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Swimming crab Portunus trituberculatus is a vital crab species in coastal areas
of China. In this study, an individual re-identification method based on Pyramidal
Feature Fusion Model (PFFM) for P. trituberculatus was proposed. This method took
the carapace texture of P. trituberculatus as a “biological fingerprint” and extracted
carapace texture features, including global features and local features, to identify
P. trituberculatus. Furthermore, this method utilized a weight adaptive module to improve
re-identification (ReID) accuracy for the P. trituberculatus individuals with the incomplete
carapace. To strengthen the discrimination of the extracted features, triplet loss was
adopted in the model training process to improve the effectiveness of P. trituberculatus
ReID. Furthermore, three experiments, i.e., PFFM on the effect of pyramidal model,
P. trituberculatus features analysis, and comparisons to the State-of-the-Arts, were
carried out to evaluate PFFM performance. The results showed that the mean average
precision (mAP) and Rank-1 values of the proposed method reached 93.2 and 93% in
the left half occlusion case, and mAP and Rank-1 values reached 71.8 and 75.4% in the
upper half occlusion case. By using the experiments, the effectiveness and robustness
of the proposed method were verified.

Keywords: re-identification, deep learning, triplet loss, swimming crab, individual recognition

INTRODUCTION

The swimming crab (Portunus trituberculatus) is a marine economic crab on the coast of China. In
2017, the highest production of 561,000 tons was recorded (FAO, 2020). In recent years, with the
rapid development of the industry, the subsequent quality and security issues of P. trituberculatus
have raised many concerns, such as heavy metal residue in edible tissues of the swimming crab
(Barath Kumar et al., 2019; Yu et al., 2020; Bao et al., 2021; Yang et al., 2021). The tracing
system can recall the product in question in time and find counterfeit products to solve the food
security issues. Therefore, it is integral to establish a P. trituberculatus tracing system. In terms
of tracing technology, there are a number of Internet of Things (IoT)-based tracking and tracing
infrastructures, such as Radio Frequency Identification (RFID) and Quick Response (QR) codes
(Landt, 2005), which are primarily targeted for product identification. However, the RFID and
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QR codes are easily damaged during transportation. In contrast,
the image can be conveniently captured, and the re-identification
(ReID) method based on image processing can identify the
product without the physical label. Thus, the image ReID method
becomes a trend in product identification and tracing.

Traditional individual tracing methods have some limitations
(Violino et al., 2019). For example, biological identification is
time-consuming, chemical identification is not applicable on
a massive scale dataset, and information identification cannot
recognize artificially forged samples. All the methods above
are complicated, and feature extraction cost is high on large-
scale applications. In contrast, the State-of-the-Art artificial
intelligence (AI)-based methods can overcome these challenges.
AI has been applied to simplify the feature extraction process
in the biometrics field (Hansen et al., 2018; Marsot et al., 2020).
Specifically, AI-based methods mainly identify objects according
to image features. There are many methods, including Histogram
of Oriented Gradient (HOG) (Dalal and Triggs, 2005), Local
Binary Pattern (LBP) (Ojala et al., 2002), and deep network.
These methods can extract features such as bumps, grooves,
ridges, and irregular spots on the carapace of P. trituberculatus.
The extracted features seem like the “biological fingerprint” of
P. trituberculatus, which provides initial features for object ReID.

In terms of ReID, the traditional ReID is mainly applied to
pedestrian re-identification. The initial visual features are used
to represent pedestrian (Bak et al., 2010; Oreifej et al., 2010;
Jüngling et al., 2011). To measure the effect of ReID methods,
Relative Distance Comparison (RDC) (Zheng et al., 2012) was
proposed based on PRDC (Zheng et al., 2011). RDC utilized
the AdaBoost mechanism to reduce the dependence of model
training on labeled samples.

