 82° 24.9 marked with a yellow square in (B) to the NE of Svalbard. Close up of the sampled algal material that was recognized as brown-colored coherent
mats with a clearly layered structure (C). The mats were initially between 3 and 10 cm wide but broke up in smaller pieces (1-3 cm across) during sampling and transport
to the lab onboard the research vessel. An experimental setup with controlled temperature and light conditions were established to measure gross and net O2 production
in the mats (D), that consisted of a complex community of microalgae and diverse grazers including ciliates (E). Photos by the authors (K. Hancke).
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14C Assimilation
Gross 14C fixation was measured using the benchmark 14C
method (Stemann-Nielsen, 1952). Subsamples of the three
mats were incubated for four hours in pre-filtered (GF/F
microfiber filters, Whatman, US) in situ water in light (400
mmol photons m–2 s–1) and in dark polycarbonate bottles
positioned in the microcosms, with a final concentration of
0.0125 mCi mL–1. Samples were subsequently filtered and
immediately frozen onboard. Within 2 months filters were
thawed, fumed with HCl acid for 8 hours, and 10 mL of
Ultima GoldTM XP (Packard) were added before counting on
a liquid scintillation analyzer with quench correction
(PerkinElmer Tri-Carb 2900TR). The dark bottle values were
subtracted from the light bottle values. The method is described
in detail in Hodal and Kristiansen (2008), and the gross carbon
fixation rate was corrected for total inorganic carbon based on
Kivimae (2007).

Chlorophyll a, Carbon, and Nitrogen
Subsamples were taken by cutting cross sections from top to
bottom of the mat and thus collecting pieces with known surface
area and ensuring that the complete mat-structure was
represented, and subsequently filtered on GF/F filters.
Chlorophyll a (Chl a) was calculated from three subsamples
extracted in MeOH (6h, 5°C, darkness) and measured
Frontiers in Marine Science | www.frontiersin.org 4
absorbance at 665 nm, subtracting the absorbance at 750 nm,
and using an extinction coefficient of 74.5 L g–1 cm–1

(Mackinney, 1941). The procedure is further described in
Hancke et al. (2008). Likewise was particulate organic carbon
(POC) analyzed following standard procedures after treatment of
the samples with hydrochloric acid to remove the inorganic
fraction using a Carlo Erba Elemental Analyzer (Model Na; Carlo
Erba, Italy). Particulate organic nitrogen (PON) was analyzed
according to Grasshoff et al. (1999) using a Scalar autoanalyzer
(Scan Plus System, Netherlands). Mat wet and dry weights (dried
in oven for >12h at 80°C) were determined to provide uniform
measures and convert from areal to carbon units for gross
photosynthesis measures.

Photosynthetic Pigments and Light
Microscope Analysis
Pigment samples were stored at -80°C until analyzed using a
Hewlett-Packard HPLC 1100 Series system, equipped with a
quaternary pump system and diode array detector. Mat
subsamples were extracted in MeOH overnight at –20°C, and
pigments were separated in Waters Symmetry C8 column (150 ×
4.6 mm, 3.5 mm particle size) according to Zapata et al. (2000)
and modified by Rodriguez et al. (2006). The extract was re-
filtered (Millipore 0.2 mm) to remove debris. Chlorophylls and
carotenoids were quantified according to their absorbance
A B

FIGURE 2 | Steady state oxygen concentration profiles through melt pond algal mats (blue dots) collected from Arctic sea ice melt ponds in (A) light (400 µmol
photons m–2 s–1), and (B) darkness, respectively. Net O2 production in the light, and dark O2 consumption was calculated from the derived slope coefficients (red
lines), respectively. Green bars in (A) represent the depth-resolved gross oxygen production derived independently from the net production, by the light-dark method
(see M&M). The oxygen concentration profiles demonstrated a pronounced oxygen consumption in the dark that was surpassed by the oxygen production in light,
driven by the exceeding gross production.
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(350-750 nm). Identification of pigments and specific extinction
coefficients for quantification followed Jeffrey et al. (1999).
Light microscope analysis was used to identify dominant algal
groups and species along with characterizing the community
of grazers in the mat, before and after addition of Lugol
(Tomas, 1997).
RESULTS

Dark Respiration, Net and Gross
Photosynthesis in the Algal Mat
Steady state O2 concentration profiles through the mat showed
distinct gradients from the water above to the center of the algal
mat, which was almost mirrored from the mat center and
downward to below the mat. In the light (Figure 2A), O2

concentration increased with depth until the center of the mat
which indicated a photosynthetically active algal community
with a high O2 production, that by far exceeded the respiratory
O2 demand. At 400 µmol photons m–2 s–1, steady state O2

profiles showed concentrations of >800 nmol O2 cm-3

(equivalent to mmol O2 L–1) in the mat center, a more than
doubled O2 concentration relative to the ambient level. In the
dark (Figure 2B), the O2 concentration decreased from
atmospheric saturation in the above water (363 nmol O2 cm

-3)
to <40 nmol O2 cm

-3 at the center of the mat, about 1.5 to 2 mm
into the mat. The steep decrease in the O2 concentration reflected
a pronounced O2 consumption in the mat during darkness.

