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Estuaries have experienced significant changes due to global climate change and human
perturbations since the last century. However, the climate and anthropogenic influence on
the burial of sedimentary organic carbon (OC) in estuaries is still not understood well yet.
Here, a 3-meter sediment core was taken from the Pearl River Estuary (PRE) in China.
Depth profiles of both bulk OC and lignin biomarker data indicated three stages with
different features of buried OC during the 130-year sediment deposition. The 1893-1957
stage showed 20% more burial of marine derived OC, which was mostly adsorbed on
finer minerals compared to the years after 1957. The 1957-1980 period witnessed 4.6
times higher burial rate of petrogenic OC, which made the radiocarbon age of total organic
carbon 42% older than before due to soil erosion and carbonate rock weathering. The 7-
year running average variation of terrestrial OC input based on endmember mixing model
was correlated with the Pacific Decadal Oscillation index before 1957, but correlated with
the Atlantic Multidecadal Oscillation between 1957 and 1980 in the region. The reduction
of land derived OC content after 1980s was mostly affected by human perturbations such
as deforestation and dam construction which corresponded to the beginning of Economic
Reform and Open Up in China. The overall increase of lignin content from bottom to
surface sediment indicated increased vascular plant derived OC due to deforestation
activities during the urbanization process. The study suggested different time periods
when climate or human disturbance dominantly affected the OC burial in the PRE, which
have significant indications for local and global carbon cycling and environmental ecology.

Keywords: Pearl River Estuary, organic carbon, lignin, Atlantic Multidecadal Oscillation, deforestation, hydrodynamics
1 INTRODUCTION

The estuaries are major components of the global carbon cycle (Canuel and Hardison, 2016).
Estuaries are hotspots for organic carbon (OC) burial (Bianchi et al., 2018) that is a global benefit for
warming (Breithaupt et al., 2020). However, the estuaries are also “carbon incinerators” (Aller and
Blair, 2006) with high OC remineralization rates (Chen et al., 2022) which can be affected by local
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and global environmental changes, as well as human
perturbations (Syvitski et al., 2022). Therefore, understanding
changes in OC biogeochemistry during sediment burial in the
estuaries is essential to better understand the role they play in
global climate change (Bianchi and Allison, 2009).

Stratigraphic change of OC burial can result from the
combined effect of climate change and human perturbations.
Sediment records provide an alternative method to analyze the
impact of extreme events on sediment deposition and OC burial
in coastal estuaries (e.g. Wheatcroft et al., 2010; Swindles et al.,
2018) over extended time periods. For example, the stable carbon
isotopes and terrestrial biomarkers have been applied as efficient
indicators (Dalzell et al., 2005; Clark et al., 2013; Li et al., 2013; Li
et al., 2020) of transportation and deposition of flooding induced
terrestrial OC in coastal sediment cores in China (Wu et al.,
2007). The rainfall frequency in China has been reported to be
affected by the Pacific Decadal Oscillation (PDO) (Qian and
Zhou, 2014; Wu and Mao, 2017). The Atlantic Multidecadal
Oscillation (AMO) may also control the extreme weather and
climate events including monsoon occurrence, runoff, and
rainfall in China (Li and Bates, 2007; Qian et al., 2014) which
affected the delivery of sediment and terrestrial OC to estuaries.
Moreover, human activities have increasingly affected soil
erosion and the delivery of terrestrial OC (Wang et al., 2018;
Ye et al., 2021) to estuaries in China. Therefore, the organic
carbon burial in coastal sediment of China is controlled by
multiple processes.

The Pearl River Estuary (PRE) acts significantly in the “source
to sink” process of OC cycling by linking the Pearl River to the
South China Sea. With a population of ~100 million, the region
of the PRE has become one of the fastest developing regions in
China over the past decades. The human activities such as dam
constructions (Wu et al., 2016), deforestation (Liu et al., 2014)
has influenced the PRE sedimentation (Owen and Lee, 2004; Ye
et al., 2021), subaqueous topography, ecological environment
(Wu et al., 2016; Wu et al., 2018), and potentially the delivery of
OC to the of PRE. Meanwhile, the climate effect on the local and
national precipitation and drought have been widely studied
(Duan et al., 2013; Drinkwater et al., 2014; Yang et al., 2017b).
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However, the climate effect on the variation of sediment
deposition and OC burial in the PRE has rarely been well
studied on decadal to centennial scales. Considering climate
change and human perturbation have become significant
drivers that may translate to simultaneous responses in
sediments records, delineating their influences on sediment
and OC burial is becoming significant to understand the
changes of OC cycling to more intensified extreme human and
climate events in recent years.

This study aimed to address this knowledge gap using
multiple proxies to identify how the OC burial in the sediment
record responded to human perturbations and climate effects.
Bulk carbon proxies including total organic carbon (TOC) and
total nitrogen (TN), stable isotopes (d13C), radiocarbon (D14C),
and terrestrial organic biomarker of lignin were analyzed in a
210Pb-dated core to examine the sources and composition
changes of OC in the PRE over the last century. The variation
of terrestrial OC input was then compared with the climate
oscillation index, human activities, and sediment mineralogy to
explore the mechanisms for OC burial during the sedimentation
process in the PRE.
2 SAMPLING AND METHODS

2.1 Site Description and Sample Collection
Nearly half of the Pearl River water discharges into the SCS
through the PRE via three main tributaries in the lower drainage
basin: North River, West River, and East River (Figure 1). A 3-
meter gravity core was collected at 21-m water depth off Guishan
Island in the PRE (22.1315°N, 113.8055°E) in October 2017. The
core was sectioned at an interval of 5cm for 0–100 cm and 10cm
for 100–300 cm. The samples were immediately stored at -80°C
until further analysis.

