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To understand ocean health, it is crucial to monitor photosynthetic marine plankton – the
microorganisms that form the base of the marine food web and are responsible for the
uptake of atmospheric carbon. With the recent development of in situ microscopes that
can acquire vast numbers of images of these organisms, the use of deep learning
methods to taxonomically identify them has come to the forefront. Given this, two
questions arise: 1) How well do deep learning methods such as Convolutional Neural
Networks (CNNs) identify these marine organisms using data from in situ microscopes?
2) How well do CNN-derived estimates of abundance agree with established net and
bottle-based sampling? Here, using images collected by the in situ Scripps Plankton
Camera (SPC) system, we trained a CNN to recognize 9 species of phytoplankton, some
of which are associated with Harmful Algal Blooms (HABs). The CNNs evaluated on 26
independent natural samples collected at Scripps Pier achieved an averaged accuracy of
92%, with 7 of 10 target categories above 85%. To compare abundance estimates, we fit
a linear model between the number of organisms of each species counted in a known
volume in the lab, with the number of organisms collected by the in situ microscope
sampling at the same time. The linear fit between lab and in situ counts of several of the
most abundant key HAB species suggests that, in the case of dinoflagellates, there is
good correspondence between the two methods. As one advantage of our method, given
the excellent correlation between lab counts and in situ microscope counts for key
species, the methodology proposed here provides a way to estimate an equivalent
volume in which the employed microscope can identify in-focus organisms and obtain
statistically robust estimates of abundance.

Keywords: underwater imaging, microscopy, harmful algal blooms, convolutional neural network, deep learning,
automated image analysis, underwater microscopy
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1 INTRODUCTION

Small plankton are an extremely diverse group of single-celled
underwater organisms with profound effects on ocean health
(Field et al., 1998): they form the foundation of the food web,
contribute to the early developmental stages of commercially
harvestable species, and their abundance and composition are
tightly related to hydro-climatic change (Lombard et al., 2019).
Planktonic organisms can also adversely affect the marine
ecosystem by forming dense blooms, known as Harmful Algal
Blooms (HABs), that can sicken or kill both marine organisms
and humans via a variety of mechanisms. The appearance and
composition of these HAB taxa is a topic of intense research
since they have deleterious effects on human health, negatively
affect fish stocks, and are linked to eutrophication that is likely to
increase in the coming years (Sinha et al., 2017). These biological
impacts have serious economic ramifications and there is urgent
interest in developing inexpensive, automated ways to detect
HABs and quantify their abundance (Lefebvre et al., 1999;
Scholin et al., 2000; Kim et al., 2009; Smith et al., 2018). The
main goal of this study is to examine the potential for in situ
imaging microscopy, supported by automated deep learning
algorithms, for providing reliable estimates of a variety of
plankton including HAB species.

Most HAB monitoring programs use traditional plankton
sampling techniques, such as net tows and bottle sampling
(Castellani, 2010) to estimate in situ abundance. These
approaches require physically collecting the samples, chemically
preserving the organisms, andmanually enumerating specieswith a
lab microscope. This laborious process is severely limited by a
number of factors: net tows can damage delicate organisms during
collection (Hamner et al., 1975; Omori and Hamner, 1982); certain
organismsmaydissolve in the preservation solutionwithout proper
treatment (Beers and Stewart, 1970); and critically, physical
collection and subsequent analysis of the samples is expensive in
terms of cost and human labor, resulting in less frequent sampling
than is desirable.

Due to these factors, there is increasing interest in the use of
imaging systems to monitor plankton populations. These systems
have the capability to quantify organisms at very local spatial and
fine temporal resolution, therefore providing a more scalable
solution for long-term analysis (Olson and Sosik, 2007; Iyer,
2012; Cowen et al., 2013; Culverhouse et al., 2014; Lombard
et al., 2019). Currently, underwater microscopes either
continuously take images of plankton as they freely flow
through the camera’s view (Picheral et al., 2010; Orenstein et al.,
2020a; Picheral et al., 2021) or are sampled discretely via
microfluidic systems (Olson and Sosik, 2007). These systems do
not require manual collection or concentration of water, chemical
treatment of samples, or the use of counting chambers. An
additional benefit of in situ imaging is that the digital archives
can be easily preserved for future re-analyses and wide scale
dissemination. However, the major bottleneck for using in situ
imaging instruments for monitoring is the sheer volume of data
they collect. To speed up analysis, scientists have begun using
automated classification methods, such as Support Vector
Frontiers in Marine Science | www.frontiersin.org 2
Machines and Convolutional Neural Networks (CNNs) that are
capable of processing these large imaging libraries (Sosik and
Olson, 2007; LeCun et al., 2015; Orenstein and Beijbom, 2017; Luo
et al., 2018; Ellen et al., 2019). The results indicate that CNNs can
successfully identify a variety of marine organisms such as
zooplankton, phytoplankton, coral, and fish (Orenstein et al.,
2015; Salman et al., 2016; González et al., 2019). A recent review
highlights the use of these methods, specifically, for plankton
(Irisson et al., 2022).

Although the utilization of automated imaging and recognition
systems for estimating plankton abundance promises to expand in
situ observational capacity, the methodology has yet to be widely
adopted for both scientific studies and monitoring programs.
Several recent studies have been dedicated to comparing
submerged instruments against traditional lab counting methods,
but an important difference in those vs our study is that their image
data wasmanually – not automatically – classified.Whitmore et al.
(2019) explicitly compared the Zooglider’s abundance estimates
against MOCNESS net tows and acoustic data. Likewise, Sosik and
Olson (2007) compared manual counts from the IFCB images to
manual bench top counts.

