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Sea ice change is closely related to the change of global atmosphere and ocean circulation, 
which plays an important role in the study of global climate change. Sea ice concentration 
is one of the important parameters to study the temporal and spatial change of sea ice. 
Accurately retrieving sea ice concentration is the innovation of this paper. At present, the 
high-resolution microwave-detected sea ice concentration product was provided by the 
University of Bremen, which was derived by the Arctic Radiation and Turbulence Interaction 
Study (ARTSIST) Sea Ice (ASI) algorithm based on the Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E) 89-GHz brightness temperature data. 
The AMSR-E/AMSR-2 89-GHz brightness temperature data has higher spatial resolution, 
but it is often affected by cloud and water vapor, which affects the recognition and 
subsequent use of ground feature. Although the weather filters can remove some errors in 
the edge regions of the sea water and the sea ice, the errors of the sea ice concentration 
in other regions cannot be removed. The generative model of Conditional Generative 
Adversarial Network (CGAN) increases the utilization of image feature information through 
skip connection, which improves the removal of the influence of cloud and water vapor. 
The discriminative model can retain the image feature information and realize the non-
linear mapping from the image to the image. The loss function can reduce the pixel-
level loss, which can remove the influence of cloud and water vapor. Therefore, this 
paper proposed an improved ASI algorithm based on CGAN. Firstly, the relatively stable 
relationship between the 89-GHz brightness temperature data which is not disturbed or 
less affected by the external environment and the 36-GHz brightness temperature data 
was determined, and the 89-GHz brightness temperature data with large interference 
was screened. Secondly, based on the 36-GHz brightness temperature data with high 
reliability, the 89-GHz brightness temperature data with large interference was corrected 
through CGAN. Finally, the ASI algorithm was used to retrieve sea ice concentration. 
Compared with sea ice concentration retrieved by the ASI algorithm, the results showed 
that the improved ASI algorithm based on CGAN was feasible. Compared with sea ice 
distribution obtained from the Landsat 8 OLI-L1T data, the improved ASI algorithm based 
on CGAN significantly improves the inversion accuracy of sea ice concentration. The 
improved ASI algorithm based on CGAN makes use of the reliable 36-GHz brightness 
temperature data, which greatly reduces the error caused by cloud and water vapor, and 
the method effectively corrects sea ice concentration of the pixels affected by the external 
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1 INTRODUCTION

The polar region is an important indicator of global climate. 
With  the  increasing  severity of  global warming, sea ice is an 
important climate factor in the polar region, and the monitoring 
and the studies of sea ice have attracted more and more attention. 
Sea ice concentration is the most intuitive parameter to study the 
sea ice change. Sea ice concentration plays an important role in 
the monitoring and prediction of sea ice change, and it is of great 
significance to study global climate change. Passive microwave 
data is not limited by day and night, which is less affected by 
clouds and fog, and it has good temporal and spatial continuity. 
Passive microwave data have been used extensively for polar sea 
ice monitoring. Sea ice concentration can provide reliable basic 
data and scientific basis to study the polar region and global 
climate.

Sea ice concentration plays an important role in climate-
change study and ship navigation in the polar regions. Many 
algorithms for retrieving sea ice concentration had been 
proposed in recent decades. Bootstrap algorithm mainly used 
the characteristics of the polarization difference between sea 
water and sea ice, which also uesd the high-frequency data and 
the low-frequency data of passive microwave radiometer to 
retrieve sea ice concentration (Comiso, 1986; Comiso, 1995). 
Based on Special Sensor Microwave/Imager (SSM/I) brightness 
temperature data, Cavalieri et  al. proposed NASA Team (NT) 
algorithm, which can retrieve first-year ice concentration and 
multi-year ice concentration (Cavalieri et  al., 1991). Cavalieri 
et  al. proposed a method for determining sea ice parameters 
using dual-polarized multispectral brightness temperature data 
gathered by the Nimbus 7 Scanning Multichannel Microwave 
Radiometer (SMMR) (Cavalieri et al., 1984). Liu et al. proposed 
a fully constrained least squares algorithm based on NT 
algorithm to retrieve Antarctic sea ice concentration (Liu 
et al., 2015). On the basis of NT algorithm, Markus et al. added 
brightness temperature data at 89-GHz vertical polarization and 
proposed NT 2 algorithm (Markus and Cavalieri, 2000). Based 
on the SSM/I 85.5-GHz brightness temperature data, Lomax 
et al. proposed Lomax algorithm to retrieve sea ice concentration 
(Lomax et  al., 1995). Hao improved the NT algorithm by 
introducing AMSR-E 6.9-GHz brightness temperature data and 
improved the accuracy of multi-year ice concentration (Hao and 
Su, 2015). Kern et  al. proposed the SEA LION (SL) algorithm 
to retrieve sea ice concentration based on 37-GHz polarization 
difference (Kern, 2001; Kern and Heygster, 2001). The ASI 
algorithm was derived from the project “Arctic Radiation and 
Turbulence Interaction Study (ARTIST)” in 1998. Based on the 
concept of “polarization correction temperature”, Svendsen et al. 
proposed a model for retrieving total sea ice concentration from 