2.2 210Pb Chronology
The total 210Pb (210Pbt),

226Ra, and 137Cs activities were analyzed
in dry samples (6∼9g) with a low background high-purity
germanium (HPGe) g-ray detector (EG& G Ortec Ltd., USA)
FIGURE 1 | Sampling site of the sediment core from Guishan Island, Pearl River Estuary. The three main tributaries of North River, West River, and East River are
labeled.
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at the State Key Laboratory of Marine Geology, Tongji
University. The samples were sealed in polyethylene tubes to
allow for radioactive equilibration for 30 days before analysis (Ye
et al., 2020).

The activities of 137Cs were too low to obtain any confident
results, therefore only 210Pb dating was used in this study. 226Ra
was used as an index of supported 210Pb (210Pbsu), and excess
210Pb (210Pbex) activities were calculated by subtracting 210Pbsu
activities from 210Pbt activities. The sediment accumulation rate
(SAR) was then calculated with the constant rate of supply (CRS)
model which assumes that the flux of 210Pb to the accumulating
sediment is constant during a timescale of 100–200 years. The
chronology was derived by fitting the exponential 210Pb decay
profiles with the cumulative dry mass (Appleby and Oldfield,
1978; Zhang et al., 2014; Li et al., 2021). Fitting analysis was done
using the ‘Exp2PMod1’ function in the Origin 2021 program.

2.3 Bulk Carbon/Nitrogen, Stable and
Radiocarbon Isotope Analysis
Sediment samples are first floated in deionized water, dispersed
through agitation, and then sieved to <180 microns to remove
any root materials. Then the <180 microns organic sediment size
fraction is treated with a series of hot (~ 70-90°C) acid leaches
with HCl at a concentration of 0.1N for a period of 4-12 hours.
Additional applications of HCl are provided until any carbonate
presence has been completely removed. Samples are then rinsed
to neutral with deionized water and dried at 100°C until dry. The
sediments are then homogenized to insure an equal dispersion of
the available carbon. A small aliquot is then tested with
concentrated HCl to check for completion of carbonate
removal. The sample was then measured either in whole or
where applicable appropriately sub-sampled for combustion and
analysis. The TOC (%), TN (%) content was determined on an
elemental analyzer (Vaio EL Cube, Germany) after
decarbonation. Stable isotopes of TOC (d13C) were measured
using an isotope ratio mass spectrometer (Thermo Science Delta
Plus, USA) connected on-line to an elemental analyzer (Carlo
Erba Instruments Flash 1112, USA). The C/N ratio was
calculated as the atomic ratio of TOC and TN. The 14C of
these samples was measured by accelerator mass spectrometer
(AMS) interfaced with an elemental analyzer at the Beta Analytic
testing laboratory, USA. Radiocarbon data were expressed as
D14C values and fraction modern (Fm).

2.4 Grain Size and Porosity
The grain size of the sediments was analyzed by a laser grain-size
analyzer (Mastersizer 3000, Malven Instruments Ltd., UK)
following the methodology described by Jiang et al. (2016).
Briefly, about 0.2 g of the samples were treated with 15ml 10%
(v/v) hydrogen peroxide to remove the organic matter. Carbonates
were then removed by gradual addition of 15 ml of 10% HCl. The
sample residue was dispersed with 10 ml of 10% (NaPO3)6 on an
ultrasonic vibrator for 10 min before instrumental analysis. The
particle sizes less than 4 mm were defined as clay, 4-63 mm as silt,
and > 63 mm as sand. To sort the grain-size distribution into
valuable information on geological processes and palaeo-
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environmental changes, end-member analysis (EMA) was applied
to estimate end-member variations according to the methods by
Prins et al. (2000). In this study, we used a newly developed GUI
software of AnalySize for processing and unmixing grain size data
(Paterson and Heslop, 2015) to determine the grain-size
distributions of the detrital fraction in our sediment core. Porosity
of each sample was calculated from the water content (wet-dry
weight) prior to and after freeze-drying.

2.5 Lignin-Phenols Analyses
Lignin analyses were performed using CuO oxidation method of
Hedges and Ertel (1982), as modified by Bianchi et al. (2002).
Homogenized sediments containing ca. 3 to 5 mg of organic carbon
were transferred to stainless-steel reaction vials with 330 ± 4 mg
CuO and 3 to 5 ml 2 N NaOH in glove box purged by nitrogen and
then digested at 150°C for 3 h. Reaction products were neutralized
and extracted with diethyl ether (peroxides removed), filtered
through combusted glass-fiber filled with glass wool, dried under
N2, and converted to trimethylsilyl derivatives using bis-
(trimethylsilyl)-trifluoroacetamide (BSTFA). Lignin-phenol
derivatives were analyzed with an Agilent 7890-Gas
Chromatograph/5977-Mass Spectrometric Detector (GC–MS).

Quantification of lignin-phenols was based on a mixed standard
calibration curve containing known amounts of 12 lignin reaction
products of interest as well as the internal standard ethyl vanillin.
Eight lignin-phenol oxidationmonomer products (LOPs): C (ferulic
acid+cinnamic acid), V (vanillin+acetovanillone+vanillic acid) and
S (syringealdehyde+ acetosyringone+syringic acid) were quantified
and used as molecular indicators for source and diagenetic state of
terrestrial vascular plant tissue (Hedges and Parker, 1976).
Compound of 3,5-dihydroxybenzoic acid (3,5Bd) was also derived
after cupric oxidation and quantified (Goñi and Hedges, 1995). The
precision for the total lignin phenols was within ±10%, while that
for individual compound ranged from ±5 to ±15% based on
triplicate analysis.

