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Reducing dependency on dietary fish meal (FM) and fish oil (FO) is extremely
important for the sustainable development of the aquaculture industry. However,
the metabolic consequences and mechanisms underlying the replacement of dietary
FM and FO by terrestrial proteins (TPs) and lipids remain unclear. To reveal the
effects of replacing dietary FM and/or FO on the metabolic changes, the integrated
analysis of metabolomics and transcriptomics were employed to evaluate the changes
in metabolites and genes of rainbow trout (Oncorhynchus mykiss) feeding different
experimental diets. Four diets were formulated for the 84-day duration of the experiment:
control group (FMFO), FM and vegetable oil (FMVO), terrestrial protein and FO
(TPFO), and terrestrial protein and vegetable oil (TPVO). Integrated metabolomic and
transcriptomic analyses revealed the significant difference in the metabolic pathways of
O. mykiss among the three replacement schemes, i.e., single replacement of dietary FM
by TP, single replacement of dietary FO by VO, and combined replacement of FM by TP
and FO by VO. The combined replacement of FM and FO by TP and VO, respectively,
disturbed immune function, energy metabolism, cellular protein biosynthesis capacity,
and lipid metabolism of O. mykiss. The reduction of antioxidant capacity was only
observed in individuals feeding diets with replacement of FM by TP. Furthermore, as
soon as the dietary FM and/or FO were reduced, cellular protein biosynthesis ability
was suppressed and accompanied by higher energy consumption in response to
fluctuations of dietary quality, resulting in reduced growth performance. Interestingly,
adenylosuccinate and adenosine monophosphate involved in purine metabolism were
induced by both individual and combined replacement of FM and FO by TPs and lipids,
respectively. It suggested that these two metabolites might be potential biomarkers for
O. mykiss fed diets with reduction of FM and/or FO. This study constitutes a new

Frontiers in Marine Science | www.frontiersin.org 1 February 2022 | Volume 9 | Article 843637

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.843637
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2022.843637
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.843637&domain=pdf&date_stamp=2022-02-24
https://www.frontiersin.org/articles/10.3389/fmars.2022.843637/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-843637 February 19, 2022 Time: 15:25 # 2

Cao et al. Dietary Quality on Metabolism Changes

understanding of the molecular and metabolic mechanisms of O. mykiss in response
to the replacement of dietary FM and/or FO by TP and/or VO, respectively, and built
a theoretical basis for further improvement of aquafeed formulation and sustainable
development of aquaculture.

Keywords: fish meal, fish oil, replacement, Oncorhynchus mykiss, metabolomics, transcriptomics

INTRODUCTION

Fish meal (FM) and fish oil (FO) are known as the most desirable
ingredients used in the formulation of aquafeeds (Turchini et al.,
2019). Firstly, FM is regarded as the most reliable protein
source owing to its relatively high protein level, excellent amino
acid (AA) composition, good palatability, and digestibility to
fulfill the dietary requirement of aquatic species (Olsen and
Hasan, 2012). Moreover, FO constitutes one of the major dietary
components in aquafeed to provide energy and essential fatty
acids (EFA), especially long-chain ω3 polyunsaturated fatty acids,
which are short in vegetable oil (VO) (Geay et al., 2015). Such
long-chain unsaturated FAs are crucial for the growth, health,
and development of aquatic animals (Tocher, 2010). However,
overfishing of wild fish to produce FM and FO for aquaculture use
is unsustainable and as such reducing the reliance on aquaculture
feeds, composed of FM and FO is essential for the sustainable
development aquaculture industry (Klinger and Naylor, 2012).

The possibility of feeding farmed fish with diets based on
various alternative protein sources, mainly terrestrial proteins
(TPs), has been evaluated by numerous studies (Panserat et al.,
2009; Glencross et al., 2011; Messina et al., 2013; Oliva-Teles et al.,
2015; Rimoldi et al., 2018; Choi et al., 2019; Randazzo et al.,
2021). Plant proteins are considered the desirable alternative
source for FM because of their reasonable price, consistent
quality, and stable supply (Oliva-Teles et al., 2015). However, the
unbalanced AAs profiles and presence of antinutritional factors
(ANFs) limit the application of plant-based proteins in aquafeed
(Krogdahl et al., 2003; Espe et al., 2006). The depression of growth
performance caused by the replacement of about 80% dietary FM
with one protein source has been documented in carnivorous
fish species (Dias et al., 2005). Animal proteins typically have
adequate AA profiles, suitable digestible phosphorus, and the
absence of ANFs compared to plant proteins. However, the
relatively high ash content in some animal proteins can negatively
affect the utilization of dietary macromolecules by aquatic
species, which results in repressed growth performance (Bureau
et al., 1999; Moreno-Arias et al., 2018). Therefore, one strategy to
overcome such shortcomings is to combine multiple alternative
dietary protein sources to achieve a complementary effect and
to offset the undesirable ingredients present in the alternative
sources, thus improving the growth performance of farmed fish
(Li S. et al., 2021). In addition to the unfavorable components
of alternative protein sources, the energy metabolism of fish
needs to be considered. It is known that due to the limitation
of carbohydrate utilization in fish, dietary proteins (especially
several AAs) are typically utilized preferentially as fuel for energy
metabolism in fish (Jia et al., 2017). Therefore, the development

of alternative FM diets must ensure a sufficient supply of AAs for
protein synthesis and energy metabolism.

As regards FO, VO is widely considered as the potential
alternative ingredient that can effectively replace dietary FO at
high levels without significant effect on the growth performance
of fish (Hixson et al., 2014; Betancor et al., 2015; Oliva-Teles et al.,
2015; Grayson and Dabrowski, 2020; Lu et al., 2020). Despite the
desired positive results, the FA composition of VO can negatively
affect the lipid metabolism of the farmed fish. Additionally,
previous studies indicated that unbalanced dietary FA profiles
can induce intestinal enteritis and oxidative stress, which is
the response of the immune system to external physical or
chemical stimuli (Petropoulos et al., 2009). Thus, both the growth
performance of the fish and the quality of the final product
needs to be taken into account when replacing dietary FO with
alternative sources. For this consideration, several solutions have
been developed to reduce the negative effects of replacing FO with
VO on the metabolism and product quality of aquatic species.
For example, the use of new oil sources (Hixson et al., 2014;
Grayson and Dabrowski, 2020) and transgenic plants (Betancor
et al., 2015) have been tested. As such, further understanding of
lipid metabolism in fish feeding diets with replacement of FO by
alternative sources is required.