With the development of deep learning, many scholars
introduced deep learning into ReID and focused on the part-
based method. The deeply learned representations had a high
discriminative ability, especially when aggregated from deeply
learned part features. In 2018, the Part-based Convolutional
Baseline (PCB) model (Sun et al., 2018) was proposed. The
PCB model divides pedestrians into separate blocks to extract
fine-grained features and receive promising results. The use of
the part-based method is effective to ReID. Meanwhile, a more
detailed part-based method (Fu et al., 2019) with the combination
of the divided part features as individual “biological fingerprint”
was proposed. The detailed part-based method performed better
than PCB, and the part-based strategy could further improve
the ReID accuracy, such as multiple granularity network (MGN)
(Wang et al., 2018) and pyramidal model (Zheng et al., 2019).
Based on the part-based methods, triplet loss (Schroff et al., 2015)
was adopted to minimize the feature distance of P. trituberculatus
individuals with the same identification (ID) and maximize the
feature distance of P. trituberculatus individuals with a different
ID. The triplet loss is another way to deal with ReID task. Later,
triplet loss is widely used in ReID.

In the field of biological ReID, the deep convolutional neural
network (DCNN) is an efficient deep learning method that
provides extract features to solve ReID problems (Hansen et al.,
2018) in a low-cost and scalable way (Marsot et al., 2020).
Actually, the deep learning method requires large amounts of

labeled pictures to train the DCNN model (Ferreira et al., 2020).
Korschens and Denzler (2019) introduced an elephant dataset
for elephant ReID. The elephant dataset contained 276 elephant
individuals and provided a baseline approach for elephant ReID.
Based on the elephant dataset, the approach used You Only
Look Once (YOLO) (Redmon et al., 2016) detector to recognize
elephant individuals. In 2020, a ReID method for Southern
Rock Lobster (SRL) by convolutional neural networks (CNNs)
(Vo et al., 2020) was proposed. The lobster ReID method used
a contrastive loss function to distinguish lobsters based on
carapace images. This method showed that the loss function also
contributed to ReID. In addition, the standard cross-entropy loss
with a pairwise Kullback-Leibler (KL) divergence loss was used to
enforce consistent semantically constrained deep representations
explicitly and showed competitive results on the Wild ReID task
(Shukla et al., 2019). In terms of part-based methods, a part-pose
guided model was proposed for tiger ReID (Liu et al., 2019). The
model consisted of two-part branches and a full branch. The part
branches were used as regulators to constrain full branch feature
training on original tiger images. Part-based methods are proven
to be efficient in the biological field.

There are many approaches using machine learning and
computer vision technology to identify individuals. All the
individual ReID methods need to design a computer vision
model according to the individual surface characteristics. To
identify P. trituberculatus individuals, a pyramidal feature fusion
model (PFFM) method was developed according to the carapace
characteristics of P. trituberculatus. The PFFM could extract
P. trituberculatus features on local and global perspectives and
effectively match P. trituberculatus individuals. This study aims to
develop a method to extract image features for P. trituberculatus
individual identification. The extracted image feature is treated
as a product label, by which the crab in question can be
retrieved and traced. Furthermore, the proposed method could
also be potentially applied to reidentify other crabs with apparent
characteristics on the carapace.

MATERIALS AND METHODS

Experimental Animal
We collected 211 adult P. trituberculatus from a crab farm
in Ningbo in March 2020. The appendages of the adult
P. trituberculatus were intact. The average body weight of the
experimental crab was 318.90 ± 38.07 g (mean ± SD), the
full carapace width was 16.73 ± 0.75 cm, and the length
was 8.65 ± 0.41 cm. After numbering the P. trituberculatus,
the carapaces were pictured with a mobile phone (Huawei
P30 rear camera).

Experimental Design
The P. trituberculatus were numbered from 1 to 211, and the
carapace images were used to compose a dataset named crab-
back-211. The carapace pictures were taken in multiple scenes to
augment the diversity of dataset crab-back-211. The description
of the scenes is shown in Table 1. In Table 1, “25” represents the
ID of P. trituberculatus in crab-back-211, and “0–11” are the IDs
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TABLE 1 | The scene description in practice.