Lambda-8 (L8),which is defined as the total weight in
milligrams of the sum of C, V, and S phenols, normalized to
100 mg of organic carbon (Hedges and Parker, 1976), is used as a
biomarker for terrestrial vascular plants. The acid-to-aldehyde
ratios of both V and S phenols: (Ad/Al)v, (Ad/Al)s, were used as
indicators of lignin degradation state prior to burial (Hedges
et al., 1988). The C/V (woody/non-woody) and S/V
(gymnosperm/angiosperm) ratios were plotted as indicators of
the source of vascular plant (Hedges and Mann, 1979). The
lignin-phenol vegetation index (LPVI) was also applied to study
sources of vascular plant materials (Tareq et al., 2004; Sánchez-
Garcıá et al., 2009). The 3,5Bd is used as an index of soil
degradation processes, while the 3,5Bd/V indicated inputs of
organic matter humification products sorbed to fine particles in
soils (Houel et al., 2006).

2.6 Modelling to Distinguish Sources of OC
A binary mixing model was used to resolve the non-rock-derived
biospheric (OCbio) and petrogenic (OCpetro) OC (Galy et al.,
2008). Then the radiocarbon composition of the bulk OC can be
expressed as follows:
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Fm� TOC  =  Fmpetro �OCpetro +  Fmbio �OCbio (1)

TOC =  OCbio + OCpetro (2)

where, Fm, Fmbio, and Fmpetro are fraction modern values of bulk
TOC, OCbio, and OCpetro, respectively. OCbio has different
quantities of radioactive carbon (Fm> 0), while OCpetro does
not contain radioactive carbon (Fm = 0) (Galy et al., 2008). So,
equation (1) is further modified as:

Fm� TOC = Fmbio � (TOC –OCpetro) (3)

Thus, Fmbio (slope) and OCpetro (intercept/slope) can be
estimated by plotting Fm ×TOC versus TOC on an X–Y plot,
while OCbio is estimated by the offset between bulk TOC
and OCpetro.

A Monte Carlo simulation model was applied to track the
sources of the sedimentary TOC from C3, C4 plants, riverbank
soil, river phytoplankton, and marine algae. Assuming that the
endmember parameters (d13C and N/C) followed a normal
distribution (mean ± standard deviation) for different OC
sources in the study system (Table S1), the program was run
in Python 3.8.2. Briefly, 4000 out of 1,000,000 random samples
from the normal distribution of each end‐member were taken in
order to simultaneously optimize the following underdetermined
system of linear equations:

oi
1Fi = 1 (4)

oi
1Fi � d 13

Ci = d 13Csample (5)

oi
1Fi � (N=C)i = (N=C)sample (6)

where Fi is the fraction of the i end‐member and i = vascular C3

plant, C4 plant, soil OC, marine, and river phytoplankton,
respectively. N/C, the inverse of C/N ratio, is used as a more
sensitive end-member of terrestrial OC (Perdue and Koprivnjak,
2007; Li et al., 2017). The variation of the mean value for each
end‐member was less than 0.2‰ by randomly sampling each
parameter value five times, ensuring the statistical stability of
the model.

2.7 Carbon Burial Rate
The bulk carbon burial rate is calculated by the following
equation:

Bulk carbon burial rate  (g C m−2yr−1)

= TOC ð%Þ � SAR ðcm yr−1Þ � bulk density ðg cm−3Þ
� (1 − porosity)� 100 (7)

where, SAR was determined from 210Pb chronology; the bulk
density was assumed to be 1.5 g cm-3 in this region (Chen et al.,
2006); TOC and porosity were the average values of 20-110 cm,
120-170 cm, 180-300 cm and the entire core.

The burial rate of each end-member was calculated by
multiplying the bulk carbon burial rate and the fraction of
Frontiers in Marine Science | www.frontiersin.org 4
each end-members from the mixing model. For example, the
burial rate of lignin is calculated as:

Lignin burial rate ðg lignin m−2yr−1Þ 

= L8 (mg lignin 100 mg−1OC) � TOC ð%Þ

� SAR ðcm yr−1Þ � bulk density  g cm−3� �� (1

− porosity) (8)

2.8 Data Analyses
The Origin 2021 software was used to graph the figures.
Statistical differences were calculated using one-way ANOVA.
Statistically significant differences were discussed within the 95%
confidence interval. Principle component analysis (PCA) was
performed to discriminate for any other controlling variables
linked with bulk and biomarker patterns in sediment samples
with all parameters being mean-normalized.
3 RESULTS

3.1 Sediment Chronology
The cores displayed relatively low excess activities of 210Pb ranging
from 0.22 dpm g−1 to 2.62 dpm g−1 (1.33 ± 0.65 dpm g−1, n=14)
(Figure 2 and Table S2). While grain size variation can generate an
error in the downcore decay trend in relatively low excess activity
samples, the core showed a supported 210Pb level (from 226Ra
activity) that were relatively invariant downcore (2.16–2.86 dpm
g−1) (Figure 2). The surface mixed layer was around 20 cm with the
depth below showing the sediment accumulation. The best fit
exponential regression of excess 210Pb activity (R2 = 0.69, p<0.01)
yielded a varied sedimentation rate (LSR) ranging from 1.71 cm yr-1

(210-250 cm) to 3.18 cm yr−1 (20-30 cm). The calculated
geochronology dated back to 1893 for the deepest sample.
Therefore, the core represents about 130 years of
sediment deposition.