Considering that partial replacement of dietary FM or FO has
been successfully achieved, it is feasible to conduct investigations
to evaluate the effects of combined replacement of dietary
FM and FO. Previous studies have investigated the effects of
combined replacement of FM and FO on fish. For instance,
Torrecillas et al. (2017) successfully reduced dietary FM and
FO levels of European sea bass (Dicentrarchus labrax) down to
10 and 3%, respectively. Glencross et al. (2016) achieved the
total replacement of dietary FO by ricebran oil and 90% dietary
FM by TP in Asian seabass (Lates calcarifer). Uncertainty and
controversy exist regarding the effects of supplementary TP and
lipid in feed on fish metabolism and growth. A high level of
dietary FM and FO substitution, for example, resulted in reduced
growth performance after 1 year due to the unbalanced AA
profiles (Torstensen et al., 2008). Moreover, most current studies
about the replacement of dietary FM and FO were focused on the
growth performance of fish while reports regarding the effects of
such replacement on fish metabolism are scarce so far.

Fish metabolism involves a series of complex biological
processes with the regulations of numerous genes and the
production of various metabolites. Recently, metabolomics
and transcriptomics have been increasingly used to study
the physiological and molecular mechanisms of organisms in
response to external stimuli (Yan et al., 2018; Kong et al.,
2020). Transcriptome analysis can help to determine important
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information about gene expression levels and is a valuable tool for
understanding biological information. However, transcriptome
sequencing cannot reflect the metabolic levels in an organism.
Meanwhile, metabolomics has been successfully employed in
nutrition research because it can reveal the metabolite profiles of
an organism and further clarification on its metabolic response
to various dietary ingredients (Wei et al., 2017; Alfaro and
Young, 2018). As such, a simultaneous analysis combining
transcriptomic and metabolomic information can compensate
for the shortage of the application of a single method and improve
the systematics and accuracy for understanding the physiological
processes and the metabolic and molecular mechanisms of the
target organism (Hao et al., 2019; Li Y. et al., 2021).

As the second-largest salmonid species in terms of total
production worldwide, rainbow trout (Oncorhynchus mykiss) is
one of the most commercially important species (FAO, 2020).
O. mykiss aquaculture consumes considerable FM and FO as
the main ingredients of fish diets. As such, it is economically
and ecologically significant to minimize the usage of FM and
FO by means of replacing such feed ingredients with alternative
terrestrial sources. The present investigation is aimed to evaluate
the effects of combined replacement of dietary FM and FO
on the metabolism of O. mykiss and the molecular mechanism
based on the integrated information from transcriptomic and
metabolomic analyses to provide a scientific base for the
development of feed techniques in O. mykiss farming.

MATERIALS AND METHODS

Experimental Diets
Four experimental diets with isonitrogenous (461.9 g/kg) and
isolipidic (160.4 g/kg) were formulated. The use of alternative
sources of FM and FO in the present study was referred to
previous studies on O. mykiss (Panserat et al., 2009; Rimoldi
et al., 2018), and the feed formulation was appropriately modified
according to the nutritional requirements of juvenile O. mykiss
(Guillaume et al., 2001). The specific compositions of the four
diets are as follows: (1) FMFO diet only containing FM and
FO as the protein and lipid sources, respectively, (2) FMVO
diet containing FM and 80% VO plus 20% FO, (3) TPFO
diet containing FO and 70% TP plus 30% FM, (4) TPVO diet
containing 70% TP plus 30% FM and 80% VO plus 20% FO. The
feed formulation and proximate analysis are shown in Table 1.
All feed ingredients were completely mixed and pelletized, dried
in an oven at 55◦C for 16 h, and frozen at−20◦C for future use.

Experimental Conditions and Sample
Collection
The feeding experiment was carried out in Haiyang Yellow Sea
Aquatic Product Co., Ltd. (Shandong, China). All O. mykiss
obtained from Wanzefeng Fishery Company (Rizhao, Shandong,
China) were acclimated to the experimental conditions for
14 days. A total of 240 O. mykiss with an average weight of
38.09 ± 0.73 g were randomly assigned to 12 aquariums with
a volume of 400 L, i.e., 20 fish in each tank. Three tanks of
fish were grouped as one of the four feed treatments and fed

with one of the four diets three times every day (at 8:00, 15:00,
and 21:00) for 84 consecutive days. Feces and residual feeds
were collected after one hour of feeding, and the weight of
residual feed was recorded. The temperature was kept constant
at 16 ± 0.5 ◦C with automatic regulators. The dissolved oxygen
was kept at no less than 6.0 mg L−1. An artificially controlled
photoperiod was established as 12 h light: 12 h dark during
the feeding experiment. Sufficient aeration ensured homogenous
environmental conditions for each aquarium.

All individuals in each replicate were weighed to determine
the final body weight (FBW), specific growth rate (SGR), feed
efficiency (FE), protein efficiency ratio (PER), and lipid efficiency
ratio (LER) at the end of the experiment. All individuals were
anesthetized before tissue sample collection. Condition factor (K)
and hepatosomatic index (HSI) of O. mykiss were calculated using
the body weight, length, and liver weight of four fish from each
tank. And feces samples were collected for apparent digestibility
coefficient (ADC) analyses. Three individuals were collected
from each group for RNA-seq, and six fish from each treatment
were collected for metabolomic analysis. And the liver of each
individual was quickly removed and frozen at −80◦C ultra-low
temperature refrigerator until subsequent multi-omics analysis.

Transcriptomic Analysis
TRIzol R© Reagent was applied to extract the total RNA from the
liver and genomic DNA was cleared by DNase I (TaKara). RNA
quality was detected by 2100 Bioanalyser (Agilent) and ND-
2000 (NanoDrop Technologies) was applied for quantification.
Isolation of mRNA by oligo(dT) beads following the polyA
selection method, and sequencing libraries were constructed
by the TruSeqTM RNA sample of preparation Kit from
Illumina (San Diego, CA, United States). The Illumina HiSeq
X Ten/NovaSeq 6000 sequencer was employed to sequence the
Paired-end RNA-seq (2 × 150 bp read length). Finally, the clean
reads were obtained from the raw reads being trimmed. All RNA-
seq data have been uploaded to the NCBI Sequence Read Archive
(SRA) database, accession NO: PRJNA788999. Gene abundances
were quantified by RSEM1 and normalized based on transcripts
per million reads value. Essentially, differential expression
analysis was performed using the DESeq2 with P < 0.05, and
|log2FC|> 1. In addition, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database was applied to detect which
differentially expressed genes (DEGs) were significantly enriched
at P < 0.05. KOBAS2 was applied for KEGG pathway analysis (Xie
et al., 2011).

Validation of Differentially Expressed
Genes by qRT-PCR
Ten DEGs were randomly selected to validate the RNA-seq
results by qRT-PCR. Primers for qRT-PCR were designed using
Primer Premier 5.0 software, and primers’ details were listed in
Supplementary Table 1. EF1α and β-actin were employed as the
internal control for qRT-PCR. The temperature programming
conditions were: denaturation at 95◦C for 30 s, followed by 35

1http://deweylab.biostat.wisc.edu/rsem/
2http://kobas.cbi.pku.edu.cn/home.do
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TABLE 1 | Ingredient and proximate composition of experimental diets (all
values are g/kg).