a spaceborne dual-polarized passive microwave instrument near 
90 GHz (Svendsen et al., 1987; Spencer et al., 1989). Kaleschke 
et al. improved the algorithm proposed by Svendsen et al., and 
used SSM/I 85-GHz brightness  temperature data to conduct 
mesoscale numerical simulation of the atmospheric boundary 
layer at the edge of Arctic sea ice (Svendsen et al., 1987; Kaleschke 
et al., 2001). One advantage of the ASI algorithm is that, compared 
with other algorithms using 85-GHz brightness temperature data, 
it does not require additional input data (Kern, 2004). The ASI 
algorithm can directly retrieve sea ice concentration based on the 
89-GHz brightness temperature data, and it has a similar result 
with sea ice concentration algorithms using other data channels 
(Kern et al., 2003). Spreen et al. applied the ASI algorithm to the 
AMSR-E 89-GHz brightness temperature data and obtained the 
inversion formula of sea ice concentration (Spreen et al., 2008). 
Wang proposed a multi-year ice concentration algorithm based 
on the different characteristics of the first-year ice, multi-year 
ice and sea water at 89-GHz brightness temperature data (Wang, 
2009). Based on the 89-GHz brightness temperature data and the 
ASI algorithm, Su et  al. carried out a series of experiments on 
interpolation algorithm and weather filter (Su et al., 2013). Zhang 
et  al. proposed an algorithm to retrieve sea ice concentration 
using multichannel and dual-polarized data according to the 
radiation characteristics of sea ice and sea water (Zhang, 2012). 
Wu et  al. proposed an enhanced ASI algorithm which used 
the 19-GHz polarization difference to modify the 91-GHz 
polarization difference (Wu et al., 2019).

The spatial resolution and inversion algorithm of satellite data 
are very important to accurately provide sea ice concentration. 
Although the ASI algorithm has advantages, compared with 
the low-frequency brightness temperature data, the 89-GHz 
brightness temperature data are more affected by cloud and 
water vapor. When the liquid water content in the cloud is high 
or there is a cyclone passing by, it will lead to a large error of 
sea ice concentration in the edge regions of sea water and sea 
ice. Therefore, the ASI algorithm needs weather filter processing 
(Spreen et  al., 2008). Although some errors can be eliminated 
by weather filter, the errors of the sea ice concentration in some 
regions cannot be removed. The generative model of CGAN 
increases the utilization of image feature information through 
skip connection, which improves the removal of the influence of 
cloud and water vapor. The discriminative model can retain the 
image feature information and realize the non-linear mapping 
from the image to the image. The loss function can reduce 
the pixel-level loss, which can remove the influence of cloud 
and water vapor. Therefore, CGAN was used to realize image 
correction in this paper. Firstly, in order to obtain more accurate 
sea ice concentration, the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 

environment. Therefore, the improved ASI algorithm based on CGAN realizes high spatial 
resolution and significantly improves the inversion accuracy of sea ice concentration.
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water vapor is screened based on the relatively stable relationship 
between the 89-GHz brightness temperature data not disturbed 
or less affected by the external environment such as cloud and 
water vapor and the 36-GHz brightness temperature data. 
Secondly, this paper used the data correction method based 
on CGAN to correct the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 
water vapor. Finally, based on the correction data obtained in 
the second step, this paper used the ASI algorithm to retrieve 
Antarctic sea ice concentration. This method effectively corrected 
sea ice concentration of the pixels affected by the external 
environment and greatly reduced the error caused by cloud and 
water vapor. The Landsat 8 OLI-L1T data were used to verify sea 
ice concentration retrieved by the improved ASI algorithm based 
on CGAN.