3.2 Bulk Organic Carbon/Nitrogen, Stable
and Radiocarbon Isotopes
The TOC (%) varied from 0.43% to 1.43% (0.96 ± 0.22%, n=40)
(Figure 3A). The TN ranged from 0.11% to 0.28% (0.24 ±
0.03%, n=40) (Figure 3B). A significant linear relationship
between TN and TOC (R2 = 0.49, p < 0.01) suggested that TN
was derived predominantly from the organic origin. The C/N
ratio varied from 2.27 to 9.33 (4.69 ± 1.18, n=40) (Figure 3D).
The d13C ranged from -24.54 to -22.89‰ and showed three
stages with different d13C features (Figure 3C and Figure S1).
Between 1893 and 1957, the average d13C value was -23.08 ±
0.16‰. Between 1957 and 1980, the value showed a large
variability (-23.59 ± 0.29‰), while after 1980, the average
d13C decreased to -23.86 ± 0.34‰ (Figure S1), indicating an
increased proportion of terrestrial OC. The D14C value varied
from -448.40‰ to -209.55‰ (-299.26 ± 66.89‰, n=20)
(Figure 3E and Figure S1). The average D14C value was
April 2022 | Volume 9 | Article 848757
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-226.84‰ (n=6), -399.04‰ (n=3), and -316.88‰ (n=9)
(Figure S1) in stage of 1893 to 1957, 1957 to 1980, and after
1980, respectively. Correspondingly, the average Fm in stages of
1893 to 1957, 1957 to 1980, and after 1980 were 0.78 (n=6), 0.61
(n=3), and 0.69 (n=9) (Figure S1), respectively.
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3.3 Grain Size
The clay, silt and sand content of the core ranged from 11.58 to
35.6% (26.24 ± 5.82%, n=40), 60.36 to 74.56% (66.54 ± 3.34%,
n=40), 0 to 16.2% (7.22 ± 4.63%, n=40), respectively (Figure 3F
and Figure S1). The sediments were predominately fine-grained
(<63 mm) that the sum of clay and silt ranged from 83.8% to
100%. The proportion of clay and silt were negatively correlated
in all layers (R2 = 0.61, p<0.01).

The median grain size (MGS) ranged from 5.83 to 26.9mm
(9.88 ± 4.33mm, n=40) (Figure 3F). Before the 1960s, the MGS
was relatively constant at a low value (6.90 ± 0.74, n=15), while
they became more variable and showed relatively higher values
(11.83 ± 4.61, n=25) after the 1960s. The MGS has a peak value
around 2008. The correlation map between multiple correlation
coefficient and numbers of end-member (EM) indicated that two
EMs could fulfill the observed compositional variation required
in EMA (Jiang et al., 2017) and explain the grain-size distribution
pattern that the peak values were concentrated at 6.72 mm (EM
1), and 40.14 mm (EM 2), respectively. The EM1 and EM2 ranged
from 36.91% to 97.42% (78.43 ± 14.78%, n=40), 2.58% to 63.09%
(21.57 ± 14.78%, n=40), respectively (Figure S2).

3.4 Lignin-Phenols
The L8 values ranged from 0.43 to 2.84 mg 100mg-1 OC (1.39 ±
0.54, n=40) (Figure 4A). There was a general increase in L8 from
the bottom to the surface sediment, that the average L8 in stages of
1893 to 1957, 1957 to 1980, and after 1980 were 1.04 (n=13), 1.18
(n=6), 1.68 (n=21) mg 100mg-1 OC, respectively. This trend
indicated an increasing accumulation of vascular plant derived
OC. The 3,5Bd showed no significant changes with depth (p >
0.01) (Figure 4B). The average (Ad/Al)v values were 0.38 (n=13),
0.35 (n=6) and 0.26 (n=21), while the average (Ad/Al)s were 0.35
(n=13), 0.36 (n=6) and 0.23 (n=21) from 1893 to 1957, 1957 to
1980, and after 1980, respectively (Figures 4C, D). Their
A B D E FC

FIGURE 3 | Depth profiles of (A) TOC(%), (B) TN(%), (C) d13C(‰), (D)C/N ratio, (E) D14C(‰), and (F) median grain size (MGS) and mineral content (%).
FIGURE 2 | The cumulative mass depth profile of excess 210Pb (210Pbex) of
the sediment core. The right scale labeled the chronology.
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insignificant depth variations (p<0.01) indicated insignificant
degradation, or that the majority of bioavailable lignin has been
consumed prior to delivery to the ocean (Seidel et al., 2015). The
ratios of 3,5Bd/V and P/(S+V) ranged from 0.03 to 0.17 (0.08 ± 0.03,
n=40), 0.11 to 0.3 (0.17 ± 0.05, n=40) with slight increase with
depths (Figures 4E, F).

3.5 Modelling Results and Carbon Burial
Rates
The modelling results showed historical variability in the Fmbio,
OCpetro (%), OCbio (%), OCbio/OC (%) in the PRE sediments
(Figure 5A and Table 1). The Fmbio (0.79) values in 1957-1980
were smaller than before 1980 (0.63). Conversely, the OCpetro

value (0.03) in 1957-1980 was three times higher than before
1980 (0.01), indicating more petrogenic and less biospheric OC
input during 1957-1980.

The comprehensive five-end-member simulation showed that
the fraction of C3 plants (FC3), riverbank soil (Fsoil), riverine
phytoplankton (Friverine phytoplankton), marine algae (Fmarine) and,
C4 plants (FC4) were 17 ± 3%, 17 ± 2%, 22 ± 1%, 35 ± 10%, 10 ±
3%, respectively (Figure 5B and Table 2). The fraction of total
terrestrial OC (Fterr= FC3+Fsoil+Friverine phytoplankton+FC4) was 65 ±
10%. The FC3 in 1893-1957 was 14 ± 3%, which was smaller than
1957-1980 (20 ± 2%) and 1980-2016 (19 ± 2%). The FC4 in 1980-
2016 was lower than 1957-1980(13 ± 2%) and 1897-1957(10 ±
4%). This indicated a change in plant contribution from C4 plants
to C3 plants from the bottom to the surface sediment. The Fsoil
(19 ± 2%) in 1957-1980 were larger than the average value (17 ±
2%), while the Fmarine (27 ± 6%) in 1957-1980 was smaller than
the average value (35 ± 10%) in the entire core.