ID Description ID Description

25_0 Standard scene 25_6 Rotate P. trituberculatus
counterclockwise

25_1 Noisy camera 25_7 Lower left part

25_2 Spinning P. trituberculatus clockwise 25_8 Upper right part

25_3 Camera with low resolution 25_9 Dark

25_4 Camera with high resolution 25_10 Overexposed

25_5 Low viewing angle 25_11 Simultaneous rotation
at low viewing angle

of 12 scenes. In the 12 scenes, ID 0 is a standard scene without
any processing. By diversity augmentation, the crab-back-211
was expanded to 2,532 images. Figure 1 shows the carapace
images of the 25th P. trituberculatus in 0–11 scenes, where 25_0
is the standard scene.

We divided the crab-back-211 into the training set and
test set, including 154 crabs and 57 crabs, respectively. The
training set was used to train ReID model, while the test set
was used to evaluate the performance of the trained model.
The training set contained 154 P. trituberculatus with a total of
1,848 images, and the test set had 57 P. trituberculatus with a
total of 684 images. The test set consisted of a query set and
a gallery set. P. trituberculatus ReID aimed at matching images
of a specified P. trituberculatus in gallery set, given a query
image in the query set. The correct matches could be found
by the similarities of carapace features obtained by Euclidean
distance. First, carapace features of P. trituberculatus in query
or gallery set were obtained by pyramid-based ReID (PR). Then,
all the similarities of carapace features between query images
and gallery images could be obtained by Euclidean distances. By
the similarities, the match of a query image was found from the
gallery images. In this experiment, 57 query images were selected
as the query set to find the correct match across 627 gallery
images in the gallery set. Table 2 shows the configuration of the
experiment platform.

We tested the proposed method on crab-back-211. The
experiment consisted of two stages, namely, the model training
stage and the model inference stage.

Model Training
Resnet18, Resnet50, and Resnet101 were used as backbone
models. These models were pretrained on ImageNet (Krizhevsky
et al., 2012). Random horizontal flipping and cropping methods
were adopted to augment carapace images in the data preparation
process. ID loss and triplet loss were combined into global
objective function in model training, and the ratios of ID
loss and triplet loss were 0.3 and 0.7, respectively. In this
experiment, the margin of triplet loss was set to 0.2. Totally,
in this study, the proposed PFFM trained 60 epochs. In each
epoch, a mini-batch of 60 images of 15 P. trituberculatus
was sampled from crab-back-211, where each P. trituberculatus
contained four images. We used Adam Optimizer as a training
optimizer, with an initial learning rate of 10−5, and shrunk this
learning rate by a factor of 0.1 at 30. The scale of input images
was 382× 128.

Model Inference
In this stage, 57 query images were selected as the query set to
find the matches across 627 gallery images. Three experiments
were designed and adopted matching accuracy to evaluate
PFFM matching accuracy. The three experiments were the effect
of pyramidal model, P. trituberculatus features analysis, and
comparisons to the State-of-the-Arts.

(1) Effect of pyramidal model: the effect of PFFM and the
effect of the pyramidal structure size on performance were
empirically studied.

(2) Portunus trituberculatus features analysis: the Euclidean
distance between the query images and gallery images
was visualized to show the discrimination of the
extracted features.

(3) Comparisons to the State-of-the-Arts: The PFFM and
other ReID methods were compared.

FIGURE 1 | Pictures of different scenes of Portunus trituberculatus.
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TABLE 2 | Portunus trituberculatus ReID experiment platform.

Hardware Type

operating system Linux

CPU Intel (R) Core (TM) i7-10700K CPU @ 3.80 GHz

GPU NVIDIA GeForce RTX 3090

RAM 16G

Memory 24G

Softwave Type

CUDA CUDA-11.0

cuDNN 8.1.0

Python 3.6.13

Pytorch 1.7.1

All three experiments utilized mAP (Zheng et al., 2015) and
cumulative match characteristics (CMC) at rank-1 and rank-5 as
evaluation indicators.

