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The Pacific white shrimp Litopenaeus vannamei is among the top aquatic species of
commercial importance around the world. Over the last four decades, the breeding
works of L. vannamei have been carried out intensively and have generated multiple
strains with improved production and performance traits. However, signatures of
domestication and artificial selection across the L. vannamei genome remain largely
unexplored. In the present study, we conducted whole genomic resequencing of 180
Pacific white shrimps from two artificially selective breeds and four market-leading
companies. A total of 37 million single nucleotide polymorphisms (SNPs) were identified
with an average density of 22.5 SNPs/Kb across the genome. Ancestry estimation,
principal component analysis, and phylogenetic inference have all revealed the obvious
stratifications among the six breeds. We evaluated the linkage disequilibrium (LD)
decay in each breed and identified the genetic variations driven by selection. Pairwise
comparison of the fixation index (Fsf) and nucleotide diversity (6,) has allowed for
mining the genomic regions under selective sweep in each breed. The functional
enrichment analysis revealed that genes within these regions are mainly involved in
the cellular macromolecule metabolic process, proteolysis, structural molecule activity,
structure of the constituent ribosome, and responses to stimulus. The genome-wide
SNP datasets provide valuable information for germplasm resources assessment and
genome-assisted breeding of Pacific white shrimps, and also shed light on the genetic
effects and genomic signatures of selective breeding.

Keywords: Pacific white shrimp, SNP, population structure, linkage disequilibrium, selective sweep

INTRODUCTION

Aquaculture produces almost half of the seafood consumed by humans and is becoming one of the
fastest-growing food production sectors in the world (FAO, 2020). To match the ever-increasing
food demands of the growing population, aquaculture production should increase fivefold in the
next three decades (Costello et al., 2020). The recent annual global production of farmed shrimps
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reached more than 7.7 million tons, representing a value
of over 33 billion US dollars (FAO, 2020). Benefitting from
technological innovation and policy reforms, shrimp farming
has developed steeply from traditional and small-scale activities
into a global industry, holding a great promise for enhancing
the contribution of aquaculture production to food supply (Lotz,
1992; Briggs et al., 2005).

Pacific white shrimp (Litopenaeus vannamei) is the top shrimp
species of commercial importance. The annual global yield
of L. vannamei reached 4.4 million tons with a production
value of about 26.7 billion USD, accounting for 80% of the
total cultured shrimp production (FAO, 2020). The success
of Pacific white shrimp aquaculture is largely attributed to
a series of breeding programs since the 1970s (Lotz, 1992;
FAO, 2011). Genetic improvements in performance traits
and disease resistance have achieved remarkable progress
over the last decade (Argue et al, 2002; Campos-Montes
et al., 2012; Montaldo et al., 2013; Lillechammer et al., 2020).
Several specific pathogen-free (SPF) L. vannamei breeds, with
superior health and efficiency adapted to distinct farming
conditions, have been cultivated and shipped worldwide (Briggs
et al, 2005; Fletcher, 2020; Ren, 2020). Benefitting from
the rapid development of high-throughput sequencing and
genotyping technologies, several causative genes responsible
for phenotypic variations of L. vannamei have been reported
(Wang et al,, 2019; Zhang X. et al, 2019; Lyu et al, 2021).
For instance, genes encoding class C scavenger receptor (SRC),
deoxycytidylate deaminase (dCMPD), and non-receptor protein
tyrosine kinase (NPTK) were identified as potential genes related
to the growth rate (Wang et al, 2019; Lyu et al, 2021).
Whereas, genomic signatures underlying artificial selection
remain largely unexplored. Dissection of the high-resolution
genomic variation map is essential for a better understanding
of genetic diversity, population structure, and genomic features
during generations of selection.

In the present study, to profile the genome signatures of
selection in L. vannamei, we performed a whole genomic
resequencing analysis of shrimps from two artificially selective
breeds (Renhai No. 1 and Kehai No. 1) and broodstocks
of four market-leading companies (Benchmark Genetics,
Charoen Pokphand, Shrimp Improvement Systems, and Top
Aquaculture Technology). The genome-wide single nucleotide
polymorphisms (SNP) datasets revealed the population structure
and genetic effects during the breeding process, providing
valuable information for germplasm resource assessment and
genome-assisted breeding of Pacific white shrimps.