2 DATASETS

The Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E), carried on the NASA satellite Aqua, is a 12-channel, 
6-frequency microwave radiometer that measures brightness 
temperatures at 6.925 GHz, 10.65 GHz, 18.7 GHz, 23.8 
GHz, 36.5 GHz, and 89.0 GHz with vertical polarization and 
horizontal polarization. Spatial resolution of the individual 
measurements varies from 5.4 km at 89.0 GHz to 74 × 43 km at 
6.9 GHz, and it is the lower-frequency channels that provided 
the SST measurement capability. The Advanced Microwave 
Scanning Radiometer-2 (AMSR2) is a multi-frequency total-
power microwave radiometer with dual-polarization channels 
onboard the Global Change Observation Mission (GCOM) 
1st-Water (GCOMW1) (Imaoka et  al., 2010). The basic 
characteristics are almost identical to those of a predecessor 
sensor, AMSR-E. AMSR2 continues AMSR-E observations 
with several improvements. The AMSR-E/AMSR-2 data can 
provide a variety of parameters of land, ocean and atmosphere. 
Such as precipitation rate, sea surface temperature, sea ice 
concentration, soil humidity, wind speed and water vapor in 
the atmosphere. The AMSR-E/AMSR-2 89-GHz brightness 
temperature data and 36-GHz brightness temperature data are 
used in this paper. (https://seaice.uni-bremen.de/).

The Landsat 8 is the eighth satellite in the Landsat series. 
It was originally called Landsat Data Continuity Mission 
(LDCM). The Landsat 8 carries the Operational Land 
Imager (OLI) and the Thermal Infrared Sensor (TIRS). The 
OLI includes 9 bands with a spatial resolution of 30 meters, 
including a 15-meter panchromatic band (Knight and Kvaran, 
2014). In this paper, the Landsat 8 OLI-L1T data released 
by United States Geological Survey(USGS) was selected as 
the verification data (https://earthexplorer.usgs.gov/). In 
this paper, the 89-GHz brightness temperature data and the 
36-GHz brightness temperature data from October 2019 to 
March 2020 were selected as the input of CGAN. The high-
resolution optical data of Landsat 8 satellite were selected to 
verify sea ice concentration obtained in this paper.

3 METHODOLOGY

3.1 ASI Algorithm

The ASI algorithm used the polarization difference between 
the 89-GHz vertical brightness temperature and the 89-GHz 
horizontal brightness temperature to retrieve sea ice concentration 
and used the low-frequency brightness temperature data as the 
weather filters to remove the errors of sea ice concentration in 
the regions of the low sea ice concentration and the sea water 
(Svendsen et al., 1987; Spreen et al., 2008). The AMSR-E/AMSR-2 
89-GHz brightness temperature data is significantly affected 
by cloud and water vapor in the atmosphere. In particular, the 
cyclones in the sea water regions will weaken the polarization 
difference of sea water, make this part of sea water close to the 
polarization difference of sea ice, and it may lead to this part 
of sea water being mistaken for sea ice. Therefore, it is very 
necessary to use the weather filter to remove the errors of sea ice 
concentration due to the external environment such as cloud and 
water vapor.

Up to now, all weather filters basically use low-frequency 
data. In 1986, Comiso used the Gradient Ratio (GR) at 36.5 GHz 
and 18.7 GHz to reduce the influence of cloud and water vapor. 
Because GR (37/19) of the sea water is greater than 0, while GR 
(37/19) of the sea ice is close to 0 or less than 0 (Comiso, 1986). 
In 1995, Comiso improved the weather filter by adding GR 
(23/19) in addition to the original GR (37/19), because the GR 
at 23 GHz and 19 GHz is more sensitive to the water vapor of the 
atmosphere (Comiso, 1995).