Ingredient Diets

FMFO FMVO TPFO TPVO

Fish meala 620.0 620.0 186.0 186.0

Soybean meala – – 120.0 120.0

Meat and bone meala – – 120.0 120.0

Corn gluten meala – – 200.0 200.0

Wheat glutena – – 100.0 100.0

Fish oilb 110.0 22.0 110.0 22.0

Rapeseed oilb – 88.0 – 88.0

Lecithinb – – 10.0 10.0

Corn starchb 247.0 247.0 116.1 116.1

Choline chlorideb 5.0 5.0 5.0 5.0

Betaineb 5.0 5.0 5.0 5.0

Vitamin premixc 5.0 5.0 5.0 5.0

Mineral premixd 5.0 5.0 5.0 5.0

Mold inhibitore 1.0 1.0 1.0 1.0

Yttrium oxide 2.0 2.0 2.0 2.0

Methionine – – 2.4 2.4

Lysine – – 12.5 12.5

Total 1,000.0 1,000.0 1,000.0 1,000.0

Proximate analysis

Crude protein 459.5 459.5 464.4 464.4

Crude lipid 161.5 161.5 159.3 159.3

Ash 98.5 97.3 73.3 72.5

Moisture 100.2 96.3 95.5 93.6

aFish meal: crude protein 740.8 g/kg, crude lipid 79.0 g/kg; soybean meal: crude
protein 524.4 g/kg, crude lipid 22.6 g/kg; meat and bone meal: crude protein
490.9g/kg, crude lipid 118.4 g/kg; corn gluten meal: crude protein 621.5g/kg,
crude lipid 24.4 g/kg; wheat gluten: crude protein 803.8 g/kg, crude lipid 16.2 g/kg;
All these ingredients were obtained from Qihao Co., Ltd. (Shandong, China).
bAll these ingredients were obtained from Qihao Co., Ltd. (Shandong, China).
cVitamin premix (mg/kg diet): vitamin D, 5; vitamin K, 10; vitamin B12, 10;
vitamin B6, 20; folic acid, 20; vitamin B1, 25; vitamin A, 32; vitamin B2, 45;
pantothenic acid, 60; biotin, 60; niacin acid, 200; α-tocopherol, 240; inositol, 800;
and ascorbic acid, 2000.
dMineral premix (mg/kg diet): CuSO4·5H2O, 10; Na2SeO3 (1%), 25; ZnSO4·H2O,
50; CoC12·6H2O (1%), 50; MnSO4·H2O, 60; FeSO4·H2O, 80; Ca (IO3)2, 180;
MgSO4·7H2O, 1,200; and zeolite, 8,345.
eMold inhibitor contained fumaric acid and calcium propionate in the ratio 1:1.
FMFO, fishmeal and fish oil; FMVO, fishmeal and vegetable oil; TPFO, terrestrial
protein and fish oil; TPVO, terrestrial protein and vegetable oil.

cycles of 95◦C for 10 s, 60◦C for 30 s, 95◦C for 15 s, 60◦C for 60 s,
and 95◦C for 1 s. Gene expression results were obtained using the
2−11Ct method (Livak and Schmittgen, 2001).

Metabolomic Analysis
Metabolites Extraction and Analysis With LC-MS
For metabolomics analysis, the 50 mg solid sample from each
group was separated with 400 µL of the solution containing
methanol and water 4:1 (v/v). The samples were homogenized by
a tissue crusher at 50 Hz for 6 min and then sonicated for 30 min
at 40 kHz and 5◦C. The samples were placed for 30 min at−20◦C
to achieve protein precipitation. The mixture was centrifuged at
4◦C, 13,000g for 15 min, and the supernatant was separated for
subsequent analysis.

The LC-MS analysis was conducted using an ExionLCTMAD
system (AB Sciex, United States) equipped with an ACQUITY
UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7 µm;
Waters, Milford, CT, United States). The UPLC system worked
in tandem with a quadrupole time-of-flight mass spectrometer
(Triple TOFTM 5600+, AB Sciex, United States) that has an
electrospray ionization (ESI) source with both positive and
negative ionization modes of operation.

Data Preprocessing and Metabolite Identification
The positive and negative data obtained from the LC-MS
analysis were combined and loaded into SIMCA software (V14.1,
Umea, Sweden) for orthogonal projections for latent structures-
discriminant analysis (OPLS-DA). Afterward, sevenfold cross-
validation was performed. Differential metabolites (DMs) were
identified according to the variable importance in projection
values (VIP > 1) obtained from the OPLS-DA model and
P < 0.05 from the Student’s t-test. KEGG3 was employed for
annotating metabolites and searching for metabolite pathways.
The scipy stats4 was employed to confirm the statistically
significantly enriched pathway by Fisher’s exact test.

Comprehensive Analysis of
Metabolomics and Transcriptomics
Kyoto Encyclopedia of Genes and Genomes was applied to
annotate and enrich the metabolic pathways mapped by DMs and
DEGs of O. mykiss, and DMs and DEGs enriched to the shared
KEGG pathways were filtered for subsequent analysis. Pearson
correlation analysis was utilized to identify the correlation
between DMs and DEGs O. mykiss using the Cytoscape software.
A heatmap was used to show the correlation of the DMs and
DEGs, respectively. P < 0.05 was considered a statistically
significant level of difference.

Calculation and Statistical Analysis
The growth performance of fish was determined by the following
equations:

SGR = (LnWf − LnW0)× 100/t

K = (Wf /L3)× 100

FE=(Wf−W0)/ingested feed

ADC = [1− (dietary Y2O3 content× fecal nutrient content)/

(feed nutrient content × fecal Y2O3 content)] × 100

PER = (Wf−W0)/protein fed

LER = (Wf−W0)/lipid fed

where Wf and W0 represent final and initial body weight of
O. mykiss, t represents the duration of experiment. L represents
the length of O. mykiss.

3http://www.genome.jp/kegg/
4https://docs.scipy.org/doc/scipy/
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All results are expressed as mean ± SD. The growth
performance of O. mykiss was analyzed using two-way
ANOVA with the percentage of dietary FM or FO as fixed
factors. P < 0.05 indicated that the data has statistically
significant differences. All analyses were performed on the
SPSS 21.0 software.

RESULTS

Growth Performance
After the 84-d experiment, no interaction term between dietary
levels of FM and FO on growth performance or feed utilization
were observed in O. mykiss (Table 2). Significant differences in
the growth performance in terms of FBW, SGR, and K and the
feed utilization in terms of ADC were observed between the two
FM inclusion levels (P < 0.05) and HSI showed a significant
difference in O. mykiss between the two FO levels (P < 0.05). In
addition, there was no significant difference of FE, PER, and LER
in O. mykiss fed diets with replacement of dietary FM or FO by
TP or VO, respectively (P > 0.05).