Portunus trituberculatus ReID Algorithm
For P. trituberculatus ReID, the traditional ReID method
takes the whole P. trituberculatus carapace image as input,
to extract the whole feature. This extracted feature represents
P. trituberculatus individual. By the feature similarity between
query images and gallery images, the matching result of a
query image can be found in the gallery set. However, these
traditional methods overemphasize the global features of the
P. trituberculatus individual and ignore some insignificant
detailed features. These methods could fail to distinguish similar
P. trituberculatus individuals. Therefore, many pieces of research
comprehensively consider global features and local features and
focus on the contribution of key local areas to the whole feature.
To extract local features, an image should be divided into fixed
parts. For example, in the field of pedestrian ReID, a pedestrian
image is divided into three fixed parts, namely, head, upper body,
and lower body, and the divided local features are extracted,
respectively. In terms of part-based methods, different part-based
frameworks were adopted to improve the performance of ReID
(Sun et al., 2018; Fu et al., 2019). The critical point of part-based
methods is to align the divided fixed parts.

For P. trituberculatus, there were many carapace
characteristics, such as protrusions, grooves, ridges, and

irregular spots. Figure 2 shows two P. trituberculatus carapaces.
The carapace texture and spots have significant individual
discrimination. Therefore, we focused on the local texture
and spot characteristics of P. trituberculatus carapaces to
improve ReID accuracy.

Pyramid-Based ReID
Pyramid-based ReID considered a local feature by dividing
original features into 18 groups with an alignment to strengthen
the role of the detailed feature. Previous part-based methods,
such as PCB, used several part-level features to achieve ReID.
However, these methods did not consider the continuity of
separate parts. We proposed a pyramid-based ReID with a
multilevel feature based on PCB to focus on the continuity of
separate parts and enhance detailed features. This multilevel
framework effectively not only avoided the problem of “feature
separation” caused by part division but also smoothly merged the
local and global features. In addition, a combination of ID loss
and triplet loss to train the ReID model was used to strengthen
the feature discrimination between P. trituberculatus individuals.

(1) Part-based strategy

To strengthen the local detailed features on the carapace
of P. trituberculatus, we divided the carapace image into fixed
separate parts. Based on the shape of the carapace, many carapace
division strategies could be designed. Figure 3 shows a 6-square
grid division plan on carapace image, the divided fixed six parts,
numbered 1–6. Two problems for the part-based strategy are
as follows: (a) How to weigh the contribution of the divided
parts to the whole feature and (b) How to solve the “feature
separation” problem on the separate parts. Thus, the PFFM
model, which could deeply fuse the features of the separate
carapace parts, was proposed.

(2) Pyramid-based strategy

We designed a pyramid-based strategy to fuse the local
features obtained by a part-based strategy. As shown in Figure 4,
the pyramid-based strategy composed the six fixed parts in
Figure 3 into 18 groups. For instance, the fixed part group (1,
2, 4, and 5) was composed of part-1, part- 2, part-4, and part-
5. The 18 groups were divided into four levels forming a feature
pyramid. In level-1, six basic groups were formed by the divided

FIGURE 2 | Pictures of two P. trituberculatus carapaces.
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FIGURE 3 | Six-square grids plan on P. trituberculatus. The numbers in the
picture indicate the divided parts.

six separate parts. Seven groups composed of the six basic groups
in level-2, while four groups in level-3 composed of the seven
groups in level-2. In level-4, there was only one group, which
was the whole carapace image representing the global feature.
Each level represented a granularity on feature extraction, and
the four levels extracted the carapace feature at multi-granularity.
Therefore, this pyramid-based strategy extracted global and local
features and also provided a feature integration strategy on
feature extraction.

(3) Pyramidal Feature Fusion Model

Figure 5 shows the architecture of the PFFM model. PFFM
model was mainly composed of feature extraction backbone,

pyramid-based module, and basic convolution block module.
Each module is described in the following sections.

Backbone
Backbone was a network for feature extraction. The objective
of the backbone was to extract original features and feed
the features into the next. ResNet framework (He et al.,
2016) is an effective backbone with a strong feature extraction
ability on image processing, such as object classification and
segmentation. Therefore, we used ResNet to extract original
features on P. trituberculatus carapace. Furthermore, many
backbone networks, such as Resnet-50 and Resnet-101, can also
be used as the basic network, and these backbones were compared
with each other in the experiments.