3.2 An Improved ASI Algorithm
At present, the weather filter used in the ASI algorithm only 
removes the misjudged sea ice in the open ocean, and it does not 
change sea ice concentration affected by cloud and water vapor. 
Therefore, in order to obtain more accurate sea ice concentration 
with the high spatial resolution, the process is as follows. Firstly, 
we screened the 89-GHz brightness temperature data greatly 
affected by the external environment, such as cloud and water 
vapor. Then we proposed the data correction method based 
on CGAN to correct the 89-GHz brightness temperature data 
greatly affected by the external environment such as cloud and 
water vapor, so as to replace the weather filter used in the ASI 
algorithm.

3.2.1 Data Screening
The external environment such as cloud and water vapor basically 
has no impact on the 36-GHz brightness temperature data, 
but has a great impact on the 89-GHz brightness temperature 
data. Under sunny weather, the Polarization Ratio(PR) of the 
89-GHz brightness temperature data and the 36-GHz brightness 
temperature data is stable (Iwamoto et al., 2013). But when there 
is external interference such as cloud and water vapor, the PR 
of the 89-GHz brightness temperature data and the 36-GHz 
brightness temperature data will be reduced, and the degree of 
reduction is related to the impact of the external environment 
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such as cloud and water vapor. The PR value is obtained as shown 
in equation (1). Therefore, under sunny weather, take the PR of 
the 36-GHz brightness temperature data as the abscissa and the 
PR of the 89-GHz brightness temperature data as the ordinate, 
and draw the PR scatter plot, as shown in Figure 1. In the PR 
scatter plot, the abscissa is equally divided into several intervals, 
and the average value and standard deviation of the ordinate in 
each interval are calculated. Then, the best fitting curve based 
on the least square method is drawn by subtracting the value 
of twice the standard deviation from the average value in each 
interval, which is similar to the quadratic equation.

 PR
TB TB
TB TB

v H

v H

=
−
+  (1)

Where TBv and TBH are the vertical polarization brightness 
temperature data and the horizontal polarization brightness 
temperature data respectively.

 PR a PR b a PR c89 36
2

0 36= ( ) − +* *  (2)

Where PR89 is the PR of the 89-GHz brightness temperature 
data and PR36 is the PR of the 36-GHz brightness temperature 
data. And a, b, c are constants.

3.2.2 Data Correction
CGAN can better fit complex nonlinear noise data and introduce 
additional condition information to guide data generation, so 
that CGAN has better denoising effect. The  generative model 
and the discriminative model of CGAN can get the relationship 
between the data affected by the external environment and 
the data not affected by the external environment through 
confrontation training. If the generative model outputs an 
image with poor correction results, the network parameters are 
continuously updated through the feedback mechanism of the 
discriminative model, to guide the generative model to correct 
the data affected by the external environment. The core idea of 
CGAN model is to achieve Nash equilibrium through the game 
(The game function of CGAN model is shown in equation (3).) 
between the generative model and the discriminative model. The 
purpose of the generative model is to generate data that is not 
affected by the external environment, to improve the generation 
ability and reduce the discrimination ability of the discriminative 
model. The discriminative model judges the difference of input 
data through the loss function, updates the parameters of CGAN 
model through the feedback mechanism, and finally obtains the 
optimal CGAN model.

 
G
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D
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Where x is the data affected by the external environment, y 
is the additional information, z is the input random noise, G (z | 
y) is the data that not affected by the external environment and 
that output by the generation network of CGAN, D (G(z | y)) is 
the probability that the discriminative network judges whether 

the input data is false. Since the goal of the generative model of 
CGAN is to make the generated data close to the data that not 
affected by the external environment as much as possible, the loss 
function is set to 1 - (D(G(z | y))) to ensure that the probability 
of judging the output false image of the discriminative network 
as small as possible. The goal of the discriminative model is 
to improve the ability to judge the difference of input data. 
Therefore, the larger D (x | y) is, the better it is. At the same time, 
the smaller the noise impacts, the better it is. The loss function is 
set to D (x | y) + 1 – (D(G(z | y)). Use mi V D GG

n ma
D
x ( , )  to represent 

the process of the game.
The convolutional neural network (CNN) based on the U-Net 

model can integrate the characteristics of different network layers 
by the skip connection and improve the denoising performance, 
and it has strong adaptability and can effectively retain the 
structural information of the image. Thus, the CNN based on the 
U-Net model was used as the generative model in this paper, and 
it includes input layer, convolution layer, pooling layer, activation 
layer, and output layer. We set the size of the pool layer to 2 × 2, 
and set the size of the convolution filter to 3 × 3, and selected 
Rectified Linear Unit (ReLU) as the activation function.