MATERIALS AND METHODS
Sampling and DNA Extraction

A total of 180 samples from the L. vannamei broodstock of
Renhai No. 1 (RH), Kehai No. 1 (KH), Benchmark Genetics
(BMK), Charoen Pokphand (CP), Shrimp Improvement Systems
(SIS), and Top Aquaculture Technology (TA) were collected
from Hairen Aquatic Seed Industry Technology Co., Ltd
(Hebei, China) (Supplementary Table 1). The muscle samples

of each individual were collected for DNA extraction and
genome resequencing. Genomic DNA was extracted using the
TIANamp Marine Animal DNA Kits (TTANGEN Biotech Co.,
Ltd. Beijing, China). Paired-end sequencing libraries, with an
insert size of 250 to 350 bp, were constructed by the VAHTS
Universal Plus DNA Library Prep Kit for MGI (Vazyme
Biotech Co., Ltd., Nanjing, China) in their lab, and sequenced
on an MGI DNBSEQ-T7 system (BGI Genomics Co., Ltd,,
Shenzhen, China). All raw sequencing data were subject to
quality control'. Low-quality bases and reads were trimmed
by Trimmomatic with parameters “LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36” (Bolger et al., 2014).

Sequencing and Genotyping

The reference genome was downloaded from the National Center
for Biotechnology Information (NCBI) with the accession of
GCA_003789085.1 (Zhang X. et al., 2019). We anchored the
contigs into scaffolds by the guidance of a genetic linkage
maps (Yu et al., 2015; Jones et al, 2017), and all trimmed
reads were aligned to this genomic assembly using the BWA
(version 2.3.4.1), with the default parameters (Li and Durbin,
2009). The Binary Alignment Map (BAM) files were imported
to the samtools (v0.1.19) for reference index building, format
conversion, and reads sorting (Li et al., 2009). The Picard* (v1.92)
and the sambamba (v0.8.0) were used to assign read group
information (Tarasov et al., 2015). PCR and optical duplicates
were marked and filtered using GATK (v4.1). Variants and
haplotypes were identified using the HaplotypeCaller algorithm
in Genomic Varient Call Format (GVCF) mode (Mckenna
et al., 2010). The GenotypeGVCFs were used subsequently for
joint genotyping.

To keep the most reliable SNPs for subsequent analysis, variant
sites were marked and filtered by the vcffilter with the following
criteria: low quality score (GQ < 20); low quality by depth
score (QD < 10); high Fisher strand score (FS > 10); low
mapping quality (MQ < 40); low read position rank sum score
(ReadPosRankSum < 8); high strand odds ratio (SOR > 4); and
low mapping quality rank-sum score (MQRankSum < 12.5).
The SNP loci with multiple alleles, low minor allele frequency
(MAF < 0.05), and missing genotypes (max-missing < 1) were
also removed using the VCFtools (v0.1.16) (Danecek et al., 2011).
The potential effect of each SNP was annotated using the SNPEff
(Cingolani et al., 2012).

Population Structure Analysis

Principal component analysis (PCA) was performed using
the PLINK (Purcell et al., 2007). Ancestry estimation and
population structure were analyzed using the ADMIXTURE
(Alexander et al, 2009). Pairwise fixation index (Fy) was
calculated by VCFtools with parameters —fst-window-size 50,000
and -fst-window-step 10,000 (Danecek et al, 2011). The
genomic observed heterozygosity, expected heterozygosity, and
inbreeding coefficient were evaluated by the VCFtools with
parameter —het (Danecek et al, 2011). For the phylogenetic

Thttps://github.com/s-andrews/FastQC
Zhttp://broadinstitute.github.io/picard/
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analysis, representative SNP markers were extracted using the
VCFtools with parameter —thin 10,000 to mitigate the effects of
LD, homozygous sites were removed from the alignment file.
Maximum likelihood phylogenetic inference was carried out by
IQ-TREE (Nguyen et al.,, 2015).