The mat net community production of O2 in light was 0.077 ±
0.008 nmol O2 cm

–2 s–1 (n=3), equivalent to 798 ± 83.0 mg Cm–2

d–1 (assuming a molar ratio for O2:C of 1:1 and a 24h day period
equivalent to midnight sun, Figure 3). Algal mat community O2

consumption in the dark was 0.067 ± 0.0054 nmol O2 cm
–2 s–1

(n=3), equivalent to 695 ± 55.6 mg C m–2 d–1. The
photosynthetic gross O2 production was 0.101 ± 0.016 nmol
O2 cm–2 s–1 (n=3), equal to 1467 ± 246 mg C m–2 d–1 (24h
daylight, Figure 3). This measure was derived from the light-
dark shift method and integrated over the center 1 mm thick
photosynthetic zone in the mat (Figure 2A). The measure is
independent of the net photosynthetic rate (Figure 3). Gross
photosynthesis was in addition measured as the rate of gross 14C
fixation in intact subsamples of the mat of a known area (~1.5
cm2) and weight. Gross 14C fixation equaled 2627 ± 305 mg Cm–

2 d–1 (n= 3). The 14C method showed gross carbon fixation rates
more than twice as high as the measured gross O2 production,
which demonstrates a highly productive photosynthetic
community. The method is, however, sensitive to the precision
of the determined area, in contrast to the microsensor results.

Chl a, C, and Photosynthetic Pigments
The Chl a concentration in the mat was 46.9 ± 6.7 mg Chl am–2,
the POC content 3412 ± 686 mg C m–2, and the PON content
406 ± 92.8 mg N m–2. This corresponded to ratios of C:Chl a =
75.1 ± 25.7, and of C:N = 9.8 ± 0.5 (Table 1). HPLC analyses
showed a fucoxanthin content of 60% and a diadinoxanthin
content (typical sunscreen pigment) of 30% of the Chl a
Frontiers in Marine Science | www.frontiersin.org 5
concentration. The ratio of total photoprotective versus
photosynthetic pigments were 0.18 ± 0.004 (n=3).

Light Microscope Analysis
Light microscope analyses showed a dominance of the following
algal genera Nitzschia spp., Navicula spp., Amphiprora spp.,
Entomoneis spp., and Pleurosigma spp. Also, a high
representation of grazers including ciliate species were
observed in the mats (Figure 1E), corresponding to previous
observations of melt pond algal mats (Sørensen et al., 2017).
Species composition of the grazer community was not
further investigated.
DISCUSSION

Melt Pond Ice Algal Mat Structure
and Formation
The sampled ice algal mats were evidently different in physical
structure and form than what has been reported previously of ice
algal communities and accumulations beneath sea ice, including
Melosira aggregates (Boetius et al., 2013) and floating aggregates
(Fernández-Méndez et al., 2014). In their physical structure, they
also differed from free-floating spherical algal accumulations
observed in leads and below sea ice (Assmy et al., 2013). The
species composition were, on the other hand, similar to previously
observed floating algae aggregates and typical ice algae
communities (Hegseth, 1992; Assmy et al., 2013).This indicate,
that the melt pond algal mats may have a common point of origin
with the spherical algal aggregates reported by Assmy et al. (2013).
The observed melt pond algal mats were elongated, 3-5 mm thick
with alternating light to dark brown layers (Figure 1C), with clear
vertical layers in resemblance to other microbial and benthic mats
(Franks and Stolz, 2009; Glud et al., 2009), which occur in a variety
of environments as tidal flats (Barranguet et al., 1998), sublittoral
soft-bottom sediments in the photic zone (Glud et al., 2002;
Hancke and Glud, 2004; Woelfel et al., 2010), and in polar lakes
and rivers (Quesada et al., 2008).