Conversely, other related studies focused on validating the
automated estimation of plankton abundance but did not seek to
compare the results to traditional methods. Wang et al. (2017)
suggested that an automated classifier’s performance can be
improved by attempting to match the training set class
distribution to the eventual target population. González et al.
(2019) proposed a number of automated quantification
algorithms to improve plankton abundance estimates.
Orenstein et al. (2020b) proposed similar methods to reduce
human annotators’ validation labor while reliably reproducing
plankton distributions. However, the comparison of automated
workflows that employ imaging paired with trained CNN
classifiers with plankton population estimates that use the
more traditional lab counting methods remains an interesting
research question that has not been addressed.

Here, we quantify the relationship between plankton
population estimates derived from an in situ imaging system,
the Scripps Plankton Camera (SPC), with those obtained from
concurrent bottle-based samples manually enumerated by a
trained taxonomist. The SPC system, located at the Scripps
Pier, consists of two underwater microscopes that image
undisturbed volumes of water that can freely flow between a
light source and a camera system. It has been operating nearly
continuously for 6 years, resulting in the collection of more than
a billion images of ROIs that includes plankton, detritus, sand, as
well a host of other suspended microscopic inhabitants. Using
data from the SPC microscopes, CNNs have been trained to sort
the resulting data and speed up ecological analyses (Orenstein
and Beijbom, 2017; Kenitz et al., 2020; Orenstein et al., 2020a;
Orenstein et al., 2020b). The Scripps Pier is also a sampling
location for the on-going Southern California Coastal Ocean
Observing System (SCCOOS) HABMAP monitoring program
(Kim et al., 2020) that has been enumerating HAB taxa from
weekly water samples since 2008. The methodology employs
hand-acquired water samples and a modern variant of the
June 2022 | Volume 9 | Article 869088
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Utermöhl method to count a variety of plankton and estimate the
abundance of HAB formers (Utermöhl, 1931; Utermöhl, 1958;
Karlson et al., 2010). Here, we reference those lab-based
abundance estimates as the most widely accepted and
traditional method that provides a baseline for comparing our
automated methods that are based on automatically classified
SPC data. If successful, the automated analysis workflow would
provide an efficient, continuous monitoring system to detect and
monitor phytoplankton and provide real-time, detailed, and
reliable HAB warnings. The detection performance of both the
imaging system itself and automated classification is evaluated in
this study.

In this study, we compare the automated workflow for
plankton count estimates obtained via CNN classification of
the SPC images (SPC+CNN-Pier) to those derived by a plankton
taxonomist counting hand-acquired, preserved samples under a
microscope in the lab (Lab-micro). As a bridge between the two
methods, a subsample of the hand-acquired bottle sample was
imaged by a benchtop version of the SPC (SPC-Lab) and
classified with an identically trained CNN (SPC+CNN-Lab).
The complimentary analyses of images collected by SPC-Pier
with the (Lab-micro) images allowed us to quantify the
“effective” imaging volume of the SPC Lab and Pier systems.
The complication arises as they employ a dark field method of
illumination (Orenstein et al., 2020a) that we have found to
produce optimal contrast to aid in identification. This leads to
some ambiguities in the sampling volume. Another factor is that
the orientation dependence of plankton may provide views that
are hard to assign to a specific organism.
2 MATERIALS AND METHODS

Data for this study were obtained from three methods: (i) lab-based
manual enumeration of collected water samples (Lab-micro), (ii)
lab-based imagery of collected water samples (SPC-Lab), and (iii)
imagery of plankton communities in situ (SPC-Pier). Water
samples for lab-based analyses were collected from the Ellen
Browning Scripps Memorial Pier in La Jolla, CA (32°52.02´N,
117°15.300´W) twice a week in the morning from May through
October 2019. Five 2-liter bucket samples (total 10L) were collected
from the surface at a depth of approximately 0.5 m. 2 L were then
allocated for enumeration using traditional microscopy with the
remaining 8 L imaged by the benchtop version of the SPC.

2.1 Traditional Microscopy Analysis:
Lab-Micro
Plankton were enumerated using the Utermöhl method for
quantitative phytoplankton analysis via the routine monitoring
program carried out by SCCOOS, referred to as “Lab-micro”
throughout this paper. Seawater was concentrated in sedimentation
chambers after being fixed in a 4% formaldehyde solution prior to
manual counting. Once the sample settles, the upper chamber is
removed and replaced with a glass cover slip that is placed under an
inverted microscope. Cells are then classified to the lowest possible
taxonomic level at 200x magnification and counted by a human
expert (Utermöhl, 1931; Utermöhl, 1958; Karlson et al., 2010).
Frontiers in Marine Science | www.frontiersin.org 3
SCCOOS technicians typically examine the organisms from settling
10 or 50 mL of seawater. However, the sample volume enumerated
here, ranged from 1.25 mL to 2.68 mL based on the abundance of
phytoplankton. To account for the variation in settling volumes, we
normalized the counts as the fraction of organisms that would have
beenobserved if thevolumewas1.76mLvolume.AlthoughSCCOOS
monitors a variety of species, here, we focus on the following 9 taxa:
Akashiwo sanguinea, Ceratium falcatiforme and fusus, Ceratium
furca, Chattonella spp., Cochlodinium spp., Gyrodinium spp.,
Lingulodinium polyedra, Prorocentrum micans, and Pseudo-
nitzschia spp. as reported in absolute counts from the observed
sample volume thatwas rescaled, if needed, to 1.76ml.The inputdata
fromtheLab-micro systemwas therefore thenumberof counts of the
organisms in the equivalent volume as a function of identified taxa
and the date of collection.

2.2 Automated Imaging Systems: SPC-Pier
and SPC-Lab
The SPC system is a set of two in situ underwater microscopes
(Orenstein et al., 2020a). An onboard embedded computer
identifies and segments out suspected plankton as Regions of
Interest (ROIs). Here, two versions of the SPC-SPCP2 were used:
(i) the SPC-Pier system, installed in situ at the Scripps Pier; and
(ii) the SPC-Lab system – a lab-based version for benchtop
imaging. The microscope uses a 5x objective to image a 2.5 mm x
2.5 mm field of view using dark field illumination that yields 40%
contrast transmittance at 5.0 µm resolution with an image plane
pixel size of 0.74 µm. Using both systems, ROIs (Regions of
Interest) were selected that ranged between 40 µm and 120 µm in
the maximal size dimension of the organism.