The SNPs with specific alleles in one population were
defined as population-specific SNPs (ps-SNPs). If the frequency
of the population-specific allele was greater than 50% in a
population, the SNPs were defined as common population-
specific SNPs (cps-SNPs). The LD decay was estimated for
each population using the PopLDdecay (Zhang C. et al., 2019).
Genomic inbreeding coeflicients Frop were calculated according
to the following equation, with a minimum window of 100 kb
(McQuillan et al., 2008):

Lron

Fron = X
LAuto

Selective Sweep Analysis

The pairwise Fg and the ratio of genetic polymorphisms (65)
were calculated using a 50 kb window and a 10 kb step between
each breed. Genomic regions with signals of differences in the
spectrum of genetic polymorphisms were identified as regions
that are potentially under selection. Empirical cut-offs for Fg
and 05 ratio were set as the top 2% largest and the top 5%
largest or smallest, respectively (Li L. et al., 2018; Wang et al,,
2021). Candidate genes under selection were defined as within
or overlapping with the regions showing signals of selection.
Candidate genes were characterized with Gene Ontology (GO)
enrichment analysis implemented in the EnrichPipeline based on
Fisher’s exact test (Huang et al., 2009). The GO terms with a
P-value < 0.05 were considered significantly enriched.

RESULTS

SNP Identification and Annotation

An average of 164 million 300 bp paired-end reads were
generated for each library, representing ~18.7 x coverage. After
quality control, approximately 80% of reads could be aligned
to the reference genome (~12.34 x mean unique coverage)
and used for variant calling. A total of 37,308,098 SNPs were
identified in the six populations. The number of SNPs in the
chromosomes ranged from 182,599 to 1,274,977, and the density
was between 20.60 SNPs/Kb and 24.58 SNPs/kb. Of these,
4,509,526 reliable SNPs were kept after the removal of low-quality
samples and those within repetitive regions of missing genotypes.
The transitions/transversions ratio in this biallelic SNPs set was
found to be 1.63, with 1,117,185,030 transitions and 72,199,828
transversions, respectively. The SNPs were unevenly distributed
across the genome, with over 10.56% (1,460,366) located in
the intergenic regions, about 55.43% (7,662,564) located in the
introns, and only 2.283% (238,482) located in the exons (Table 1).
More than 73.89% of the SNPs (221,021) were silent mutations,
the remaining 25.82 (77,219) and.30% of SNPs (886) could result
in missense and non-sense mutations, respectively (Table 1).

TABLE 1 | SNP annotation by genomic region, impact and function class.

Category Type (alphabetical order) Count Percent (%)
Region Downstream 1,237,840 8.954
Exon 315,610 2.283
Intergenic 1,460,366 10.563
Intron 7,662,564 55.427
Splice site acceptor 272 0.002
Splice site donor 367 0.003
Splice site region 26,386 0.191
Transcript 1,811,097 13.100
Upstream 1,132,578 8.192
UTR_3_prime 138,137 0.999
UTR_5_prime 39,435 0.285
Impact High 1,825 0.013
Low 249,177 1.802
Moderate 76,897 0.556
Modifier 13,496,753 97.628
Function class Missense 77,219 25.815
Non-sense 886 0.296
Silent 221,021 73.889

Population Structure

The population structure was inferred based on the genome-
wide biallelic SNPs. As shown by the PCA, the first three
components cumulatively explained 24.56% of the variance
(Figure 1A and Supplementary Figures 1, 2). Samples from the
six populations were grouped into three major clusters, which
largely restored the sampling sources. Obvious stratifications
were observed among BMK, SIS, and the Asian breeds (RH,
KH, TA, and CP). Although RH, KH, TA, and CP were
distributed closely on the first two components, they possessed
distinct population structures (Figure 1 and Supplementary
Figure 2). The pairwise comparison revealed that the Fy; values
among the six populations ranged from 0.0005 to 0.13415,
and that BMK had the largest genetic distances from the
others. The KH and TA share a relatively higher similarity in
genetic structure (Figure 1B). Populations defined by estimated
genetic ancestries also confirmed the distribution of samples,
where six ancestral populations were inferred to be the optimal
scenario by cross-validation (Figure 1C and Supplementary
Figure 3). The phylogenetic relationships were reconstructed via
the maximum likelihood inference. Except for two samples of TA
clustered together with CP, samples from each population formed
monophyletic clades, which is consistent with the population
structure inferred by PCA and ancestral estimation (Figure 1D).