Transcriptomics Analysis of
Replacement of Fish Meal and/or Fish
Oil by Terrestrial Protein and/or
Vegetable Oil
Replacement of Fish Meal by Terrestrial Protein for
Differentially Expressed Genes and Metabolic
Pathways
A total of 518 and 93 DEGs were identified between FMFO
vs. TPFO and FMVO vs. TPVO, respectively. There were 24
overlapping DEGs between FMFO vs. TPFO and FMVO vs.
TPVO (Figure 1A). In the comparison of FMFO vs. TPFO, 378
and 140 genes were upregulated and downregulated, respectively.
Meanwhile, there were 48 and 45 genes showing up-regulated
and down-regulated expression in FMVO vs. TPVO, respectively
(Figure 1B and Supplementary Figure 1).

To further explore the metabolic pathways of the replacement
of FM by TP, the DEGs in each group were annotated
(Supplementary Table 2). Based on significant pathways
(P < 0.05), KEGG was applied to correlate the DEGs
with metabolic pathways. It was determined that most of
DEGs in the comparison of FMFO vs. TPFO were enriched
in “steroid biosynthesis,” “aminoacyl-tRNA biosynthesis,”
“protein processing in endoplasmic reticulum,” “glycine, serine
and threonine metabolism,” and “PPAR signaling pathway”
(Figure 1C), while most of DEGs in the comparison of FMVO
vs. TPVO were enriched in “steroid biosynthesis,” “PPAR
signaling pathway,” “glutathione metabolism,” and “pentose and
glucuronate interconversions” (Figure 1D).

Replacement of Fish Oil by Vegetable Oil for
Differentially Expressed Genes and Metabolic
Pathways
There were 140 and 48 DEGs identified in FMFO vs.
FMVO and TPFO vs. TPVO, respectively. A total of 3

overlapping DEGs between FMFO vs. TPFO and FMVO vs.
TPVO. In the comparison of FMFO vs. FMVO, 104 genes
were expressed up-regulated and 36 genes were expressed
down-regulated. Meanwhile, 21 and 27 gene expressions were
up- and down-regulated in TPFO vs. TPVO, respectively
(Supplementary Figure 1).

To further explore the metabolic pathways of the replacement
of FO by VO, the DEGs in each group were annotated
(Supplementary Table 3). Based on significant pathways
(P < 0.05), KEGG was employed to correlate the DEGs
with metabolic pathways. It was determined that most of
DEGs in FMFO vs. FMVO were enriched in “oxidative
phosphorylation,” “steroid biosynthesis,” and “arachidonic acid
metabolism” (Figure 1E), while most of DEGs in TPFO vs. TPVO
were enriched in “alanine, aspartate and glutamate metabolism,”
“PPAR signaling pathway,” “D-glutamine, and D-glutamate
metabolism” and “fatty acid biosynthesis” (Figure 1F).

Combined Replacement of Fish Meal and Fish Oil by
Terrestrial Protein and Vegetable Oil for Differentially
Expressed Genes and Metabolic Pathways
A total of 210 DEGs were identified in FMFO vs. TPVO.
Compared with the control group, 121 and 89 genes showed
up-regulated and down-regulated expression in the TPVO
group, respectively (Supplementary Figure 1).

To further explore the metabolic pathways of the combined
replacement of FM and FO by TP and VO, respectively,
the DEGs in each group were annotated (Supplementary
Table 4). Based on pathway P < 0.05, KEGG was employed to
correlate the DEGs with metabolic pathways. It was determined
that most of DEGs in FMFO vs. TPVO were enriched
in “steroid biosynthesis,” “protein processing in endoplasmic
reticulum,” “glycine, serine and threonine metabolism,” “purine
metabolism,” “phenylalanine metabolism,” and “arachidonic acid
metabolism” (Figure 1G).

Metabolomic Analysis of Replacement of
Fish Meal and/or Fish Oil by Terrestrial
Protein and/or Vegetable Oil
Overall Changes on the Liver in Metabolites in
Response to Replacement of Fish Meal and/or Fish
Oil by Terrestrial Protein and/or Vegetable Oil
In this LC-MS analysis, a total of 12,928 valid peaks were
extracted. To maximize the discrimination between the
replacement of dietary FM and/or FO by TP and/or VO and
the control groups, and OPLS-DA was applied to determine the
differences in metabolite levels between comparable groups. R2Y
represents the percentage of all sample variables explained by
the model. Q2 represents the percentage of all sample variables
predicted by the model. OPLS-DA score plots of FMFO vs.
TPFO, FMVO vs. TPVO, FMFO vs. FMVO, TPFO vs. TPVO,
and FMFO vs. TPVO had the cumulative values of R2Y being
0.909, 0.927, 0.967, 0.976, and 0.975, and Q2 being 0.838, 0837,
0.767, 0.629, and 0.923, respectively, indicating that the model
derived by OPLS-DA were highly plausible (Supplementary
Figure 2) and can be employed in the further analysis.
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TABLE 2 | Two-way factorial analysis of variance (ANOVA) for the growth performance and feed utilization of O. mykiss fed different diets.

Item df P Multiple comparisons

FM FO

100% 30% 100% 20%

Dependent variable: FBW

FM 1 <0.001 293.99 ± 12.82 263.99 ± 19.42 282.20 ± 18.73 275.77 ± 25.26

FO 1 0.182

FM × FO 1 0.632

Dependent variable: SGR

FM 1 <0.001 2.43 ± 0.06 2.30 ± 0.08 2.38 ± 0.08 2.35 ± 0.11

FO 1 0.134

FM × FO 1 0.489

Dependent variable: K

FM 1 0.023 1.45 ± 0.03 1.42 ± 0.03 1.44 ± 0.04 1.43 ± 0.03

FO 1 0.852

FM × FO 1 0.536

Dependent variable: FE

FM 1 0.126 0.92 ± 0.04 0.88 ± 0.05 0.90 ± 0.04 0.89 ± 0.06

FO 1 0.658

FM × FO 1 0.682

Dependent variable: HSI

FM 1 0.624 2.17 ± 0.13 2.18 ± 0.13 2.07 ± 0.07 2.27 ± 0.09

FO 1 <0.001

FM × FO 1 0.628

Dependent variable: ADC (protein)

FM 1 0.003 71.22 ± 0.99 72.16 ± 1.08 71.93 ± 1.21 71.45 ± 1.01

FO 1 0.114

FM × FO 1 0.627

Dependent variable: PER

FM 1 0.066 2.00 ± 0.99 1.89 ± 0.11 1.95 ± 0.09 1.93 ± 0.14

FO 1 0.659

FM × FO 1 0.683

Dependent variable: LER

FM 1 0.356 5.35 ± 0.25 5.50 ± 0.33 5.46 ± 0.23 5.39 ± 0.35

FO 1 0.649

FM × FO 1 0.672

Data are expressed as mean ± SD, (n = 3), df: degree of freedom. FBM, final body weight; SGR, specific growth rate; K, condition factor; FE, feed efficiency; HSI,
hepatosomatic index; ADC, apparent digestibility coefficient; PER, protein efficiency ratio; LER, lipid efficiency ratio.