The SPC-Pier system was moored at a tidally dependent
average depth of 3 meters (Figure 1A) and collected images at
a rate of 8 frames per second throughout the study period, with a
brief pause in September due to heavy biofouling. To enumerate
“counts” an arbitrary temporal window of +/- 1000 seconds,
yielding 16,000 images, was chosen for evaluation that was
centered around the exact time of the hand-acquired sample.

The SPC-Lab is a reconfigured benchtop version of the SPC-
Pier. To support the imaging of hand drawn samples, it was
augmented with a gravity flow water system so that each 8L water
sample passed through a clear acrylic chamber positioned in the
field of viewof the system (Figure 1B). The samplewas put through
the system at a constant flow rate by routinely replenishing the
elevated water bucket with more seawater to maintain a minimum
of 2 L of fluid. The flow system was flushed with filtered seawater
between samples to prevent cross-contamination.

2.3 Species Selection and
Manual Classification
To form a data set for comparing the observed image counts
from the two SPC systems with those of the Lab-micro, a team of
3 taxonomists sorted all images collected by both SPCs into 10
classification categories, or classes: 9 taxonomy-based categories
that captured each of the target organisms (Figure 2) in the 30
µm and 60 µm size range, and a category ‘other’ that included
images of remaining organisms and particles imaged by the
system. The ‘other’ class is necessary to give both the taxonomists
June 2022 | Volume 9 | Article 869088
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and the automated classifiers a place to put ambiguous objects
and avoid high false-positive rates (Dhamija et al., 2018).

2.4 Sample Selection
Over the course of 5 months, 43 independent plankton samples
were acquired via Lab-micro, SPC-Lab, and SPC-Pier. After a
preliminary data analysis, a subset of 26 days were deemed
suitable for analysis as there were complementary Lab-micro
samples with suitable abundances. We note that these
abundances were suitable if, at least, tens of organisms were
sampled on a fraction of the days. Using the data from the 26
days, a data set consisting of themeasurement of plankton “counts”
using 5 methods (Figure 3) was assembled: (i) traditional
microscopy counts provided by SCCOOS (Lab-micro), (ii)
manual classification of (SPC-Lab), (iii) automated classification,
using a CNN, of images collected by the SPC-lab system (SPC
+CNN-Lab), and, similarly for images collected by the in situ SPC
Frontiers in Marine Science | www.frontiersin.org 4
system, (iv) manual (SPC-Pier) and (v) automated (SPC+CNN-
Pier) classification of images collected by the SPC-Pier.

2.5 Automated Imaging Classification
Using Convolutional Neural Networks
To test the accuracy of automated image classification, we trained
a collection of convolutional neural networks (SPC+CNN-Lab and
SPC+CNN-Pier) and tested them on SPC-Lab and SPC-Pier
images. The details of the implementation of the convolutional
neural network methods are described below.

In training the Neural Networks we use the Residual Neural
Network (He et al., 2015) architecture with 18 layers (ResNet-18).
The relatively shallow network design is quick to train and less
likely to overfit to the relatively small training sets we collected
(Tetko et al., 1995). Network training followed standard practices
in the machine learning literature, namely using stages of training,
cross-validation, and testing (Table 1).
A B

FIGURE 1 | The Imaging Systems. (A) SPC-Pier, SPC-MICRO Underwater Camera. (B) SPC-Lab, Benched laboratory configuration of SPC-MICRO.
A B D E F G I*HC

FIGURE 2 | Images of 9 taxa from the SPC-Pier, SPC-Lab systems. (A–I) Akashiwo sanguinea, Ceratium furca, Chattonella spp., Cochlodinium spp., Gyrodinium
spp., Lingulodinium polyedra, Prorocentrum micans, and Pseudo-nitzschia spp. (I)* Is a lab microscopy photo of Pseudo-nitzschia sp. as the SPC imaging systems
produced unsuitable images.
June 2022 | Volume 9 | Article 869088
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In all experiments, images were subject to random affine
transformations – rotations and translations. This type of data
augmentation enables the creation of additional training
examples. Prior to the random affine transformations, images
are padded into a square image and resized into 224 x 224
pixels. All networks were trained with the cross-entropy loss for
50 epochs. However, throughout each phase of the training
procedure, the loss was weighted inversely proportionally to the
class distribution of the corresponding training dataset, to
mitigate potential class imbalance problems (Wang et al.,
2017). Note this also includes recomputing the weight of the
loss of each during cross-validation. Model weights that
achieved the lowest loss on the validation set during training
the 50 epochs were utilized.
Frontiers in Marine Science | www.frontiersin.org 5
The SPC+CNN for both lab and pier was trained in two fine
tuning stages: (i) We fine-tuned a ResNet-18 pre-trained on the
ImageNet database (Deng et al., 2009) with SPC phytoplankton
images. (ii) The resulting network was again fine-tuned on just
the ten classes of interest using images collected by either SPC-
Pier or SPC-Lab. Fine tuning repurposes the parameters of a
network trained for a particular task to a different target. The
procedure reduces training time and improves accuracy when
training with small datasets (Yosinski et al., 2014). Double fine
tuning further adapts each network to subtle differences between
the SPC-Pier and SPC-Lab data after learning more general
representations of plankton (Orenstein and Beijbom, 2017).

The first fine-tuning step uses a labeled phytoplankton training
set from the SPC-Pier system that comprised of 37,147 images
TABLE 1 | Overview of training, validation, and test datasets to train the SPC+CNN.