We speculate that the reported melt pond mats have formed
at the bottom of melt ponds as a result of inflow of water and
algae into open melt ponds (Fernández-Méndez et al., 2014)
where the change from low light below the sea ice (<20 µmol
photons m–2 s–1, Lund-Hansen et al., 2015) to high light in the
pond (200 to 1200 µmol photons m–2 s–1) sparked the
development of these dense microbial mat communities. This
pair with the observations of a microalgal community that
appear high-light acclimated, from the presence of the
photoprotective pigment diadinoxanthin and the ratio of
photoprotective versus photosynthetic pigments (Joy-Warren
et al., 2019; Lund-Hansen et al., 2020). While Lee et al. (2011)
reports about a new ice algal habitat formed by holes in the
progressing thinning Arctic sea ice, they describe the formation
and aggregation of ice algae to form long strands extending into
the water below. This contrasts with our observations of distinct
algal mats that have physical characteristics as benthic
microphyte mats. Moreover, Lee et al. reports a dominance of
April 2022 | Volume 9 | Article 841720
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Melosira arctica (>95%) with Nitzschia and Navicula species
contributing the remaining. To our knowledge there is no
previous reports on ice algal mats as we describe them here.

We do not know, over how much time the melt pond algal
mats developed. The melt ponds were open upon sampling (free
connection to the under-ice water), which we speculate is a
Frontiers in Marine Science | www.frontiersin.org 6
precursor for the mat formation, and enables a continuous
supply of nutrient rich water from below, as closed melt ponds
typically hold low nutrient concentrations (Lee et al., 2011;
Sørensen et al., 2017). The open melt ponds are regarded as
the last development stage of the sea ice before freezing over in
early autumn (Lee et al., 2011). This leaves a proposed window
April 2022 | Volume 9 | Article 841720
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FIGURE 3 | Rates of dark oxygen respiration (yellow arrow), net community production (green arrow), and gross oxygen production (blue arrow) in a melt pond algal
mat, derived from oxygen concentration profiles and 14C-assimilations. Units per surface area of the mat in nmol O2 cm–2 s–1 and the equivalent in mg C m–2 d–1,
assuming a O2:C ratio of 1.0 for net rates and 1.4 for gross production, under 24h sunlight (midnight sun). Note the small bubbles of oxygen on the mat surface to
the left, which originate from O2 supersaturation and indicate a high net community O2 production within the mat. Photo by K. Hancke.
TABLE 1 | Primary production rates (gross or net), concentrations of Chl a, particulate organic carbon (POC) and nitrogen (PON), and ratios of C:N and C:Chl a in the
present melt pond algae mat and previous reports for sea ice algae, ice algae aggregates, benthic algae, and microbial mats.

PP Chl a POC PON C:N C:Chl a Ref,
Type/Unit mg C m–2 h–1 mg m–2 mg m–2 mg m–2

Melt pond algal mats 33N,O 109C,G 47 ± 6.7 3412 ± 686 406 ± 93 9.8 ± 0.5 75 ± 26 This study
Ice algae 8.5 ± 1.7 21.4 ± 12.8 (Hegseth, 1992)
Ice algae 0.008-19.3O,C,H 75 10.6 ± 1.7 66.8 ± 23.4 (Arrigo, 2017)
Ice algae <0.5 - 15 (Gosselin et al., 1997)
Aggregates 0.02 - 12.9C,G 52-200 (Gosselin et al., 1997)
Aggregates 0.0001-0.001C,H,N 0.0017-0.0063 0.19-1.33 0.03-0.17 7.9-9.1 21.2-112 (Assmy et al., 2013)
Aggregates 0.02-0.25O,H 2.94 (Glud et al., 2014)
Aggregates 0.02-0.4C,N 0.1-3.7 11-793 1-72 11-35 500-66700 (Fernández-Méndez et al., 2014
Melosira filaments 0.54-1,67C,N,H 14-44 3020-9094 108-324 10-40 850-4600 (Fernández-Méndez et al., 2014
Benthic microalgae (Svalbard) 1-23O 13-317 (Woelfel et al., 2010)
Benthic microalgae mats (Svalbard) 2.8-14.6N,O 2.7 ± 0.7 (Hancke and Glud, 2004)
Benthic microalgae mats (Denmark) 25.7-55.2N,O 22.9 ± 6.5 (Hancke and Glud, 2004)
Benthic microalgae mats (Netherlands) 10-100C,G 15-32 (Barranguet et al., 1998)
C:N (atm:atm), C:Chl a (w:w). Letters abbreviate the following, N, Net primary production; C, 14C method; G, Gross primary production; O, O2 method.; H, converted into h–1 fo
comparative reasons.
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for the development of these melt pond algal mats of about one
month around July-August before freezing and snowfall in late
August/early September.

The Chl a concentration in the melt pond algal mats (46.9 ±
6.7 mg m–2) was higher than most reports of ice algal
communities in the Arctic when scaled up to a common areal
unit, including aggregated ice algae (Assmy et al., 2013;
Fernández-Méndez et al., 2014; Glud et al., 2014), and under-
ice algal communities (Gosselin et al., 1997, Table 1). Even when
compared to microphytobenthic mats in arctic and temperate
environments with dense and photosynthetic active algal
communities (Barranguet et al., 1998; Glud et al., 2002;
Hancke and Glud, 2004; Woelfel et al., 2010). Nevertheless,
higher concentrations of Chl a have been reported for ice algae
in both Arctic and Antarctica than we observed here (Vincent
et al., 1993; Arrigo, 2017). See Leu et al. (2015) for a pan-Arctic
review of ice algal abundances.