The PCA biplot included 17 normalized variables (Figure 5C).
The first two components explained 52.5% of the sedimentary OC
(PC1: 36.1% and PC2: 16.4%). The plot showed significant depth
variations of the distribution and preservation of sedimentary OC
across different temporal scales (Figure 5B). Most of the samples
Frontiers in Marine Science | www.frontiersin.org 6
above 110cm (exclude 30cm) were located in Quadrant II and III,
and the samples between 120 and 180cm (exclude 180cm) were
located in Quadrants III and IV, while most of the deeper (190-
300cm) samples were located in Quadrants I and IV.

The bulk OC burial rate increased from 1893-1957 (94 ± 22
gC m-2 yr-1) to 1957-1980 (138 ± 24 gC m-2 yr-1), but decreased
after 1980 (151 ± 44 gC m-2 yr-1) (Table 3). The trends of the
end-member burial rates were similar to the bulk OC, which
were increased first and then decreased except the burial rate of
marine algae (Table 3).
4 DISCUSSION

4.1 Historical Changes of OC Sources in
the PRE Sediment
The significant correlation between d13C and C/N (R2 = 0.55, p<
0.01, Figure 6A) suggested mixed source input from terrestrial and
marine OC. The MGS and d13C signatures were invariable in the
bottom of the sediment core (> 150cm), but became coarser and
more negative at discrete intervals in upper parts of the core (above
150cm) (Figures 3C, F) indicating a shift from marine plankton
with younger 14C age to terrestrial derived OC which was older
(Figures 3E, 5A). This was likely due to a transition (~ the 1980)
from steady-state deposition with lower sediment accumulation rate
(Figure 2 and Table S2), to an environment influenced by both
stronger anthropogenic and climate disturbance in the modern PRE
(Yuan et al., 2019) with enhanced sediment accumulation rate
(Figure 2 and Table S2) (Owen and Lee, 2004).

More than 100 red tides have been reported in the PRE since the
1970s, and their frequency has increased in recent years due to
human influences (Jia and Peng, 2003; Hu et al., 2008). However,
the average marine sourced OC derived from the Monte Carlo
model decreased by 20% during 1980-2016 than that from 1893-
1957 (Table 2). This may be related to the high degradation rates of
A B D EC F

FIGURE 4 | Depth profiles of (A) L8(mg 100mg-1 OC), (B) 3,5Bd (mg 100mg-1 OC), (C) the (Ad/Al)s ratio, (D) (Ad/Al)v ratio, (E) 3,5Bd/V ratio, and (F) P/(S+V) ratio
in sediment cores of the PRE.
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TABLE 1 | Historical changes of Fmbio, OCpetro (%), OCbio (%), and OCbio/OC (%) in the PRE sediment.

Depth (cm) Stage Fmbio OCpetro (%) OCbio (%) OCbio/OC(%)

20-110 1980-2016 0.65 – – –

120-170 cm 1957-1980 0.63 0.03 1.06 97.2
180-300 cm 1893-1957 0.79 0.01 0.91 98.9
120-300 1893-1980 0.71 0.02 0.99 98.1
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TABLE 2 | Fraction of C3 plants, riverbank soil, riverine phytoplankton, C4 plants, marine algae and total terrestrial OC in PRE sediments.

Stage FC3 (%) Fsoil (%) Friverine phytoplankton (%) FC4 (%) Fmarine (%) Fterr (%)

20-110 cm 1980-2016 19 ± 2 17 ± 1 23 ± 1 8 ± 3 33 ± 6 67 ± 6
120-170 cm 1957-1980 20 ± 2 19 ± 2 22 ± 1 13 ± 2 27 ± 6 73 ± 6
180-300 cm 1893-1957 14 ± 3 15 ± 2 20 ± 2 10 ± 4 41 ± 9 59 ± 9
Entire core 1893-2016 17 ± 3 17 ± 2 22 ± 1 10 ± 3 35 ± 10 65 ± 10
Artic
A B

C

FIGURE 5 | (A) A binary plot used to determine OCpetro concentration in bulk sediments by plotting Fm of bulk TOC × TOC (%) vs. TOC (%). The solid lines
represented the best linear fit of the three periods. The slope represented the fraction of modern value of biospheric OC (Fmbio), while the intercept on x-axis
represented the content of petrogenic OC (OCpetro) in sediments. (B) Fraction of OC sources from five end-members based on Monte Carlo simulation of the PRE
sediment core. (C) Principal component analyses of parameters in this study.
TABLE 3 | Burial rate (g C m-2 yr-1) of the TOC and each end-member.

Core depth (cm) Stage TOC OCpetro C3 plants Riverbank soil River phytoplankton Marine algea C4 plants Lignin

20-110 1980-2016 136 ± 39 – 26 23 31 44 12 2.3
120-170 1957-1980 138 ± 24 4.2 28 26 31 37 18 1.8
180-300 1893-1957 94 ± 22 0.9 13 14 19 38 9 1.0
Entire core 1893-2016 126 ± 29 2.5 21 21 28 44 12 1.8
le 8
48757

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. OC Biogeochemistry in Estuaries
marine algae enriched in labile compositions such as carbohydrates,
sugars, amino acids, and low-molecular-weight organic acids
(Hardison et al., 2013). Instead, the vascular plant biomarker of
lignin did not show much degradation during the burial process
(Figures 4C, D) that the variations were more induced by
concentration changes with continuous input of relatively stable
terrestrial OC, which were partly diluted by the marine-derived OC
as was indicated from a lack of correlation between lignin‐phenol
abundance and TOC (R2 = 0.02, p<0.01).