Dataset Fine-tuning Stage Data # Classes # Images

Phytoplankton-Train 1 Train 30 29,196
Phytoplankton-Val 1 Validation 30 19,773
SPC-Pier (n=25 dates) 2 Train 10 avg ~19,000
SPC-Pier (n=1 date) 2 Test 10 778
SPC-Lab (n=1 date) 2 Test 10 745
June 2022 | Volume 9 | A
FIGURE 3 | A diagram that compares the sampling methods and the 5 resultant data sets: Lab-micro, SPC-Lab, SPC+CNN-Lab, SPC-Pier and SPC+CNN-Pier.
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spanning 51 classes (Kenitz et al., 2022). This dataset was
produced by 15 expert taxonomists and 5 non-taxonomists from
the US West Coast during a two-day workshop whose main goal
was to collect images for training the CNNs. This workshop
dataset came from an earlier portion of the SPC-Pier time series
and has no temporal overlap with the images acquired in our
experiment. Experts sorted the annotated images into 44
taxonomic classes and 7 noise categories, which included the 9
species of interest. The workshop dataset was adjusted by
combining categories of the same species tagged with semantic
descriptors such as the number of cells (e.g., Ceratium furca pair
vs. single) and eliminating categories with fewer than 300 images.
This resulted in a total of 30 classes, 24 identifiable species and 6
noise categories. 80% of the 36,496 images were then randomly
chosen for training (Phytoplankton-Train) and the remaining
20% used for validation (Phytoplankton-Val) (Table 1).

The second fine-tuning step had two objectives: (i) force the
network to recognize only the 9 species of interest and the
background class ‘other’ of our study; and (ii) account for
dataset shift, the well-known property of classifiers to be
sensitive to changes in the input data, both the appearance of
the images and the relative distribution of the classes between
training and testing (Moreno-Torres et al., 2012; He et al., 2015;
González et al., 2019; Orenstein et al., 2020b). In this step, the
classifier is fine-tuned to the collected SPC-Pier dataset, which
was partitioned in a leave one-out cross-validation manner for
training and testing. Specifically, the model is trained on data
from all dates from the SPC-Pier except for one, which is used as
a held-out test set (Table 1). The same procedure is repeated
several times with each sampled date being used as a held-out set
once, and performance metrics are averaged across all 26 days.
The training sets for each cross-validation iteration contain
approximately 39,000 images, and test sets respectively holding
out 745 and 778 for the SPC-Pier and SPC-Lab.

In implementing the first stage, the base ResNet-18 model
pretrained on ImageNet was fine-tuned for 50 epochs on the 30-
class phytoplankton taxonomy workshop dataset. Model weights
that achieved the lowest loss on the validation set during the 50
epochs were utilized. In this stage, themodel achieved an accuracy
of 95.5% on the Phytoplankton-Train set and accuracy of 95.2%
on the Phytoplankton-Val set. The second stage was initialized
with the model weights learned in the first stage, where the final
layer was replaced with a layer of 10 outputs (9 categories of
interest plus Other). Fine-tuning to the leave-one-out cross-
validation training datasets was performed for an additional 50
epochs with model weight selection corresponding to the lowest
training loss. This resulted in a collection of 26 trained models,
where eachmodel is tested on an independent date from the SPC-
Pier and SPC-Lab dataset.

All models were trained with an initial learning rate of 0.001
and a batch size of 16 using the Adam optimizer (Kingma and
Ba, 2014). Models were trained on an NVIDIA Titan Xp GPU.
Python code used to train and evaluate the models is available at
https://github.com/hab-spc/hab-ml.

There are several examples of dataset shift between our
training sets, notably the slight variations in illumination
between images captured by the SPC-Pier and SPC-Lab
Frontiers in Marine Science | www.frontiersin.org 6
systems (Figure 2). The restriction of fine-tuning to only the
SPC-Pier image dataset is specifically designed to examine the
potential effects of dataset shift when the classifier is deployed on
a new target domain, in our case the SPC-Lab. Training on SPC-
Pier and testing on SPC-Lab data is a proxy for the more general
transfer of a classifier trained on an in-situ imaging system to an
in vitro imaging system.

2.6 Analyses of the Three
Sampling Methods
To compare the three sampling methods, we used the total number
(counts) of organism identification for each of the 10 categories
collected on each of the 26 independent days. Given the species-
specific counts, we performed 1) an assessment of the classifier
performance and 2) a comparison between the Lab-micro counts
andSPC+CNNcounts.Acomparisonbetween theLab-micro counts
and manually enumerated SPC counts is also included to establish a
baseline unaffected by CNN classifier errors. Although relative
abundance is a widely used measure of plankton distributions, we
use the number of counts of each species as a function of date, for two
reasons: (1) Comparisons of relative abundance are sensitive to
numerical instability caused by frequent counts of 0 or 1. (2) The
effective interrogation volume of the SPC systems varies from species
to species, due to both the focus dependent darkfield imaging as well
as the effects of randomorientations. As such, an important aspect of
our work is the estimation of an “effective sampling volume” for each
species as elaborated below.

2.6.1 Volume Computation Analyses
In all experiments, the volume VLab-micro of water used by lab
procedure was standardized to 1.76 mL, while the counts of the
SPC-Pier systemwere integratedover 2000 seconds of images taken
at 8 Hz, resulting in 16,000 images. Under the assumption that the
concentration of species counted by each method is the same,

CSPC+CNN

VSPC+CNN
=
CLab−micro

VLab−Micro
, Equation 1

where VSPC-CNN is the effective volume imaged by the SPC
system and C denotes counts. Now, defining the ratio a
between the two volumes as

VSPC+CNN = aVLab−micro Equation 2

leads to the linear relationship

CSPC+CNN = aCLab−micro, Equation 3

between SPC+CNN and Lab-micro raw counts. This was the
model used to relate the SPC+CNN counts of both the Pier and
lab implementations to Lab-micro counts in our study. The
scaling factor a was estimated by computing a linear regression
between each pair of counting methods.