Primary Production and Carbon Turnover
In general, melt ponds of the Arctic Ocean are considered as low
productive however empirical evidence is sparse and scattered
(Lee et al., 2015; Sørensen et al., 2017). The rapidly warming
Arctic favors first year ice over multiyear ice, which again is
leading to an increase in melt pond formation and coverage
(Polashenski et al., 2012). Warming has also been suggested to
decrease ice algal primary production throughout the Arctic due
to a shorter growth season (Leu et al., 2015), at the same time the
contribution to primary production and carbon turnover by melt
pond algal might increase due to the increase in areal coverage.

We here report on highly productive melt pond algal mat
with a gross carbon production (2627 mg C m–2 d–1) that largely
exceeded the dark consumption (695 mg C m–2 d–1), and thus
resulted in a high net community production. The net
community production was approximate two times higher
when calculated from gross 14C fixation (minus the dark C
consumption, as conventionally done) than when estimated
independently from the O2 steady state profiles (Figure 3).
This was however anticipated, as 14C-samples were incubated
in suspension which decreased the degree of self-shading
between algae and thus can lead to overestimation of the gross
carbon fixation (Stemann-Nielsen, 1952). Contrasting, the O2

electrode method likely underestimates true gross O2 production
as it only includes photosynthetic production from the core of
the mat (green bars in Figure 2) excluding peripherical algae
photosynthesis (Glud et al., 1999). Nevertheless, the ice algal mat
community demonstrated the highest net production rate of
Arctic ice algal communities reported (Table 1). In fact, the
present melt pond algal mat rates were approximately 3 times
higher compared to measured rates from benthic algal microbial
mats on temperate tidal flats.

Largely, ice algae are reported to sustain a low primary
production in the Arctic, but large variations have been
observed between regions, ice types, and habitats (Hegseth,
1992; Gosselin et al., 1997; Assmy et al., 2013; Glud et al.,
2014; Arrigo, 2017; Lund-Hansen et al., 2018; Campbell et al.,
2022). Low productivity of ice algal and aggregate communities
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is often associated with snow and ice cover and consequently
often is light-limited (Woelfel et al., 2010; Leu et al., 2015;
Hancke et al., 2018; Lund-Hansen et al., 2020b; Lund-Hansen
et al., 2020a). In contrast, temperate benthic algal mats and the
here described melt pond mats are both exposed to high light. In
this case, it is reasonable to assume, that high primary
production rates were supported by high light conditions
prevailing at the bottom of melt ponds in combination with
access to nutrient rich water from below the ice. This compares
well with high rates of biological activity reported for floating ice-
algal aggregates when scaled to the individual aggregate size
published by Assmy et al. (2013), leading the authors to suggest
that algae aggregates may provide a concentrated food source for
ice-associated fauna during the oligotrophic Arctic
summer months.

The fraction of melt ponds covering the sea ice in the Arctic
Ocean in July is reported to be as high as 50 to 60% (Lee et al.,
2020) but carbon fixation often low, estimated to <1% of the
carbon production (Lee et al., 2012), with rates around 1.0 mg C
m–2 d–1 (Sørensen et al., 2017). The net rate of 798 mg C m–2 d–1

measured in the algal mat demonstrates that melt pond algal mats
may represent a significant carbon source for grazing and benthic
organisms, as also suggested by Boetius et al. (2013), but how
prevalent these mats are is still unanswered. Considering the
research focus on ice algae, melt ponds and aggregates during
the last two decades it is remarkable that mats similar to what we
report here, have not been published even after we made our
observations in 2004, which might imply that the mats have a low
prevalence. Thus, their overall contribution to the Arctic Ocean
carbon turnover is uncertain. However, our results suggest that
melt pond algal mats might contribute to the Arctic Ocean carbon
and energy flow at least on local and possible on regional scales. In
addition, one might speculate that summer ‘blooms’ of algal mats
in melt ponds could add an unpreceded supply of carbon to the
Arctic food web late in the season. Additional measures of primary
productivity and carbon turnover in melt pond algal mats
alongside with quantification of their abundance and
distribution are needed. Not least to understand the impact of
increased warming on Arctic carbon pathways. Possibly, modern
remote sensing techniques such as flying drones with high
resolution imaging sensors (typical >1000 times better resolution
than satellites) might provide tools to disclose the abundance and
distribution of ice algal mats in melt ponds in the future.
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