Differential Metabolites and Metabolic Pathways for
Replacement of Fish Meal by Terrestrial Protein
A total of 204 and 199 DMs were identified between
FMFO vs. TPFO and FMVO vs. TPVO, respectively. In the
comparison of FMFO vs. TPFO, there were 70 and 134 DMs
upregulated and downregulated, respectively. In the comparison
of FMVO vs. TPVO, 42 and 157 DMs were upregulated
and downregulated, respectively. There were 127 overlapping
metabolites between FMFO vs. TPFO and FMVO vs. TPVO
(Supplementary Figure 3).

To identify the potential metabolic pathways affected by the
replacement of FM by TP, KEGG was applied to correlate the
DMs with metabolic pathways. The results of pathway analysis
described in detail the metabolic pathway changes related to the
replacement of FM by TP(Figure 2). The most closely related

metabolic pathways of FMFO vs. TPFO and FMVO vs. TPVO
were shown in Supplementary Table 5.

Differential Metabolites and Metabolic Pathways for
Replacement of Fish Oil by Vegetable Oil
There were 167 and 122 DMs identified in FMFO vs. FMVO
and TPFO vs. TPVO, respectively. In the comparison of
FMFO vs. FMVO, 87 DMs were expressed up-regulated and
80 DMs were expressed down-regulated. In the comparison
of TPFO vs. TPVO, 36 and 86 DMs were upregulated
and downregulated, respectively. A total of 67 overlapping
metabolites between FMFO vs. FMVO and TPFO vs. TPVO
(Supplementary Figure 3).

To identify the potential metabolic pathways affected
by the replacement of FO by VO, KEGG was applied to
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FIGURE 1 | Transcriptomic analysis of O. mykiss fed diets with replacement of FM and/or FO. The number of up- and down-regulated DEGs were identified in the
FM replacement and FO replacement (A,B). KEGG pathways analysis of DEGs in response to FM replacement (C,D), FO replacement (E,F), and combined
replacement of FM and FO (G). Pathway enrichment analysis plots (top 20) of upregulated expressed metabolisms according to P < 0.05.

correlate the DMs with metabolic pathways. The results
of pathway analysis described in detail the metabolic
pathway changes related to the replacement of FO by VO
(Figure 2). The most closely related metabolic pathways
of FMFO vs. FMVO and TPFO vs. TPVO were shown in
Supplementary Table 6.

Differential Metabolites and Metabolic Pathways for
Combined Replacement of Fish Meal and Fish Oil by
Terrestrial Protein and Vegetable Oil
A total of 220 DMs were identified between FMFO vs.
TPVO. Compared to the control group, 63 and 157 DMs
were upregulated and downregulated in the combined
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FIGURE 2 | Metabolomic profiles of O. mykiss fed diets with replacement of FM and/or FO. Heatmaps and pathway analysis plots of DMs in FM replacement (A–D),
FO replacement (E–H), and combined replacement of FM and FO (I,J). The blue bar in pathway analysis plots showed enrichment ratio and the red bar showed
pathway impact value calculated from pathway topology analysis.
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replacement of FM and FO by TP and VO, respectively
(Supplementary Figure 3).

To identify the potential metabolic pathways affected
by the combined replacement of dietary FM and FO,
KEGG was applied to correlate the DMs with metabolic
pathways. The results of pathway analysis described
in detail the metabolic pathway changes related to the
combined replacement of dietary FM and FO by TP and
VO, respectively (Figure 2). The most closely related
metabolic pathways of FMFO vs. TPVO were shown in
Supplementary Table 7.

Integrated Analysis of Metabolomics and
Transcriptomics for the Replacement of
Fish Meal and Fish Oil by Terrestrial
Protein and Vegetable Oil
The integrative analysis of transcriptome and metabolome
revealed the shared KEGG pathways of DEGs and DMs of
O. mykiss fed with reduction of dietary FM and/or FO in
the diets (Supplementary Table 8). The shared DEGs and
DMs involved in these metabolic pathways were shown
in Supplementary Table 9. For the replacement of FM by
TP, 32 shared KEGG pathways were mapped from 63 and
42 shared KEGG pathways between FMFO vs. TPFO and
FMVO vs. TPVO, respectively. Among these pathways, 10
significantly important metabolic pathways were identified via
topological pathway analysis (“purine metabolism,” “cysteine
and methionine metabolism,” “lysine degradation,” “arginine
biosynthesis,” “glycolysis/gluconeogenesis,” “phenylalanine
metabolism,” “amino sugar and nucleotide sugar metabolism,”
“glycine, serine and threonine metabolism,” “pentose and
glucuronate interconversions,” and “glutathione metabolism”)
(Figure 3A). For the replacement of FO by VO, 6 shared
KEGG pathways were mapped from 33 and 10 shared
KEGG pathways in FMFO vs. FMVO and TPFO vs. TPVO,
respectively. Among these pathways, six significantly important
metabolic pathways were identified via topological pathway
analysis (“purine metabolism,” “glycine, serine and threonine
metabolism,” “aminoacyl-tRNA biosynthesis,” “cysteine and
methionine metabolism,” “sphingolipid metabolism,” and
“alanine, aspartate and glutamate metabolism”) (Figure 3B).
For the combined replacement of FM and FO by TP
and VO, respectively, 52 shared KEGG pathways were
mapped from FMFO vs. TPVO. Among these pathways,
11 significantly important metabolic pathways were
identified via topological pathway analysis (“tryptophan
metabolism,” “purine metabolism,” “lysine degradation,”
“amino sugar and nucleotide sugar metabolism,” “arginine
biosynthesis,” “glycolysis/gluconeogenesis,” “phenylalanine
metabolism,” “citrate cycle (TCA cycle),” “glycerophospholipid
metabolism,” “pentose and glucuronate interconversions,”
and “cysteine and methionine metabolism”) (Figure 3C).
Correlation analysis calculated by Pearson showed tight
correlations between DEGs and DMs, which further
emphasized the correlation between each DEG and each
DM (Figure 4).