2.6.2 Counting Analyses
Counts are compared across the 3 sampling methods, for both
manually enumerated SPC and automated SPC+CNN counts. A
separate model is fit for each of the 9 species using the linear
regression model of (3) across all 3 pairs: SPC+CNN-Lab vs. Lab-
June 2022 | Volume 9 | Article 869088
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micro; SPC+CNN-Pier vs. Lab-micro; and SPC+CNN-Pier vs.
SPC+CNN-Lab. The model of (3) was fit with a linear-linear least
squares estimator, assuming zero intercept. However, for display
purposes, the data was transformed to a log scale. Given the
computed linear regression between each pair of counting
methods, quantitative comparisons are obtained by computing
the Pearson correlation coefficient, a measure of linear
correlation between two variables, and the percentage R2of the
variance explained by the model relative to the total variance. In
conjunction with the factor a, these measurements express how
related the counting methods are.

2.6.3 Classification Analyses
Our collection of double fine-tuned classifiers is applied to the 26
daily test sets from which 21,211 images were extracted from the
SPC-Lab and 20,148 images from the SPC-Pier that were then
manually classified into the 10categories.CNNPerformance results
are then averaged across the test sets. Classification performance is
assessedby1) accuracy (ACC), the fractionof correctpredictions, 2)
mean class accuracy (MCA), the average correct predictions over
each individual class, and 3) the F1 score, a commonly used metric
for scoring class-imbalanced problems. Together, these metrics
capture both model generalization ability and bias towards highly
populated classes – ACC characterizes the overall classifier
performance while MCA and F1 scores assess how well the
system does on a per-class basis. Significant differences between
the three metrics indicate that a method favors common classes
while underperforming for rare ones.
3 RESULTS

Given the 26 independent samples, the datasets were largely
dominated by the ‘other’ category (83% of the SPC-Pier total and
Frontiers in Marine Science | www.frontiersin.org 7
92% of the SPC-Lab total). The resulting manual counts are
denoted as SPC counts. CNN-produced counts on the same
dataset are denoted SPC+CNN counts. Lab-micro counts were
produced by a biologist, using traditional microscopy.

3.1 Analysis of the Neural Net Results
In general, Lab-micro collected more total counts of the 9 target
species, over the set of images, than the SPC systems (Figure 4A).
Averaged over all 26 independent samples, Lab-micro count data
was predominantly composed of 3 common species: Pseudo-
nitzschia spp., Lingulodinium polyedra, and Prorocentrum
micans (Figure 4B). The latter two also dominated SPC-Lab
and SPC-Pier counts. However, in the case of the SPCs, the
Pseudo-nitzschia spp. counts were notably fewer. Although there
is some uncertainty in the inability of the SPCs to reliably detect
the Pseudo-nitzschia spp., we suspect that it is likely because the
thickness of this pennate diatom is close to the resolution limit of
the system as well as the fact that a needle like structure, when
subject to a uniformly random 2-dimensional view will be
difficult to see in many of its orientations. The remaining taxa
of interest, namely Akashiwo sanguinea, Ceratium falcatiforme
or C. fusus, Ceratium furca, Chattonella spp., Cochlodinium spp.,
and Gyrodinium spp., were more often observed by the SPCs
than the Lab-micro suggesting that the methodology has some
taxonomic dependence.

Inspection of the confusion matrices for the CNN
performance of SPC-Pier versus SPC-Lab (Figure 5A)
confirmed that the CNN performed significantly better on the
SPC-Pier than on the SPC-Lab data, as expected from the MCA
and F1 score difference shown in Table 2. For half of the tested
species (Akashiwo sanguinea, Ceratium furca, Cochlodinium
spp., Lingulodinium polyedra, Prorocentrum micans) the
accuracy dropped more than 10% from SPC -Pier to SPC-Lab,
especially Lingulodinium polyedra (Figure 5B). This is a
A

B

FIGURE 4 | Enumerated plankton taxa. (A) Time series of total counts as obtained by traditional methods (LAB-micro) and manual image classification of lab
samples (SPC-Lab) and in situ (SPC-Pier). (B) Average count per day per species collected by each method.
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manifestation of the domain shift between the SPC-Pier and
SPC-Lab imaging methods: the lab flow-through system
appeared to result in more out-of-focus images that rendered
the species differentiation more difficult. This was not
unexpected, given that the model is only trained on SPC-Pier
data, however, it does illustrate that deployment of the same
imaging system can vary, likely due to difference in lighting and
any orientation effects that are due to flow.

3.2 Classification Performance and
Comparison of the Lab Micro vs
SPC+CNN
Results indicate that the CNN achieved averaged test accuracies
of 92% on both the SPC-Lab and SPC-Pier data (Table 2). The
averaged ACC, MCA, and F1 Score performance was measured
for a CNN tested on independent samples from the 26 SPC-Pier
and SPC-Lab image datasets. The MCAs were lower (68 and
74%) suggesting an unbalanced performance across classes. This
discrepancy between the metrics is originated by class population
imbalance, due to the fact that some species were observed
TABLE 2 | Average classification results of a double fined-tuned model tested on inde

Dataset ACC

SPC-Lab 0.92
SPC-Pier 0.92

Evaluation metrics used are accuracy (ACC), mean class accuracy (MCA), F1 Score.
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relatively rarely under the SPC setting (e.g. Ceratium
falcatiforme or C. fusus, Chattonella spp., and Pseudo-nitzschia
spp.). This results in less training data to effectively learn the
species’ morphology. The F1 scores were the lowest of the three
(.47 and.64), due to the CNNs’ frequent overestimation of the
count of HAB species, which is penalized in the F1 score for poor
precision. These results show that the CNN performs with high
accuracy for the classes that are relatively abundant in the
training data. Class imbalance in the training dataset can have
a large effect on the learned model and is a well-established
feature of training CNNs on natural populations.