Genome Selection Signatures

As shown in Figure 2A, population-specific SNPs were identified
in each breed. The BMK and SIS possessed 83,273 and 15,980 cps-
SNPs, respectively, which are much larger than that of the other
four breeds. The RH, KH, TA, and CP only had 3,153, 1,889,
485, and 836 cps-SNPs, respectively (Table 2). We evaluated
the genetic diversity by the observed heterozygosity, expected
heterozygosity, and inbreeding coefficient (Supplementary Data
Sheet 1). These six populations have an average genomic
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observed heterozygosity of 0.122, 0.137, 0.144, 0.147, 0.149; and
0.156 in BMK, CP, TA, RH, KH, and SIS. The extent of genome-
wide LD decay was measured against the physical distance in each
population (Figure 2B). Asian breeds (RH, KH, TA, and CP)
typically exhibited an overall lower level of LD than the others.
Their LD levels (r?) fell below 0.1 at less than 15Kb, whereas, the
physical distances reached over 70 kb in BMK and SIS. Analysis of
runs of homozygosity (ROH) revealed that BMK and CP reserved
higher levels of inbreeding than the others (Figure 2C and
Supplementary Figure 4). Homozygous segments larger than
IMb were mostly identified in these two populations. Despite
that the genome-wide distribution of ROH is distinct in each
population, peaks in specific regions of chromosomes 10, 15, and
42 were identified in each population (Figure 2D).

Genes Under the Selective Sweep
The pairwise Fy and 6, ratio were calculated to scan the
genomic regions with genetic signals of divergence. The top

5% of the windows, with high values of Fy and differentiation
of polymorphism frequency spectrum, were identified as
regions that are potentially under selection (Figure 3A and
Supplementary Figure 5). Genome-wide selective sweeps
in BMK were illustrated in Figure 3A. We detected 271,
440, 257, 269, 431, and 429 candidate genes under a strong
selection from 166,258 genomic windows in RH, BMK, KH,
TA, SIS, and CP, respectively (Supplementary Data Sheet 2).
Interestingly, 206 genes were under selection in more than
one population (Supplementary Data Sheet 2). Function
enrichment analysis of these candidate genes provided 631
significant enriched categories (Supplementary Data Sheet 3).
For example, genes under selection in BMK were enriched
in response to stimulus, carbohydrate transport, and several
biological processes (Figure 3B). Selective genes in RH were
mainly enriched in trialkyl sulfonium hydrolase activity,
protein modification by a small protein conjugation, and
phospholipid binding. Selective genes in KH were mainly
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enriched in the structural constituent of ribosome, structure
molecule activity, and cellular macromolecule metabolic
process. Selective genes in TA were enriched in the pyruvate
kinase activity, peptidase inhibitor activity, and ATP metabolic
process. Selective genes in SIS were enriched in the ribonuclease
H2 complex, GTP cyclohydrolase I activity, and cellular
macromolecule metabolic process. Selective genes in CP
were mainly enriched in the structural molecule activity,
regulation of ATPase activity, and 5'-deoxynucleotidase
activity (please check Supplementary Data Sheet 3 for
detailed in section “Results”). Notably, B3GT5, CDC42,
PXDN, and several genes that play important roles in cellular
macromolecule metabolic process, proteolysis, and responses
to stimulus were identified under selection in more than one
population (Figure 4).

DISCUSSION

Genetic breeding of L. vannamei has achieved remarkable
progress and cultivated multiple novel breeds with
significant improvement in growth and adaptation to

modern farming conditions after generations of artificial

selection (Argue et al, 2002; Campos-Montes et al, 2012;
Montaldo et al., 2013; Lillehammer et al., 2020). As exploring the
full range of genetic diversity has practical implications for the
management of germplasm resources and breeding programs,
several studies have been carried out to decipher the spectrum of
genetic polymorphism (Castillo-Juarez et al., 2015; Garcia et al.,
2021). Whereas, these studies were mainly based on a limited
number of markers by targeted or by reduced-representation
genotyping (Li and Wu, 2003; Perez-Enriquez et al., 2009, 2018b;

TABLE 2 | Genetic statistical summary of the six population.