Shared DMs and DEGs of individual and combined
replacement of FM and FO by TP and VO, respectively, were
further aggregated to explore the metabolic process that might
occur in the liver of O. mykiss (Table 3). A comprehensive
metabolic network of these shared metabolites and genes
involving the replacement of dietary FM and/or FO by
TP and/or VO was shown in Figure 5. Adenylosuccinate
and adenosine monophosphate were all upregulated in
replacement of dietary FM and/or FO by TP and/or VO
and were involved in purine metabolism. The high concentration
of 2-(formamido)-N1-(5′-phosphoribosyl) acetamidine, but
low contents of xanthosine, xanthine, and urate which
possibly due to the low expression of PNP and XDH were
found in purine metabolism. The low concentrations of
R-S-glutathione, 5-oxoproline, 5-L-glutamyl-L-alanine, and
low expression levels of OPLAH, which are involved in the
glutathione metabolism, were identified in fish feeding diets
with replacement of FM. Moreover, the concentrations of
L-tryptophan and anthranilate were both downregulated,
but high expression levels of ACAT2 were identified in
the combined replacement of dietary FM and FO by TP
and VO, respectively. In glycerophospholipid metabolism,
lysine metabolism, and tryptophan metabolism, 1-acyl-SN-
glycero-3-phosphocholine, phosphatidylcholine (lecithin),
PCYT1, L-lysine, and L-2-aminoadipate were downregulated
in combined replacement of dietary FM and FO by TP
and VO, respectively. In addition, the low expression levels
of D-glycerate 3-phosphate and D-glucuronic acid, but
the high expression levels of UDP-D-glucuronate may be
mainly controlled by the up-regulation of upstream DEGs,
which were found in glycolysis/gluconeogenesis and pentose
and glucuronate interconversions. Furthermore, L-arginine,
L-phenylalanine, and D-glucuronic acid, which are involved in
arginine biosynthesis, phenylalanine metabolism, and amino
sugar and nucleotide sugar metabolism were expressed at
low levels in individual replacement of dietary FM by TP
and combined replacement of dietary FM and FO by TP and
VO, respectively.

The RNA Sequencing Data Quality
Control and Results of qRT-PCR
In our study, the averages of 44.5, 44.2, 44.8, and 43.3 million
clean reads were localized to the O. mykiss genome from
the FMFO, FMVO, TPFO, and TPVO groups, respectively
(Supplementary Table 10). The GC contents of the four groups
showed the average values with 49.9, 49.88, 49.09, and 49.3%,
respectively. And Q30 contents were on the average of 95.24,
94.89, 95.06, and 95.10%, respectively. The average map rates
of the four groups were 94.75, 94.82, 93.64, and 94.23%,
respectively (Supplementary Table 10). These data suggested
that the sequencing results were favorable and that the results
of the subsequent transcriptome analysis were dependable. To
further confirm the accuracy and reliability of transcriptomic
data, qRT-PCR was conducted to validate the RNA-seq results of
10 DEGs, and the expression patterns were in accordance with
the trend of RNA-seq results (Supplementary Figure 4).
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FIGURE 3 | Significant specific pathway identified by multi-omics analysis between FM or FO replacement and combined replacement FM and FO. Pathway analysis
of DMs from common pathways shared with DEGs was plotted at the replacement of FM (A), replacement of FO (B), and combined replacement of FM and FO (C).
Map00230: purine metabolism; map00310: lysine degradation; map00220: arginine biosynthesis; map00010: glycolysis/gluconeogenesis; map00360:
phenylalanine metabolism; map00520: amino sugar and nucleotide sugar metabolism; map00260: glycine, serine, and threonine metabolism; map00040: pentose
and glucuronate interconversions; map00480: glutathione metabolism; map00380: tryptophan metabolism; map00020: citrate cycle (TCA cycle); map00564:
glycerophospholipid metabolism.

DISCUSSION

Growth Performance
The growth performance results obtained in the present study
were consistent with those previously reported in African
catfish (Clarias gariepinus) (Sourabié et al., 2018), and dietary
protein sources were the main limiting factor affecting growth
performance. In terms of FO, replacing dietary FO with VO did
not compromise the growth performance of O. mykiss, which was
consistent with the previous studies with partial replacement FO
in farmed fish (Glencross et al., 2003; Hardy, 2010). In contrast,

individuals feeding diets with reduced dietary FM presented
lower feed utilization than fish feeding diets with higher dietary
FM content, resulting in poor growth performance regardless
of the dietary lipid sources. This result was in agreement with
the previous investigations in European sea bass (D. labrax)
(Torrecillas et al., 2017) and Atlantic cod (Gadus morhua L.)
(Hansen et al., 2007) that accepted the reduction dietary FM
diets. The response of O. mykiss to the replacement of FM by TP
was mainly associated with the reduction in feed intake and FE
(Torstensen et al., 2008). Particularly, some ingredients present
in alternative protein sources, such as unbalanced AAs profiles
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FIGURE 4 | Correlation plots of the correlations between metabolome and transcriptome. The correlation plots with genes in columns and metabolites in rows to
reveal the connection between genes and metabolites of O. mykiss fed diets with FM replacement (A,B), FO replacement (C,D), and combined replacement FM and
FO (E). The red and blue showed the positive and negative correlation between transcriptomics and metabolomics, respectively. The symbol “*” indicates significant
correlation between the gene and metabolites (P < 0.05).

and anti-nutritional factors repress the growth performance
of fish (Li et al., 2014). Additionally, fish feeding diets with
reduction of dietary FM and FO appeared to have similar protein

and lipid utilization efficiencies to those of individuals in the
FMFO group, as no significant differences in PER and LER were
observed between individuals in the four experimental groups.
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TABLE 3 | Shared DMs and DEGs in the KEGG pathway of O. mykiss which fed
diets with replacement of FM and/or FO.

Description Metabolites Gene

Glutathione metabolism 5-Oxoproline,
5-L-glutamyl-L-alanine,
R-S-glutathione

OPLAH

Purine metabolism 2-(Formamido)-N1-(5′-
phosphoribosyl)acetamidine,
xanthine, xanthosine,
adenylosuccinate, adenosine
monophosphate, urate

PNP, XDH

Glycerophospholipid
metabolism

Phosphatidylcholine (lecithin),
1-acyl-sn-glycero-3-
phosphocholine

PCYT1

Glycine, serine, and
threonine metabolism

Dimethylglycine BHMT, DMGDH

Arginine biosynthesis L-arginine /

Tryptophan metabolism L-tryptophan, anthranilate ACAT2

TCA cycle Citrate /

Glycolysis/
gluconeogenesis

D-glycerate 3-phosphate ALDH3, GCK, HK

Phenylalanine metabolism L-phenylalanine TAT, ALDH3

Lysine degradation L-2-aminoadipate L-Lysine

Pentose and glucuronate
interconversions

UDP-D-glucuronate,
D-glucuronic acid

UGP2, UGT

Amino sugar and
nucleotide sugar
metabolism

D-glucuronic acid,
UDP-glucuronate

UGP2

Abbreviations of genes are annotated in Figure 5.