The Pearson correlation analysis on the intermediary
comparison of the Lab-micro and manually enumerated SPC
counts (Figure 6) reveals high-to-very high correlations between
the sampling methods on 4 out of the 9 species – Akashiwo
sanguinea, Cochlodinium spp., Lingulodinium polyedra, and
Prorocentrum micans – representing a mix of abundant and
rare organisms (Figure 6A). The comparison for Ceratium furca
revealed moderate correlations between both SPC methods and
the Lab-micro (0.58 and 0.70). The other 4 species, Ceratium
A

B

FIGURE 5 | Quantification of the classification accuracy for SPC test sets. (A) Confusion Matrix. (B) Diagonal class accuracies of confusion matrix sorted in a
descending fashion from left to right.
pendent held out samples collected by the SPC-Pier and SPC-Lab.

MCA F1 Score

0.68 0.47
0.74 0.64
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falcatiforme or C. fusus, Chattonella spp., Gyrodinium spp., and
Pseudo-nitzschia spp., demonstrated a pattern of low correlation
scores scoring correlation scores for two out of the three pairs.

In general, the SPC+CNN vs. Lab-micro correlations
produced similar results to the baseline correlation values
between the manually enumerated SPC vs. Lab-micro counts
(Figure 6B). The same 4 species that previously produced high-
to-very high correlations were consistent when using SPC+CNN
counts, with correlation value differences up to 10%. The
correlation differences were due to the previously mentioned
unbalanced performances across the classes from the SPC+CNN,
that arises from using imbalanced training data. In the case of the
SPC+CNN-Lab vs. Lab-micro, we observed that many
correlation scores dropped, which can be attributed to the
domain-shift problem.

Figures 7, 8 display the linear fit between the enumerated
counts for each of the sampling methods across the various taxa as
computed by the regression model across the 3 possible data
sources (Lab-micro, SPC+CNN-Lab and SPC+CNN-Pier). As can
be seen, the proportionality approximation conveys that the SPC
+CNN-Pier’s sampling of an aggregate volume over the 2000
seconds recorded nearly twice the number of images of the SPC
+CNN-Lab. In addition, a majority of the five species showed non-
existing-to-poor linear relationships between the Lab-micro and
SPC+CNN counts. The linear fit for the Pseudo-nitzschia spp.
showed little ability to model the relationship between the SPC
+CNN and Lab-micro, as the SPCs detected the species poorly.
Frontiers in Marine Science | www.frontiersin.org 9
Gyrodinium spp. were mostly absent from the Lab-micro,
preventing a comparison via linear regression between the
sampling methods. Species that had previously demonstrated
low classification performance resulted in poorer relationships
when computing the linear regression for the CNN-based pairs of
counting methods. Compared to the manually enumerated-based
linear regressions, Ceratium falcatiforme or C. fusus, and
Chattonella spp. showed small R2 values and fit to the slopes
across all 3 possible pairs, suggesting that, possibly, poor
classification performance negatively impacted the linearly
modeled relationships. Ceratium furca also showed some
fluctuations when comparing automated vs manual regressions,
but generally showed only a lack of a linear relationship between
the two data generation methods (Figure 7). Figure 8 shows the
other 4 species where, we note, Akashiwo sanguinea and
Cochlodinium spp. demonstrated a poor fit to the linear
correlation while the L. polyedra and the P. micans were quite
good with R2 scores of (0.97, 0.89). We note that these two species
had the highest number of counts across all three sampling
methods and, conjecturally, the highest concentrations.

As shown in Figure 8, in a manner like the results of the
Pearson correlation analysis for the pair of SPC+CNN-Pier vs.
Lab-micro, we found high R2 values for two of the less-abundant
species (Akashiwo sanguinea, Cochlodinium spp.), and two of the
more-abundant species (Lingulodinium polyedra, Prorocentrum
micans). We also observed that the sizes of the prediction and
confidence bands were related to the frequency of occurrence of
A

B

FIGURE 6 | Pearson Corrélation Coefficient Matrices. Each row compares two of the resultant data and/or CNN estimation of taxonomic presence. Each column is
a corresponding species. Coefficient values are color coded with respect to the species correlation value of the compared setting, in an ascending fashion. (A)
Correlation of Lab-micro vs. manually enumerated SPC counts. (B) Correlation of Lab-micro vs. SPC+CNN counts.
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the species. The two abundant species showed much narrower
prediction and confidence bands, in contrast to the two rare
species, which exhibited wider bands. Discrepancy of the size of
the bands could be due to the low cell counts of the relatively
rare species.

3.3 Volume Computation
An important feature of this work is the computation of the
“effective sampling volume” for the SPC+CNN results. This then
permits the estimate of abundance. Considering the most
abundant and highly correlated species (Lingulodinium
polyedra and Prorocentrum micans) equation (3) can be used
to compute this volume using the slope of the fit as shown in
Figure 7. Given that this slope is (0.39, 2.02) for (L. polyedra, P.
micans) and that the reported Lab-micro samples a 1.76 mL
volume, our cumulative sampling volume for 2000 seconds of
Frontiers in Marine Science | www.frontiersin.org 10
images at 8 Hz is (0.69, 3.56) mL. Then, the “effective sampling
volume” per image is estimated as (0.043, 0.22) mL after dividing
by the 16000 frames. We note that the R2 values for the other 4
categories were too low to be considered and are therefore
not reported.