Feature Pyramid
To extract the global and local features of P. trituberculatus,
a part-based strategy was used to divide the original features
into six fixed parts as shown in Figure 3, after backbone. In
Figure 5, the input of the feature pyramid was the original
features extracted by the backbone, and then 18 groups in 4
levels by the six fixed parts could be obtained by the pyramid-
based strategy.

Basic Block
The basic block used in this study is shown in Figure 5,
which includes the pooling layer, convolutional layer, batch
normalization (BN), rectified linear units (ReLU), full connection
(FC), and softmax layers. There were 18 blocks in the basic
block, which could process the 18 features of 18 groups, after
the feature pyramid. For each block in the basic block, global

FIGURE 4 | Pyramid-based strategy. There are 18 groups in the four levels, covering the whole P. trituberculatus carapace characteristics locally and globally.
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average pooling (GAP) and global maximum pooling (GMP)
were used to capture the characteristics of different channels,
such as protrusions, grooves, ridges, and irregular spots. Then,
two features in the same channel were added into a vector. Later,
a convolution layer was followed by BN and ReLU activation. The
features by 18 blocks were concatenated, as shown in Figure 6. ID
loss and triplet loss were adopted to train the PFFM model and
to discriminate the subtle discrimination of overall features. In
the inference stage, the concatenated feature was used to identify
P. trituberculatus.

Triplet Loss
When triplet loss for model training was used, each
P. trituberculatus individual was selected as an anchor. For
each anchor, the sample with the same ID and the lowest
feature similarity to the anchor was selected as a positive
sample. Conversely, the sample with the different ID and the
highest feature similarity was selected as a negative sample.
By using the above process, the selected three samples (i.e.,
anchor sample, positive sample, and negative sample) formed
a triplet tuple. Figure 7 shows the positive and negative sample
selection processes.

As shown in Figure 7, each P. trituberculatus was
photographed in different scenes. xj represents the pictures
of P. trituberculatus j, where xij is the picture of P. trituberculatus
j in scene i. When xai was selected as anchor sample, xpi was a

sample of ID i. If xpi had the lowest similarity with xai , xpi was
selected as positive sample. As shown in Figure 7, the ID of
xnk was k, and if xnk had the highest similarity with xai , xnk was
selected as negative sample. The selected xai ,x

p
i ,x

n
k
(
a 6= p, i 6= k

)
composed a triplet tuple. The tuple composed by anchor and
positive sample, denoted as

(
xai , x

p
i

)
, was positive sample pair,

while the tuple by anchor and negative sample, denoted as(
xai , x

n
k
)
, was negative sample pair. The purpose of triplet loss

was to minimize the feature distance of the positive sample pair
in each scene and maximize the feature distance of the negative
sample pair. Triplet loss was expressed in the following:

L = max(
∣∣∣∣∣∣f (xai )− f (xpi )

∣∣∣∣∣∣− ∣∣∣∣f (xai )−f (xnk)∣∣∣∣+ α, 0)

where f (·) is the feature extraction function, ||·|| is the Euclidean
distance function, f (xai ), f

(
xpi

)
, f (xnk) denote the features of

anchor sample xai , positive sample xpi , and negative sample xnk ,
respectively, α is a hyperparameter, and the value here is 0.2.

RESULTS

Table 3 shows the evaluation of PFFM using different backbones
(i.e., Resnet18, Resnet50, and Resnet101). Table 4 shows the
performance of PFFM with different division strategies, such as

FIGURE 5 | The architecture of pyramidal feature fusion model (PFFM) model. It is composed of backbone, pyramid, and basic block.

FIGURE 6 | Feature integration module. Features in different blocks are fused, and the fused feature could be used to identify P. trituberculatus.

Frontiers in Marine Science | www.frontiersin.org 6 March 2022 | Volume 9 | Article 845112

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-845112 March 16, 2022 Time: 15:32 # 7

Zhang et al. Swimming Crab Re-identification

FIGURE 7 | Example of triplet loss, where the lines represent the positive sample pair and the negative sample pair. The similarity is measured by Euclidean distance.

grid 2× 3 and grid 2× 4. Figure 8 visualizes the discrimination
of the P. trituberculatus features by PFFM with different
backbones (i.e., Resnet18, Resnet50, and Resnet101). Table 5

TABLE 3 | The evaluation of pyramidal feature fusion model (PFFM) using
different backbones.