Similar results have also been documented in Atlantic salmon
(Torstensen et al., 2008) and Pacific yellowtail (Seriola lalandi)
(Nuche-Pascual et al., 2018).

Alteration of Immune Function Pathway
Associated With Replacement of Fish
Meal and/or Fish Oil
The immune system of fish is the first line of defense against
external pathogens and a crucial mechanism in organisms
(Saurabh and Sahoo, 2008). In this study, we identified pathways
that might be involved in the immune response, such as
arginine biosynthesis, amino and nucleotide sugars metabolism,
and tryptophan metabolism. Arginine is known to be a
multifunctional AA closely related to immune system regulation,
mediating immunosuppressive mechanisms while maintaining
hepatic urea cycle activity for ammonia detoxification (Wu
et al., 2014; Azeredo et al., 2015). Thus, the low concentration
of arginine revealed by multi-omics data indicated that the
depletion of free arginine and low levels of availability, caused
by the individual replacement of FM by TP and combined
replacement of dietary FM and FO by TP and VO, respectively,
resulted in impaired immunity in the liver of O. mykiss.
Amino sugar and nucleotide sugars metabolism is also an
important immune-related pathway that is associated with
external environmental stress (Guo et al., 2014; Xu et al., 2016).
In the present investigation, D-glucuronic acid and UGP2 were
downregulated in response to the individual replacement of

dietary FM by TP and the combined replacement of FM and
FO by TP and VO, respectively. Meanwhile, anthranilate is an
important intermediate in tryptophan metabolism and involves
the synthesis of nonsteroidal anti-inflammatory drugs (NSAIDs)
(Sorgdrager et al., 2019). NSAIDs can induce the synthesis
of nonsteroidal anti-inflammatory molecules that signal the
immune system response and prevent inflammation (Zummo
et al., 2012). The low concentrations of L-tryptophan and
anthranilate in the present study implied that NSAIDs associated
with anthranilate might be inhibited, which might affect the
immunity of O. mykiss fed diets with combined replacement
of FM and FO by TP and VO, respectively. Furthermore,
previous reports have demonstrated that numerous energy
supplies are crucial for the immune defense processes (Zhang
et al., 2019). ACAT2, related to the production of acetyl-
CoA, was upregulated and promoted its participation in the
TCA cycle, suggesting that fish require additional energy to
maintain immune function. Therefore, these results indicated
that individuals feeding diets with combined replacement
of FM and FO might lead to increasingly higher energy
requirements of fish. More attention should be paid to the
design of diet formulation to prevent the growth performance
of fish from being affected by excessive substitution leading
to immune dysfunction and energy requirements that are
difficult to meet.

Alteration of Antioxidant Pathway
Associated With Replacement Fish Meal
and/or Fish Oil
Under physiological homeostasis state, organisms will produce
reactive oxygen species and maintain the antioxidant defenses
by providing a set of mechanisms to equilibrium. Although
antioxidant defense in fish is influenced by nutritional
factors, little is known about how the oxidative status in
fish responds to the dietary ingredients (Rueda-Jasso et al.,
2004). In the present study, the low concentrations of
R-S-glutathione, 5-oxoproline, 5-L-glutamyl-L-alanine, and
OPLAH in individuals fed a reduction FM diet, indicating
that glutathione metabolism was repressed. Furthermore,
these metabolites are commonly used as potential biomarkers
for hepatic glutathione status assessment (Geenen et al.,
2013). Particularly, R-S-glutathione, one of the transformation
products of glutathione formation complexes, transports
into the specific position, which is a common detoxification
mechanism (Liang et al., 2016). Altering the level of dietary
FM has been confirmed to affect the antioxidant capacity,
thereby repressing the growth and development of Pacific
white shrimp (Xie et al., 2020), Barramundi (L. calcarifer)
(Chaklader et al., 2020), and European sea bass (Guerreiro
et al., 2015). Previous study has reported that antioxidant
defense is a metabolic process that requires massive energy
expenditure in response to external stimuli (Xie et al., 2020).
Meanwhile, individuals fed the replacement of FM by TP
diet required more energy supply to deal with the oxidative
stress caused by the reduction of dietary FM and support the
subsequent growth requirements. Given this requirement, the
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FIGURE 5 | A hypothetical integrated metabolic network of key differential metabolites and genes in significant pathways identified by multi-omics analysis between
FM and FO replacement and combined replacement FM and FO based on the KEGG pathway database. Map00230: purine metabolism; map00310: lysine
degradation; map00220: arginine biosynthesis; map00010: glycolysis/gluconeogenesis; map00360: phenylalanine metabolism; map00520: amino sugar and
nucleotide sugar metabolism; map00260: glycine, serine, and threonine metabolism; map00040: pentose and glucuronate interconversions; map00480: glutathione
metabolism; map00380: tryptophan metabolism; map00020: citrate cycle (TCA cycle); map00564: glycerophospholipid metabolism. Metabolites were marked as
circles, differential metabolites as green frames, and differential genes as blue frames. The red/green boxes (from left to right, replacement of dietary FM, FO, FM and
FO, respectively) show high/low expression of alternative FM and/or FO. OPLAH: 5-oxoprolinase; PNP: purine-nucleoside phosphorylase; XDH: xanthine
dehydrogenase/oxidase; PCYT1: choline-phosphate cytidylyltransferase; BHMT: betaine-homocysteine S-methyltransferase; DMGDH: dimethylglycine
dehydrogenase; ACAT2: acetyl-CoA C-acetyltransferase; TAT: tyrosine aminotransferase; ALDH3: aldehyde dehydrogenase; GCK: glucokinase; HK: hexokinase;
UGP2: UTP-glucose-1-phosphate uridylyltransferase; UGT: glucuronosyltransferase.

TCA cycle, pentose and glucuronate interconversions, and
glycolysis/gluconeogenesis were activated to provide sufficient
energy for the growth and antioxidative requirements of
O. mykiss. Therefore, our results suggested that the replacement
of dietary FM by TP represses the antioxidant system of
O. mykiss, which could result in lower antioxidant and
detoxifying capabilities.