3.3 Continuous Observation Data
One major advantage of in situ microscopes like the SPC-Pier
system is that they can observe plankton continuously in time.
This permits post processing with a variable integration time to
compute species dependent total counts. In this study, we used a
2000 second integration window that provided 16,000 image
samples (at 8 Hz) that occurred over the period from the end of
May until October 2019 (Figure 9). Here, the continuous grey
line indicates counts of the 4 species that were most confidently
estimated from the SPC+CNN-Pier during both the lab sampling
FIGURE 7 | Relationships between counts of Lab-micro and SPC+CNN methods (less abundant species). Columns highlight pairs of counting methods, rows
demarcate species. The solid line indicates a linear regression model that is coupled with multiple shaded areas indicating the 95% prediction (dark shade) and
confidence interval (light shade). The slope and R2 of the model fit are indicated.
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occurrences as well as other times where there were no manually
collected samples. We note that there was an increase in the
Akashiwo sanguinea and Cochlodinium spp. during and in-
between the lab samples as well as the absence of increased
abundance for the Lingulodinium poleydra as well as the
Prorocentrum micans that were not observed by the Lab-micro
sampling as it was less frequent. The results highlight the
advantages of continuous sampling that is facilitated by an in
situ instrument. Moreover, the agreement when both the Lab-
micro and the SPC+CNN-Pier data were available provides
support to interpret the SPC+CNN-Pier system as valid, with,
naturally, some error bound.
4 DISCUSSION

In recounting the goals of the work reported here, we first sought
to explore the ability of CNNs to correctly classify the images that
were recorded from the SPC systems. Although lab-based
identification of the phytoplankton species is well established,
the correspondence between the traditional methods and our
dark-field microscopes had not been established. In examining
the potential differences between the two methods, Lab-micro vs.
Frontiers in Marine Science | www.frontiersin.org 11
SPC+CNN, there are several factors to consider: the samples
observed by the SPC microscopes experience range-dependent
defocus that is a necessary consequence of the dark-field
illumination. In addition, since the SPC microscopes image
organisms that are freely drifting in the field of view of the
system, a natural assumption is that their orientation, relative to
the viewpoint of the camera, is uniformly distributed. In contrast
to larger zooplankton, such as copepods, our organisms of
interest have fewer morphological differences that are also
confounded by the aspect-dependent views acquired. This
makes the identification more difficult for automated systems
as well as taxonomists viewing the resultant SPC images.

In considering the success of the CNNs to classify the species
present in the images, we found that the imbalanced nature of
datasets significantly influenced the performance of the system.
Class imbalance is a well-studied problem that exists in many
real-world ocean ecosystem datasets (e.g. WHOI-plankton:
(Orenstein et al., 2015), EILAT and RAMAS coral dataset
(Shihavuddin, 2017) in which rare species have far fewer
images than abundant species). To combat this problem, we
applied transfer learning from a less-imbalanced and filtered
dataset to a more-imbalanced and unfiltered one. We also
applied cost-sensitive learning, one of the techniques
FIGURE 8 | Relationships between counts of Lab-micro and SPC+CNN methods. Columns highlight pairs of counting methods, rows demarcate species. The solid
line indicates a linear regression model that is coupled with multiple shaded areas indicating the 95% prediction (dark shade) and confidence interval (light shade).
The slope and R2 of the model fit are indicated. Note that data is displayed logarithmically but was fit linearly.
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commonly used to improve the performance of class imbalanced
classification (Wang et al., 2017). However, the comparatively
low performance on rare classes suggests a limited capability of
our techniques to mitigate the class imbalance problem. For
model improvement, it would be worth experimenting with
other methods, such as an ensemble of CNN models (Lumini
and Nanni, 2019) or applying transfer learning by pre-training
with class-normalized data (Lee et al., 2016). Class imbalance can
also be addressed by collecting data over an extended period,
especially days with significant presence of the organisms from
the classes under-populated in our training set. This is left for
future studies.

Compared to the class imbalance problem of the SPC+CNN,
domain shift is less discussed in deep learning applications in the
ecological literature. However, our results suggest that this problem
deserves critical considerationwhendeep learning systems are to be
deployed in an environment different from that used for training.
Many zooplankton detection systems, such as ZooplanktoNet (Dai
et al., 2016) andZooglider (Whitmore et al., 2019), did not explicitly
address and investigate their deep learning models’ capability to
transfer across domains. When trained purely on SPC-Pier image
data, ourmodelwas not able to replicate its high performance to the
Frontiers in Marine Science | www.frontiersin.org 12
SPC-Lab data, showing noticeably lower-class accuracies (for
example for Prorocentrum micans or Lingulodinium polyedra)
relative to the SPC-Pier. In future research, experimenting with
other domain adaptation techniques, such as similarity learning
(Pinheiro, 2018), or image-to-image translation (Murez et al.,
2018), can help further improve our model. Solving the domain
shift problem is essential to ensuring the reliability of deep learning
automated systems in different environments.

Considering the nine species, or classification categories,
investigated here, the significant correlation between the Lab-
micro counts and the SPC+CNN-Pier data for Prorocentrum
micans and Lingulodinium polyedra indicates that, under the
environmental and lab identification procedures developed here,
the in situ system counts can be transformed into estimates of
concentration that are consistent with traditional microscopy
observations. These correlations were also consistent when using
the manually enumerated SPC counts instead of the SPC+CNN.
The use of the multiplicative scaling factor a in our volume
computation analysis mitigates these effects.

Both the SPC+CNN methods and Lab-micro show gaps in
their ability to detect certain species. Firstly, Lab-micro only
detected Gyrodinium spp. on one day, while both SPC methods
FIGURE 9 | A time series of species presence via “counts” or number of observations by the SPC-pier and the SCCOOS monitoring program during 2019.
Automated image classification was used to produce counts on continuous periods. Most of which were not sampled by the SCCOOS program. Plots are shown for
only the highly correlated abundant and rare species.
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detected it on more than 20 of the 26 days. This is, presumably,
due to the formaldehyde treatment that leads to dissolution and
subsequent misidentification of “naked” species like Gyrodinium
spp. (Costas et al., 1995). On the other hand, the SPC methods
have problems detecting Pseudo-nitzschia spp. Whether this is
due to the inefficiency of the darkfield imaging technique or,
rather, effects related to their chain-like structure when viewed in
3D is unknown. We do note, however, that there may be some
advantages to observing settled samples.