Sources of vascular plant derived OC changed during the
sediment accumulation. In general, the angiosperms (woody or
non-woody tissues) contain a large amount of syringyl phenols.
Therefore, the bottom depths with relatively high S/V values
(0.83 ± 0.14, n=40) (Figure 6B) suggested an important fraction
of lignin originating from angiosperm plants with higher LPVI
(Table S3) than that of gymnosperms (Tareq et al., 2004). The
surface sediments, instead, tended to be sourced from leaves,
humus, and soil (Figure 6B) as a result of increased soil erosion
induced terrestrial plant input. The average LPVI decreased from
the bottom to the surface sediment also supported a change from
angiosperms to gymnosperms (Tareq et al., 2004; Li et al., 2017)
that rapid urbanization has caused such loss in the angiosperm-
rich farmland since the 1980s (Zhang et al., 2008) (Table S3).

4.2 Biospheric and Petrogenic OC in the
PRE Sediment
The sediment record showed a significant input of old carbon
during 1957-1980 (Figure 3; Figure 7), which corresponded to
lower Fm and OCbio values and higher D14C and OCpetro values
(Table 1). It happened that this period had a higher TOC value
(Figure S1) and terrestrial input (73%, Table 2). This may be
caused by hydrodynamic sorting of riverine OC containing
significant eroded soil with more negative D14C and older
apparent ages (Wei et al., 2010). The significant correlation
between MGS and D14C values (R2 = 0.52, p<0.01, Figure S3)
illustrated the importance of hydrodynamics on the transport
and sorting of different grain size fractions, which should be
considered in the aging processes, particularly in the estuary and
continental shelf characterizing by strong hydrodynamic
Frontiers in Marine Science | www.frontiersin.org 8
gradients (Bao et al., 2018a). Specifically, OC in the finer
fraction was the youngest, with 14C ages and OCpetro increasing
in the coarser fraction. So, the OC was preferentially associated
with fine-grained, large-surface-area minerals providing stronger
protection against degradation (Ausıń et al., 2021). The young
OC with less negative d13C values (Figure S1) were mainly from
marine inputs during 1893-1957. Selective removal of labile
marine OC was expected leading to more negative D14C and
d13C values, via preferential degradation of 13C-enriched, labile
organic components afterwards. Correspondingly, the finer EM1
(6.72 mm) was dominant (78.4 ± 14.8%, n=40) (Figure S2) in the
bottom of the PRE sediments, which was beneficial to the OC
preservation. Thus, the 14C age was younger with higher EM1.

The average Fmbio value (0.71) of the PRE is the lowest in
coastal China among Bohai, Yellow Sea, and East China Sea
(Table 4), but closer to that of the Yellow River POC (0.61),
indicating older ages of biogenic OC in the PRE. The Yellow
River generally has a large amount of pre-aged POC sourced
from the Loess Plateau where distributes thick loess-paleosol
deposits, with serious soil erosion and sparse vegetation
(Eliassen, 2020). In comparison, the upper and middle reaches
of the PRE drain the karst morphology areas with the carbonate
rocks being the dominant lithology (Wu et al., 2020). The
weathering rate of carbonate rocks is more than an order of
magnitude higher than that of silicate rocks (Meybeck, 1987). As
the carbonate rock weathers, the pre-aged materials including
dissolved inorganic carbon are released into the river (Liu et al.,
2017). Phytoplankton thus synthesize such old dissolved
inorganic carbon resulting in biogenic OC with older ages and
low Fmbio values (Table 4). The relatively lower Fmbio values
have also been found in some other fluvial systems such as in the
Mackenzie River shelf (Table 4). Warming and associated
permafrost thaw exposed older biogenic OC with less OCpetro

and lower Fmbio accumulated in marine sediments (Hilton et al.,
2015). Therefore, the relatively low Fmbio composition in these
aquatic ecosystems were attributed to the contribution from pre-
aged OC in the drainage basin. As a result, the OCpetro

contributed to 2% of TOC in the PRE. The ratio can be as low
as 1% in the East China Sea sand area, and as high as 87% in the
A BAAA

FIGURE 6 | Source plot of the sedimentary OC in the PRE based on (A) d13C and C/N; (B) C/V and S/V. G=woody gymnosperm, g=nonwoody gymnosperm,
A=woody angiosperm and a=nonwoody angiosperm.
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southeast Alaskan fjords (Table 4). But on average, the OCpetro/
TOC in the PRE was lower than the mean values of 13 ± 18% in
global aquatic systems.