The function of discriminative model is to distinguish 
two sets of relationships, that is, the relationship between the 
89-GHz brightness temperature data with large interference 
and the 36-GHz brightness temperature data obtained by the 
generative model, and the relationship between the undisturbed 
89-GHz brightness temperature data and the 36-GHz brightness 
temperature data with the high reliability. The discriminative 
model adopted the CNN network. Firstly, the image was input 
into the discriminative model, and then the batch normalization 
(BN) operation was performed on the input image. Secondly, 
the feature is extracted through convolution. Thirdly, the ReLU 
activation function is used for the non-linear mapping, and the 
final loss is calculated by cross entropy. Finally, the corrected 
89-GHz brightness temperature data was obtained. So CGAN 
was applied to data correction as follows.

(1) Before the training, adjust the data set, such as rotation, 
translation, to increase the number of data set. After that, the 
training set and the test set are normalized.

(2) Input the training set into the generative model, and then 
perform continuous BN + convolution + ReLU + pooling to 
complete the down sampling operation.

(3) Continuous operations such as deconvolution, ReLU and 
dropout are performed on the feature map obtained by down 
sampling to complete up sampling.

(4) The output characteristic diagram of the down sampling is 
connected with the output characteristic diagram of the up 
sampling (In the same network layer, each neural network 
node of the current neural network layer uses the dense 
jump connections for the feature fusion. In different network 
layers, from top-layer neural network to bottom-layer neural 
network, the output feature maps of the down sampling 
and the up sampling of the next neural network layers are 
fused.). Then the relationship between the 89-GHz brightness 
temperature data and the 36-GHz brightness temperature 
data with the high reliability is obtained.
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(5) The test set data (undisturbed 89-GHz brightness temperature 
data and 36-GHz brightness temperature data) and the 
relationship between the 89-GHz brightness temperature 
data obtained in the previous step and the 36-GHz brightness 
temperature data with the high reliability are input into the 
discriminative model.

(6) Carry out BN + convolution + ReLU + pooling to complete 
the down-sampling operation.

(7) The cross entropy is used to judge the results obtained by the 
discriminative model. If the loss function reaches the minimum 
value, the corrected 89-GHz brightness temperature data is 
output. Otherwise, return to step (2), and repeat the above 
steps until the loss function reaches the minimum value. The 
flowchart of the affected 89-GHz brightness temperature data 
correction based on CGAN model is shown in Figure 2.

4 RESULTS AND VERIFICATION

Based on the AMSR-2 89-GHz brightness temperature data, 
we used the ASI algorithm and the improved ASI algorithm 
based on CGAN to retrieve Antarctic sea ice concentration on 
February 1, 2021 as shown in Figure 3, and then further verified 
sea ice concentration by the Landsat 8 OLI-L1T data.

According to the Landsat 8 OLI-L1T data (resolution: 30m), 
we selected Landsat images for the different regions from 
October 2019 to March 2020 for the further verification. Based 
on the Landsat 8 OLI-L1T data, we used NDSI (normalized 
difference snow index) calculated by the near-infrared  band 
and the short-wave  near-infrared  band to identify the sea ice 
distribution. Because this method can identifiy sea ice and sea 
water according to the reflectivity difference between sea ice and 
sea water (Perovich, 1996; Riggs et  al., 1999; Hall et  al., 2001; 
Riggs and Hall, 2015; Liu et al., 2016).

In order to further verify that the sea ice concentration 
retrieved by the improved ASI algorithm based on CGAN has 

higher accuracy than the ASI algorithm, the Landsat 8 OLI-L1T 
data is used to verify the results retrieved by the improved ASI 
algorithm based on CGAN and the ASI algorithm from. The 
Landsat 8 OLI-L1T data were all used under a clear sky, and 
the errors caused by cloud and water vapor in the processing 
process can be eliminated. Sea ice distribution obtained by the 
ASI algorithm, the improved ASI algorithm based on CGAN and 
the Landsat 8 OLI-L1T data shown in Figures 5A–C (February 
1, 2020), Figures  5D–F (October 16, 2019), Figures  5G–I 
(November 10, 2019), and Figures 5J–L (March 6, 2020).