Alteration of Energy Metabolism
Pathway Associated With Replacement
Fish Meal and/or Fish Oil
The TCA cycle is a central pathway for most metabolic
pathways such as AA, lipid, and carbohydrate, and is an
important metabolic pathway that provides energy to the
organism (Akram, 2014). Comparative multi-omics data in
fish between FMFO and TPVO showed several essential
intermediates involved in the TCA cycle, including L-tryptophan,
L-lysine, and L-phenylalanine (Mishra et al., 2017), all of which
were downregulated in TPVO compared with FMFO. The low
concentrations of these metabolites might be consumed for the
energy metabolism of O. mykiss. Meanwhile, adenylosuccinate

is the precursor of fumaric acid for further synthesis of
citrate, which plays a crucial role in energy metabolism.
Citrate is an important intermediate of the TCA cycle
and is closely associated with ATP generation. The multi-
omics data showed the high concentration of citrate possibly
indicated that fish feeding diets with combined replacement
of FM and FO by TP and VO, respectively, activated the
TCA cycle to supply sufficient energy to accommodate the
shift dietary quality. Huang et al. (2017) reported that the
decreased AA may be associated with the increased energy
requirements to maintain body homeostasis in response to
external stimuli. In the present study, the low concentrations
of L-tryptophan, L-lysine, and L-phenylalanine were observed
in TPVO, indicating that the activated TCA cycle may be a
strategy for O. mykiss to cope with the combined replacement
of FM and FO by TP and VO, respectively. Furthermore,
Li et al. (2009) reported that the decrease in phenylalanine
could depress growth performance and even negatively affect
the survival rate of fish. It was speculated that the poor
feeding intake rates and growth performance of O. mykiss might
result from the low concentration of L-phenylalanine in the
liver of O. mykiss.
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Glycolysis/gluconeogenesis is an important metabolic
pathway to maintain glucose homeostasis (Metón et al.,
2003). D-glycerate 3-phosphate, a precursor of tryptophan in
organisms, is an important intermediate in glycolysis metabolism
to produce pyruvate, the final product of glycolysis, which is
required to activate the TCA cycle (Tikunov et al., 2014). In
our work, the low concentration of D-glycerate 3-phosphate in
fish feeding diets with individual replacement of dietary FM
and combined replacement of dietary FM and FO by TP and
VO, respectively, indicated the consumption of D-glycerate
3-phosphate. Furthermore, the UDP-D-glucuronate, GCK,
HK, and ALDH3 are important metabolite and genes involved
in the glycolysis/gluconeogenesis, and glucose and pentose
interconversions pathways were increased in individuals fed diets
with reduction of both FM and FO. The results suggested that
the energy metabolism of O. mykiss was activated and provided
sufficient energy in response to the fluctuation of dietary quality.
Thus, once the metabolic energy is consumed in maintaining the
adverse reactions caused by the diets, less energy is available for
the growth of the fish.

Alteration of Cellular Protein
Biosynthesis Pathway Associated With
Replacement Fish Meal and/or Fish Oil
Nucleotide metabolism plays an important physiological and
biochemical role in organisms, mediating energy metabolism
and signal transmission (Cosgrove, 1998). De novo synthesis of
nucleotides can satisfy the normal growth of organisms, but when
nucleotide metabolism is affected, the immune function of organs
such as the liver may be impaired (Grimble and Westwood, 2000).
The present study showed that nucleotide metabolism, especially
purine metabolism in O. Mykiss, was significantly affected by
the fluctuation of dietary quality. The low concentrations of
several purines, including xanthosine, xanthine, and urate may
be caused by the downregulated PNP and XDH that could
promote the conversion of xanthosine to urate (Baccolini and
Witte, 2019). Purines are the main components and metabolites
of nucleotides, which can be absorbed by transporters and reused
for protein synthesis (Mohlmann et al., 2010). However, the
concentrations of purine in fish feeding diets with individual
replacement of dietary FM by TP and combined replacement of
FM and FO by TP and VO, respectively, were low, suggesting
that purine synthesis might be repressed and thus affect the
protein synthesis. Moreover, it is worth noting that as soon as
the dietary FM and/or FO were reduced, both adenylosuccinate
and adenosine monophosphate of O. mykiss were upregulated.
Most purine nucleotides required for cell replication are derived
from the purine biosynthesis pathway, and adenylosuccinate
plays a considerable role in de novo biosynthesis of purine and
replication (Yuan et al., 2011). However, the high concentrations
of these metabolites employed for cell replication were detected in
the liver, suggesting that the replacement of dietary FM and FO
by TP and VO, respectively, repressed the cell protein synthesis
ability of O. mykiss. Therefore, the results suggested that the
impaired growth performance of O. mykiss might be associated
with the replacement of dietary FM and/or FO by TP and/or

VO, especially the inhibition of cellular protein biosynthesis
induced by the combined replacement of FM and FO by TP and
VO, respectively.

Alteration of Lipid Metabolism Pathway
Associated With Replacement Fish Meal
and/or Fish Oil
In terms of lipid metabolism, most DEGs and DMs were
associated with glycerophospholipid metabolism. For instance,
phosphatidylcholine (PC) is one of the main components of
biofilms (Zong et al., 2018), and is crucial for the structure
and function of these membranes (Gibellini and Smith, 2010).
Previous studies reported that PC could bloke the damage of
cell membrane that is caused by active free radicals through
antioxidant effect, accelerate the lipolysis in the liver, and
promote liver fibrosis in collagenase active link (Navder et al.,
1997; Mi et al., 2000). In our study, PCYT1 was downregulated
in the liver of O. mykiss fed reduction of both FM and FO diet,
and resulted in low concentration of PC and 1-acyl-sn-glycero-3-
phosphocholine, which might reflect significant changes in cell
membrane composition. Additionally, previous investigations
have demonstrated that the FA profiles of cell membranes were
significantly affected by dietary FA profiles (Oxley et al., 2010)
which is critical for fluidity and permeability of cell membranes,
thereby affecting the function of immune receptors (Arts and
Kohler, 2009). Therefore, in our study, the individual reduction
of FM and combined replacement of FM and FO by TP and
VO, respectively, may impair the immune function and cell
membrane fluidity of O. mykiss to limit the normal physiological
activities and growth performance of fish.

CONCLUSION

Integrated metabolomics and transcriptomics were used to
investigate the effects of the replacement of dietary FM and/or
FO by TP and/or VO, respectively, on changes of metabolites
and genes in O. mykiss. The specific metabolic pathways of
O. mykiss fed diet with combined replacement of FM and FO
by TP and VO, respectively, were identified, mainly repressing
immune function, cellular protein biosynthesis capacity, and
lipid metabolism. The depression of antioxidant capacity was
only observed in fish feeding diets with the replacement of
dietary FM by TP. Moreover, as soon as the dietary FM and/or
FO were reduced, the cellular protein biosynthesis ability of
O. mykiss was repressed and accompanied by higher energy
consumption in response to fluctuations of dietary quality,
resulting in reduced growth performance. Furthermore, both
adenylosuccinate and adenosine monophosphate related to
cellular protein biosynthesis ability were significantly affected
by both individual and combined replacement of FM and FO
by TP and VO, respectively, suggesting that purine metabolism
and its related two metabolites were potential biomarkers for
O. mykiss fed diets with reduction of dietary FM and/or
FO. Overall, our study provides new insights and theoretical
basis into the metabolic and molecular mechanism behind the
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growth of O. mykiss response to the diet with reduction of
dietary FM and/or FO.
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