4.3 Drivers for the Historical Changes of
OC Burial Rate
4.3.1 The Climate Oscillation Effect
The climate oscillation associated with rainfall intensity affected the
frequency and magnitude of soil erosion (Starkloff and Stolte, 2014;
Li and Fang, 2016; Zhang et al., 2022) and sediment accumulation
rate. A significant increase in the sedimentary grain size in the upper
core around 2008 (Figure 3F) suggested stronger hydrodynamic
conditions due to pulsed flooding events this year with significant
sediment delivery (Owen and Lee, 2004). In fact, a big flooding
event occurred in almost every other year between 2000 and 2011
due to typhoon and flood impacts in the PRE (Yang et al., 2015).
Strong rainfall-runoff processes would in turn erode deep soil and
vascular plant OC from the drainage basin in pulses (Hao and Lu,
2021), which cause a large amount of old OC to enter the river and
further the PRE. As a result, the riverine POC was dominated by
aquatic organisms during the low-flow periods, while the
terrigenous POC (mainly from soil minerals and degraded plant
debris) became dominant during high-flow periods. The pulsed
(Ad/Al)v and (Ad/Al)s ratio that appeared during this time proved
Frontiers in Marine Science | www.frontiersin.org 9
the input of highly degraded vascular plant materials during the
flooding erosion. The increased transportation capacity of rivers
could then accelerate POC transportation with less residence time
for POC oxidation and high burial efficiency (Blair and Aller, 2012).
Therefore, the export of OCpetro and the escape of OCbio from
oxidation by rapid transport along rivers resulted in subsequent
increase in OC burial on adjacent margins in the PRE. In fact, the
1957-1980 period witnessed 4.6 times higher petrogenic OC burial
rate than before with a significant decrease of D14C from -218.6 ±
81.8‰ (1893-1957) to -395.3 ± 31.8 ‰ (1957-1980) (Figure 7
and Table 3).

The large variability of summer precipitation may easily trigger
floods and droughts in the Pearl River basin that a correlation
(R2 = 0.89) has been found between precipitation and surface
runoff (Luo et al., 2016). As global climate phenomenon, the PDO
have been reported to be closely related to precipitation and
droughts frequency in China over the last century (Chan and
Zhou, 2005; Duan et al., 2013; Yang et al., 2017a; Yang et al.,
2017b). However, the AMO may act as a key pacemaker that the
western tropical Pacific multidecadal climate variability is forced
by the AMO instead of PDO in interdecadal time scales over the
last century (Sun et al., 2017; Zheng and Wang, 2021). In this
study, the correlations between terrestrial OC parameters (e.g.,
Fterr, Table 5) and both 7-year running mean of climate oscillation
TABLE 4 | Comparison of Fmbio, OCpetro, OCbio and OCpetro/TOC values in the sediments between the PRE and other studies.

Regions Fmbio OCpetro OCbio OCpetro/
TOC (%)

Reference

PRE 0.71 0.02 0.99 2 This study
Central Bohai Sea
mud deposits

0.84 0.087 0.51 15 (Zhao et al., 2021)

Bohai Sea 0.75 0.013 0.38 3 (Bao et al., 2018b)
East China Sea 0.74 0.051 0.40 11 (Kao et al., 2003; Li et al., 2012; Wu et al., 2013; Kao et al., 2014; Bao et al., 2018b)
North Yellow Sea 0.86 0.030 0.48 6 (Bao et al., 2018b)
Southern Yellow Sea 0.82 0.041 0.51 7 (Bao et al., 2018b)
Shandong Peninsula
mud deposits

0.93 0.088 0.66 12 (Zhao et al., 2021)

South Yellow Sea
mud deposits

0.86 0.076 0.81 9 (Zhao et al., 2021)

Bohai and Yellow
Seas sand area

0.78 0.015 0.32 4 (Zhao et al., 2021)

Changjiang Estuary
mobile-muds

0.78 0.095 0.44 18 (Zhao et al., 2021)

Zhe-Min coastal
mobile-muds

0.71 0.018 0.59 3 (Zhao et al., 2021)

southwest off the
Cheju Island

0.82 0.040 0.52 7 (Zhao et al., 2021)

East China Sea sand
area

0.68 0.002 0.30 1 (Zhao et al., 2021)

Yellow river POC 0.61 0.017 0.97 2 (Tao et al., 2015)
southeast Alaskan
fjords

1.01 0.34 0.05 87 (Walinsky et al., 2009; Cui et al., 2016)

British Columbia
fjords

1.11 0.26 0.70 27 (Smittenberg et al., 2004)

New Zealand fjords 0.96 0.30 2.43 11 (Smith et al., 2015)
US West Coastal 0.93 0.19 1.62 10 (Blair et al., 2003; Komada et al., 2005; White, 2006; Mollenhauer and Eglinton, 2007; Drenzek et al.,

2009; Wakeham et al., 2009; Griffith et al., 2010; Feng et al., 2013)
Mackenzie River shelf 0.38 0.17 1.23 12 (Goñi et al., 2005; Drenzek et al., 2007; Hilton et al., 2015)
North Gulf of Mexico 0.79 0.09 0.92 9 (Goñi et al., 1998; Gordon and Goñi, 2003; Gordon and Goñi, 2004)
Amazon River Coast 0.84 0.03 0.62 5 (Aller and Blair, 2006; Williams et al., 2015)
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index were not significantly correlated (AMO, R = 0.28, p <0.01;
PDO, R=0.27, p <0.01) (Figure 7 and Table 5) through the whole
core. However, there is a significant correlation between Fterr and
PDO than that with AMO before 1957 (R=0.43, p<0.01). Instead,
the AMO and Fterr were significantly correlated between 1957-
1980 (R=-0.93, p<0.01), but not before 1957 (R=-0.10, p=0.43) and
after 1980 (R=-0.20, p=0.27), indicating that the climate effect on
the OC burial has changed from PDO before 1957, to AMO
between 1957 and 1980 in the PRE. The reason might be that
during the negative phase of AMO (e.g., 1957-1980), humid
climate condition and more typhoon events in PRE intensified
the washout of riverbanks and surrounding soils, hence more
terrestrial (Fterr) including petrogenic OC were transported to the
sediments (Figure 7 and Table 5). At the positive phase of AMO,
cold climate and less precipitation, in contrast, would result in less
soil erosion, delivery and burial of terrestrial and petrogenic OC.
There was no significant correlation between the Fterr and the
climate oscillation index (AMO, R = 0.20, p =0.27; PDO, R=0.31,
p=0.08) after 1980, which is mostly related to the beginning of
Frontiers in Marine Science | www.frontiersin.org 10
Economic Reform and Open Up, suggesting the dominate
influence from human perturbations.