In Figures  5A–C, the accuracy of the sea ice distribution 
obtained by the improved ASI algorithm based on CGAN is 

FIGURE 1 |   Scatter plot of PR.

FIGURE 2 | Flowchart of the affected 89-GHz brightness temperature data 
correction based on CGAN model.
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about 91%, and the accuracy of the sea ice distribution obtained 
by the ASI algorithm is about 83%. In Figures 5D–F, the 
accuracy of the sea ice distribution obtained by the improved 
ASI algorithm based on CGAN is 83%, and the accuracy of 
the sea ice distribution obtained by the ASI algorithm is about 
33%. In Figures  5G–I, the accuracy of the sea ice distribution 
obtained by the improved ASI algorithm based on CGAN is 
about 83%, and the accuracy of the sea ice distribution obtained 
by ASI algorithm is about 50%. In Figures 5J–L, the accuracy of 
the sea ice distribution obtained by the improved ASI algorithm 
based on CGAN is about 78%, and the accuracy of the sea ice 
distribution obtained by ASI algorithm is about 89%. The 
selected areas in Figure 5 are basically located in the edge areas 
of Figure 3 with the low sea ice concentration or the interface 
between sea water and sea ice. That is to say, the accuracy of the 

improved ASI algorithm based on CGAN is higher than that of 
the ASI algorithm in the arers with the low sea ice concentration. 
Therefore, through the comparison of the above results, we can 
draw a conclusion that the improved ASI algorithm based on 
CGAN has higher accuracy.

5 DISCUSSION

Sea ice concentration was retrieved by the CGAN based 
improved ASI retrieval algorithm based on the Landsat 8 OLI-
L1T data and the AMSR-E 89-GHz brightness temperature data 
in this paper. Compared with the sea ice distribution obtained 
by the ASI algorithm, the sea ice distribution obtained by the 
improved ASI algorithm based on CGAN was closer to the sea 
ice distribution obtained from the Landsat 8 OLI-L1T data, 

FIGURE 4 | Comparison of Antarctic sea ice extent.

A B

FIGURE 3 | (A) Sea ice concentration was retrieved by the ASI algorithm; (B) Sea ice concentration was retrieved by the improved ASI algorithm based on CGAN.
(Projection: polar stereographic projection) Figure 3 showed sea ice concentration retrieved by the ASI algorithm and the improved ASI algorithm based on CGAN, 
respectively. By comparing the results in Figure 3, it can be seen that sea ice concentration are relatively similar. Then the extents of the multi-year ice, first-year ice 
and total sea ice from the U.S. National Ice Center (USNIC) data, the improved ASI algorithm based on CGAN and the ASI algorithm were comared on February 
1, 2021 as shown in Figure 4. It can see from Figure 4 that the sea ice extent of the improved ASI algorithm based on CGAN is between USNIC and the original 
ASI  algorithm.
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so the improved ASI algorithm based on CGAN significantly 
improved the accuracy of sea ice concentration. The improved 
ASI algorithm based on CGAN made use of the reliable 36-GHz 
brightness temperature data, which greatly reduced the errors 
caused by the atmosphere, and the proposed method effectively 
corrected sea ice concentration of the pixels affected by the 
external environment.

At present, many scholars had studied the ASI algorithm for 
retrieving the sea ice concentration from the 89-GHz brightness 
temperature data. Although the ASI algorithm has advantages 
due to its higher spatial resolution, compared with the low-
frequency brightness temperature data, the 89-GHz brightness 
temperature data are more affected by cloud and water vapor, 
which will lead to some errors in the edge regions of sea water 
and sea ice. Although some errors can be eliminated by the 