Backbone PFFM mAP (%) Rank-1 (%) Rank-5 (%)

Resnet18 X 91.5 93.0 98.2

60.9 73.7 91.2

Resnet50 X 92.5 93.0 98.2

20.7 17.5 24.6

Resnet101 X 92.7 96.5 98.2

13.7 12.3 17.5

“X”7.5et1 that the PFFM is adopted.
The metrics contain mAP, rank-1, and rank-5. If the metrics have a higher value,
the PFFM performs better.

TABLE 4 | The performance of pyramidal feature fusion model (PFFM) with
different division strategies.

Backbone Grid (r × c) Model size mAP (%) Rank-1 (%) Rank-5 (%)

Resnet18 2× 3 15.44446M 91.5 93.0 98.2

2× 4 18.28975M 74.8 80.7 91.2

Resnet50 2× 3 31.31492M 92.5 93.0 98.2

2× 4 36.51951M 80.8 89.5 98.2

Resnet101 2× 3 50.30705M 92.7 96.5 98.2

2× 4 55.51164M 80.8 98.2 98.2

compares the proposed PFFM with the State-of-the-Arts on crab-
back-211.

For each backbone, the features of P. trituberculatus with the
same ID are closer, while farther with different IDs.

DISCUSSION

Effect of Pyramidal Feature Fusion Model
(1) The benefit of PFFM

The purpose of this experiment was to verify the effectiveness
of PFFM. This experiment used three backbones (i.e., Resnet18,
Resnet50, and Resnet101) to extract the original image feature
and made six groups for the comparison methods, such
as Resnet18, Resnet18-pyramid, Resnet18, Resnet50-pyramid,
Resnet50, and Resnet101-pyramid. The groups of Resnet18-
pyramid, Resnet50-pyramid, and Resnet101-pyramid adopted
the proposed PFFM as the ReID model. To verify the robustness
of each method, we occluded the left half part of the images
in the query set and carried out the six comparison methods
above on the retained right half part, to find the ReID target in
the gallery set. The experimental results are shown in Table 3.
The methods using PFFM, such as Resnet18-pyramid, Resnet50-
pyramid, and Resnet101-pyramid, performed better than those
not using PFFM. The mAP and rank-1 of Resnet18-pyramid
increased by 39.6 and 19.3% compared with Resnet18. Among
these comparison methods, the methods using PFFM performed
best on mAP and rank-1.
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FIGURE 8 | The feature distance of P. trituberculatus in the query set to the other images in the gallery set.

The Resnet18, Resnet50, and Resnet101 models mainly used
global features of P. trituberculatus for ReID. When the query
set was occluded, a large global feature deviation would occur,
which led to a decrease in mAP, rank-1, and rank-5. The
proposed PFFM utilized local features to compensate for global
features, to alleviate the global feature deviation problem, and
to strengthen its robustness. This experiment also showed that
PFFM with Resnet101 as backbone performed better than other
comparison methods.

(2) Comparison of part division strategy

In contrast, to verify the optimal division strategy of PFFM,
this experiment used two-division strategies, i.e., grid 2 × 3 and
grid 2× 4. This experiment used three backbones (i.e., Resnet18,
Resnet50, and Resnet101) to extract the original image feature,
and the results obtained using grid 2× 3 and grid 2× 4 are shown
in Table 4. The model with grid 2× 4 had more parameters than
the model with grid 2 × 3. In accuracy contrast, the model with
grid 2× 3 also had an advantage. For grid 2× 4, the divided parts

TABLE 5 | The performance of Vgg16, Resnet50, PCB-2, and pyramidal feature
fusion model (PFFM) on crab-back-211, where PCB-2 represents that feature is
divided into 2 horizontal blocks using PCB.