4.3.2 The Impact From Human Perturbations
Deforestation tended to destabilize slopes and increased soil erosion
rates (Owen and Lee, 2004). With the explosive growth of
population and gross domestic product (GDP) in the Pearl River
basin (Figure 8), large areas have been deforested since the 1950s
(Liu et al., 2014). Correspondingly, the average L8 value increased
from 1.02 (n=10) before 1950 to 1.52 (n=30) mg 100 mg-1 OC after
1950 (Figure 8) with 1.6 times increase in the lignin burial rates
from 1893-1957 (1.0 g ligninm-2 yr-2) to 1980-2016 (2.4 g ligninm-2

yr-2) (Table 3). The obvious discontinuities displayed on L8 were
also evidence of deforestation activities (Bélanger et al., 2017). In
Foshan, a city on the coast of PRE, approximately 60% of the newly
built-up land was converted from pond, farmland, forest, and shrub
during 1988–2003, and the forest and shrub were then changed to
farmland to compensate the farmland loss (Yang et al., 2015).
Eventually, a shift from marine plankton to terrestrial plants was
FIGURE 7 | (A)Pacific Decadal Oscillation (PDO) index; (B) Atlantic Multidecadal Oscillation (AMO) index; (C) Fraction of total terrestrial OC (Fterr, %) from Monte
Carlo simulation; (D) Sediment load (104 t yr-1) of Pearl River, modified from Wei et al. (2020); and (E) D14C (‰). The interpolation method was applied for data
processing. The values for the PDO index were taken from University of Washington (http://jisao.washington.edu/pdo/PDO.latest) (Duan et al., 2013). The AMO index
is downloaded from Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/data/correlation/amon.sm.data). The bars were annual index value. The black
curves represented 7 year running mean value in (A, B) The monthly mean global average sea surface temperature (SST) anomalies have been removed to separate
this pattern of variability from any global warming signal that may be present in the data (Mantua et al., 1997).
TABLE 5 | Correlation between OC and climate oscillation index based on 7 year running mean value.

Correlation (R) D14C Fterr Fsoil Sediment load

AMO 0.35 (p<0.01) -0.28 (p<0.01) -0.27 (p<0.01) -0.81(p<0.01)
PDO -0.17 (p=0.07) -0.27 (p<0.01) -0.26 (p<0.01) 0.30 (p=0.02)
AMO after 1980 0.15 (p=0.41) -0.20 (p=0.27) -0.17 (p=0.34) -0.90 (p<0.01)
AMO 1957-1980 0.98 (p<0.01) -0.93 (p<0.01) -0.92 (p<0.01) -0.65 (p<0.01)
AMO before 1957 0.35 (p<0.01) -0.10 (p=0.43) -0.10 (p=0.45) -
PDO after 1980 -0.20 (p=0.26) 0.31 (p=0.08) 0.28 (p=0.10) 0.85 (p<0.01)
PDO 1957-1980 -0.13 (p=0.56) -0.15 (p=0.52) -0.17 (p=0.46) 0.05 (p=0.82)
PDO before 1957 0.14 (p=0.30) -0.43 (p<0.01) -0.42 (p<0.01) -
April 2022 | Volume 9
Values in bold indicated significant correlations (p<0.01).
| Article 848757

http://jisao.washington.edu/pdo/PDO.latest
http://www.esrl.noaa.gov/psd/data/correlation/amon.sm.data
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. OC Biogeochemistry in Estuaries
observed from the bottom to surface sediments, in agreement with
significant older radiocarbon signature (Figure 5A) with increased
MGS in the study (Figure 3F). The dam construction on Pearl
rivers have greatly modified the transport of sediment since mid-
1980s (Dai et al., 2008; Wei et al., 2020). The decrease of TOC
(Figure 3A) and Fterr (Figure 7C), as well as significant correlation
between sediment load and Fterr (R=0.64, p<0.01) supported that
dam construction has reduced delivery of terrestrial derived OC
since the 1980s. The unpredictable human disturbance also likely
resulted in dynamic source and fate of OC and unresolved OCpetro

(Figure 5A and Table 1). So, the OC cycle under the varied extent
of human perturbations in the PRE is definitely important to
monitor in the future.
5 CONCLUSIONS

The study synthesized marine sediment records spanning the past
130 yr to decipher the sources and burial rate of OC in the PRE. The
results suggested three stages of 1893-1957, 1957-1980 and 1980-
2016 with distinct OC features. The 1893-1957 stage was more
affected by the PDOwith burial of younger marine derived OC. The
input of petrogenic OC is increasing during the 1957-1980 that the
burial rate of OCpetro was 4.6 times higher than before due to input
of eroded older soil OC and marine derived OC assimilated from
Frontiers in Marine Science | www.frontiersin.org 11
weathered old dissolved inorganic carbon. Additionally, a
significant correlation between the Fterr and AMO was observed
that the increasing frequency of the negative AMO events. After
1980, there was no significant relationship between Fterr and the two
climate indices suggesting a shift to human perturbation such as
deforestation and dam construction likely affecting the OC burial in
the region. A transition stage from low sediment accumulation rate
to a relatively higher deposition environment was observed after ca.
~1980s in the PRE. Therefore, it is important to understand the
effects of climate oscillation and human perturbation on the OC
burial in the dynamic PRE to better understand its role in current
climate change.
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Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty, C. J., Wang, H., et al.
(2022). Earth’s Sediment Cycle During the Anthropocene. Nat. Rev. Earth
Environ. 3, 179–196. doi: 10.1038/s43017-021-00253-w
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