weather filter, the most of the errors in some regions cannot be 
removed. Based on the previous studies and the above reasons, we 
proposed the improved ASI algorithm based on CGAN. That is, 
we used CGAN to replace the weather filter in the ASI algorithm. 
The generative model of CGAN increases the utilization of 
the image feature information through the skip connection 
operation, which improves the removal of the influence of cloud 
and water vapor. The discriminative model can retain the image 
feature information and realize the non-linear mapping from the 
image to the image. The loss function can reduce the pixel-level 
loss, which can remove the influence of cloud and water vapor. 
The improved ASI algorithm based on CGAN can corrected the 
89-GHz brightness temperature data affected by the external 
environment in the process of training. And the improved ASI 
algorithm based on CGAN greatly reduced the errors caused by 
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FIGURE 5 | (A) Sea ice distribution was obtained by the ASI algorithm on February 1, 2020 (B) Sea ice distribution was obtained by the improved ASI algorithm 
based on CGAN on February 1, 2020 (C) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on February 1, 2020. (D) Sea 
ice distribution was obtained by the ASI algorithm on October 16, 2019 (E) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on 
October 16, 2019 (F) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on October 16, 2019. (G) Sea ice distribution was 
obtained by the ASI algorithm on November 10, 2019 (H) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on November 10, 2019 
(I) Sea ice distribution was obtained by the Landsat8 OLI-L1T data through the NDSI method on November 10, 2019. (J) Sea ice distribution was obtained by the 
ASI algorithm on March 6, 2020 (K) Sea ice distribution was obtained by the improved ASI algorithm based on CGAN on March 6, 2020 (L) Sea ice distribution was 
obtained by the Landsat8 OLI-L1T data through the NDSI method on March 6, 2020 (Projection: polar stereographic projection; The white area is sea ice, and the 
black area is sea water).
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the atmosphere and significantly improved the accuracy of sea 
ice concentration.

However, the improved ASI algorithm based on CGAN 
has some limitations. Firstly, in the data screening stage, the 
relatively stable relationship between the 89-GHz brightness 
temperature data which is not disturbed or less affected by the 
external environment and the 36-GHz brightness temperature 
data is limited by the sample points. Secondly, there are the time 
difference between the Landsat 8 OLI-L1T data and the AMSR-E/
AMSR-2 data, resulting in a certain error in the inversion of sea 
ice concentration. Finally, using the Landsat 8 OLI-L1T data 
has obvious advantages in verifying local small regions, but the 
Landsat 8 OLI-L1T data is not very suitable for large-scale and 
long-time series sea ice detection. Therefore, we will strive for 
breakthroughs in the following two aspects in future studies. 
Firstly, collect more representative sample points in order to get a 
more accurate screening model. Secondly, find more appropriate 
verification data (such as on-site data) to verify the results of sea 
ice concentration retrieved by the improved ASI algorithm based 
on CGAN.

6 CONCLUSIONS

In this study, the data correction method based on CGAN was 
used to correct the 89-GHz brightness temperature data affected 
by the external environment by the relatively stable relationship 
between the 89-GHz brightness temperature data which is not 
disturbed or less affected by the external environment and the 
36-GHz brightness temperature data. This method effectively 
corrected sea ice concentration of the pixels affected by the 
external environment, which greatly reduced the errors caused 
by the atmosphere. The sea ice concentration was verified by 
the Landsat 8 OLI-L1T data. Firstly, the study determined the 
relatively stable relationship between the 36-GHz brightness 
temperature data and the 89-GHz brightness temperature data 
that were not disturbed or less affected by external environment, 
and we screened out the 89-GHz brightness temperature data 
with the large interference. Then, the data correction method 
based on CGAN corrected the 89-GHz brightness temperature 
data which was greatly affected by the external environment 
such as cloud and water vapor. Finally, the ASI algorithm 
was used to retrieve Antarctic sea ice concentration. Sea ice 
concentration obtained by the improved ASI algorithm based 
on CGAN was compared with sea ice concentration obtained by 
the ASI algorithm. The results showed that sea ice concentration 

retrieved by the improved ASI algorithm based on CGAN was 
close to that obtained by the ASI algorithm. We used sea ice 
concentration obtained from the Landsat 8 OLI-L1T data using 
the NDSI method to further verify the sea ice concentration 
retrieved by the improved ASI algorithm based on CGAN. The 
improved ASI algorithm based on CGAN significantly changed 
the sea ice concentration of the pixels affected by the external 
environment, so as to reduce the impact of cloud and water vapor 
on high-frequency data. Compared with sea ice concentration 
obtained by the ASI algorithm, sea ice concentration retrieved 
by the improved ASI algorithm based on CGAN had higher 
accuracy. The sea ice distribution obtained by CGAN does not 
need to design features in advance. For different data products, 
CGAN has the strong robustness and the migration ability.
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