Occlusion Method mAP (%) Rank-1 (%) Rank-5 (%)

Left part Vgg16 3.2 1.8 8.8

Resnet50 39.1 33.3 52.6

PCB-2 97.7 98.2 100

PFFM 93.2 93.0 98.2

Top part Vgg16 3.2 1.8 8.8

Resnet50 16.4 8.8 14

PCB-2 62.2 49.1 80.7

PFFM 71.8 75.4 87.7

PFFM uses Resnet50 as the backbone.

were too small to maintain the continuity of local features, which
could affect ReID accuracy and increase the burden of model
training. By using this experiment, the optimal division of PFFM
was grid 2× 3.

Portunus trituberculatus Feature
Analysis
To verify the compatibility of the PFFM, this experiment used
different backbones with PFFM to analyze the feature distance
of P. trituberculatus. This experiment calculated the feature
distances of the samples with the same ID, and the feature
distances of the samples with the different ID. Figure 8 shows
the feature distance distribution of P. trituberculatus by resnet18,
resnet50, and resnet101. In Figure 8, the x-axis indicates
P. trituberculatus IDs, and the y-axis is the distance that shows
the distances between P. trituberculatus. The dark scatter points
represent the feature distances among the samples with the same
ID, and the scatter light points represent the feature distances
among the samples with a different ID. The dark scatter points
are mainly distributed at the bottom, indicating that the distances
among the samples with the same ID were small. The distances
of the samples with different IDs were greater and had a large
fluctuation. By the above analysis, the samples with the same
ID were closer, while the samples were farther with different
IDs. In addition, the PFFM provided a high discriminative
ability, especially when aggregated from fixed part features.
The discriminating features reflected the specificity of each
P. trituberculatus, which was more suitable for P. trituberculatus
ReID. By using this experiment, the PFFM could achieve better
results on crab-back-211 with various backbones, so the proposed
PFFM had better compatibility with P. trituberculatus ReID.

Comparisons to the State-of-the-Arts
This experiment compared PFFM with other methods on
crab-back-211. Table 5 shows the comparison results. In this
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experiment, we occluded the left or top half of the images in the
query set, to test the robustness of these methods. The occlusion
was used to simulate the worse scenes in practice. We selected
Vgg16, Resnet50, and PCB as comparison methods. For ReID
models, the backbone was the preceding process used to generate
original features, such as Vgg16 and Resnet50. The ReID models
extracted features of P. trituberculatus from the original features.
The Euclidean distance between the extracted features was used
to identify P. trituberculatus individuals. For example, PCB was a
ReID model that divided the original feature into two horizontal
blocks for training and inference. Our study proposed PFFM
using Resnet50 as the backbone. It was seen from Table 5 that the
mAPs of Vgg16 and Resnet50 were much lower than those of PCB
and PFFM that implied the models using part-based strategy had
better robustness. Therefore, the method that only considered
global features could not accurately identify P. trituberculatus
with the incomplete carapace. The mAP of PFFM used in this
experiment was 9.6% higher than that of PCB in the upper half
occlusion case, while the rank-1 was 26.3% higher and the rank-
5 was 7% higher. Therefore, the PFFM proposed had better
robustness and could effectively identify the P. trituberculatus
individual with the incomplete carapace.

CONCLUSION

In this study, a part-based PFFM model for P. trituberculatus
ReID was designed. This model divided and merged the
original features obtained by the backbone, extracting global
and multilevel local features of P. trituberculatus. The proposed
PFFM utilized local features to compensate for global feature,
to alleviate the global feature deviation problem, and strengthen
its robustness. In the model training process, ID loss and
triplet loss were adopted to minimize the feature distance of
P. trituberculatus individuals with the same ID and maximize
the feature distance of P. trituberculatus individuals with a
different ID. The experimental results showed that the PFFM
had better performance when resnet50 was used as a backbone,
and the best division strategy was grid 2 × 3. The PFFM
maintained a high ReID accuracy for P. trituberculatus ReID
in the incomplete carapace case. However, we discussed only

adult P. trituberculatus ReID. There could be morphological
changes of carapace characteristics in the growth cycle of
P. trituberculatus. The proposed PFFM method is sensitive to the
shape of the carapace. Therefore, the PFFM method is currently
insufficient for P. trituberculatus across the growth cycle. In
future research, the preparation of adequate training data is
essential, and PFFM can be investigated to be applied to other
animal ReID situations.
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