Population Common Rare Total Mean Froh
specific specfic number of length of
SNPs SNPs ROH ROHs
RH 3,153 900,321 487 175.78 0.052
BMK 83,273 1,015,660 1282 188.64 0.147
KH 1,889 3,979,378 133 162.41 0.013
TA 485 1,293,688 392 174.64 0.042
SIS 15,980 850,211 97 163.86 0.01
CP 836 606,685 956 175.95 0.111
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Garcia et al.,, 2021; Prithvisagar et al., 2021). The genome-wide
landscape of variations shaped by artificial selection remains
largely unexplored. In this study, we conducted whole genomic
resequencing of L. vannamei and investigated the distribution
of SNP sites among six populations. In total, 4.5 million
high confidence SNPs were identified across the genome,
reaching an average density of 22.5 SNPs/kb across the genome.
Interestingly, population structures inferred by PCA, ancestry
estimation, and phylogenetic analysis provided strong evidence

for interpopulation stratifications. Considering that the founders
of L. vannamei breeds were originally introduced from native
populations in the Pacific coast from Mexico to Northern Peru in
the late 1970s and 1980s (Wyban and Sweeney, 1991; Rosenberry,
2000), it was suggested that genetic drift and artificial selection
could potentially contribute to the differentiation. The genomic
heterozygosity of the six populations ranges from 0.122 to 0.156.
The BMK and CP exhibit the lowest level of heterozygosity and
high inbreeding coeficient, which is consistent with the ROH
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analysis. The observed heterozygosity levels are relatively lower
than previous estimations (De Freitas and Galetti, 2005; Artiles
et al., 2011; Rezaee et al., 2016; Perez-Enriquez et al., 2018a).
The decay of LD provides important information about the
historical recombination of population and is widely used to
understand the evolutionary and demographic processes (Slatkin,
2008). Our results revealed that the overall LD levels of the four
Asian populations are comparable to the breeding population
of Ecuador (Garcia et al., 2021), while LD at long-range was
stronger in BMK and SIS. Despite the biases in sampling size
and the relatedness among individuals, LD extension could be
attributed to demographic and biological factors, such as the
admixture, mutation, and fluctuation of the effective population
size (Qanbari, 2019). As the natural distribution of L. vannamei is
restricted in America, we presumed that the observed long-range
LD in American strains may be introduced by recurrent inclusion
of wild strains, which was absent in the Asian populations (Moss
et al., 2012). This phenomenon was also reported in salmonids,
where admixture is the major factor contributing to long-range
LD (Odegard et al., 2014; Barria et al., 2018; Vallejo et al., 2018).

The Fy values and 05 ratios have been broadly used to
identify genetic differentiation and genome-wide selective sweeps
(Barreiro et al., 2008; Li L. et al., 2018). In the present study, we
revealed numerous breeding signatures reflecting the complex
genomic architectures from six breeds with distinct genetic
backgrounds. A series of positive selective genes, such as BIGT3,
CIGLT, NU133, PXDN, SOCS7, and UBPS, etc., have been
identified in more than one breed. Previous studies in arthropods
have revealed that many of these genes are involved in important
physiological and biochemical functions. For example, PXDN,
SCAP (SREPF Chaperone), SOCS7, and TOLLS are related to
antiviral or antibacterial immunity in Pacific white shrimps
and other Crustaceans (Du et al., 2013; Wang et al., 2016;
Li H. et al, 2018; Aweya et al, 2020). The CDC42 plays an
important role in Reactive oxygen species (ROS) production and
apoptosis by Mitogen-activated protein kinases (MAPK) pathway
in L. vannamei (Peng et al., 2015). As selective breeding of these
populations has been carried out for generations, the identified
selective genes seem to coincide with the improved performance
traits. Previous studies revealed that target genotyping of trait-
linked markers can improve the accuracy of breeding value
estimation (Li et al, 2017). Thus, we expect that these loci
could serve as important markers for genetic improvement via
targeted genotyping.

CONCLUSION

We conducted a population genetic study on six L. vannamei
breeds by whole genomic resequencing and identified over
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