The other major goal of this research was to estimate the
“effective sampling volumes” so that abundance could be
estimated from the SPC+CNN-Pier data. Here, we note that, as
reported on the web site, (spc.ucsd.edu) the SPC2 camera used
here has a “high-resolution image volume” of 0.1 mL and a “Blob
detection volume” of 10 mL. The sample volumes reported in
Table 3 of 0.043 mL and 0.22 mL for Lingulodinium polyedra and
Prorocentrum micans, respectively, for the SPC+CNN-Pier are
not inconsistent, likely due to the system’s single view angle
resulting in ambiguities that prevent the unique identification of
the species. We also note that in comparing the SPC+CNN-Lab
values vs Lab-micro, the proportionalities indicate that the lab
system detected approximately half of those detected by the SPC
+CNN-Pier. The discrepancy may be because the SPC-Lab
samples were taken from the near-surface of the ocean (~
0.5 m), whereas the SPC-Pier samples from a tidally dependent
depth of 3 m. The differences may also arise from orientation-
dependent effects that result from the water flowing past the
SPC-Lab, or differences in the two optical systems, such as
illumination intensity. Less-abundant species (e.g., Akashiwo
sanguinea and Cochlodinium spp.) had reasonable fits between
the SPC-Pier and the Lab-micro, with the SPC-Pier having a
larger slope and hence, a larger estimated sampling volume.
However, the uncertainty of these values is higher due to the
small number of samples.

A distinguishing feature of this analysis is that the “effective
sampling volumes” as computed via comparison with the Lab-
micro calibrations are different for each species (e.g.,
Lingulodinium polyedra and Prorocentrum micans). These
differences in estimated sampling volumes were not entirely
unanticipated, as our dark-field illumination setup acquires an
orientation-dependent image of these organisms, causing CNNs
and expert taxonomists to be less capable of determining the
exact identity of each species. Consequently, our linear fit for
each of the species has a different slope, leading to different
effective sampling volumes that are species dependent.

An important aspect of in situ sampling is that it is capable of
detecting organisms on a 24/7 basis: the in situ microscope can
provide continuous, real-time sampling during periods when
there was no manual data collection (Figure 9). The period from
Frontiers in Marine Science | www.frontiersin.org 13
May to October 2019 provided roughly 128k images via the
automated sampling. The values obtained for Lingulodinium
polyedra and Prorocentrum micans study showed realistic
abundance increases and decreases of both, that occurred
before and after a detected bloom. Rarer taxa, such as
Akashiwo sanguinea and Cochlodinium spp., showed similar
trends, but increases in abundance recorded by the imaging
system were missed by the manual sample collection. Although a
more detailed analysis would be needed to estimate the
confidence in these observations, it seems that these transient
changes in abundance were simply undetected because of the less
frequent sampling by the Lab-micro. This, in turn, highlights the
need for real-time continuous monitoring with less human effort.
Furthermore, the low counts generated by the SPC systems
between July and October indicated that there were no
significant blooms during that time. Given the continuous
nature of the SPC data stream, a set of algorithms could be
implemented to deploy adaptive sampling that would improve
the dynamic range of lab quantification.

One advantage of systems like SPC+CNN that produce real-
time data is their potential for use as an early detection system.
Data-driven insights would then inform decision making in
monitoring programs, such as SCCOOS, for which shore
station leaders have limited information on the daily
abundance level of the HAB species. For example, previous
studies show that it can be advantageous to know the initial
and final periods of a bloom (Stroming et al., 2020). Stroming
et al. (2020) showed the socioeconomic benefit of early HAB
detection and estimated a saving of $370,000 following the early
warning of a 2017 cyanoHAB event in Utah Lake. Given the
statistically robust signals found in the present study for
estimating HAB abundances, the recommended next steps
would be to explore the use of the SPC for supporting
decision-making in such settings.
5 COMMENTS AND RECOMMENDATIONS

The SPC+CNN workflow has shown its capability to
provide real-time, high accuracy detection of certain HABs
species, such as Akashiwo sanguinea Cochlodinium spp.,
Lingulodiniumpolyedra and Prorocentrum micans. Although its
performance is species-dependent, it has shown a high
correlation with the Lab-micro counts in certain cases.
Moreover, this automated workflow can detect rare species
more frequently than the manual method. It also minimizes
manual labor and can provide continuous sampling at a high
spatial and temporal resolution. All of these benefits make the
TABLE 3 | Calibrated SPC+CNN-Pier Sampling Volume Per Image.

Species Proportionality (a) Volume In-Focus (mL)

Lingulodinium polyedra 0.39 4.29 x 10-5

Prorocentrum micans 2.02 2.22 x 10-4
June 2022 | Vo
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SPC+CNN a potentially important tool with the capability to
advance the study of imaging, recognition, and monitoring of
HAB-related phytoplankton. The results suggest that image-
based monitoring systems, supported by high-throughput
automated classifiers, can be a reliable alternative to time-
consuming manual sampling campaigns. Moreover, our
experimental techniques and analyses provide a framework for
future intercalibration studies of innovative new plankton
sampling modalities.
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F. (2012). A Unifying View on Dataset Shift in Classification. Pattern Recog. 45
(1), 521–530. doi: 10.1016/j.patcog.2011.06.019

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., and Kim, K. (2018).
“Image to Image Translation for Domain Adaptation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 4500–4509.

Olson, R. J., and Sosik, H. M. (2007). A Submersible Imaging-in-Flow Instrument
to Analyze Nano-and Microplankton: Imaging Flowcytobot: In Situ Imaging of
June 2022 | Volume 9 | Article 869088

https://doi.org/10.4319/lo.1970.15.5.0825
https://doi.org/10.1093/plankt/fbp102
https://doi.org/10.1111/j.0022-3646.1995.00801.x
https://doi.org/10.7755/FB.111.1.1
https://doi.org/10.7755/FB.111.1.1
https://doi.org/10.1080/17451000.2013.810762
https://doi.org/10.1080/17451000.2013.810762
https://doi.org/10.48550/arXiv.1811.04110
https://doi.org/10.48550/arXiv.1811.04110
https://doi.org/10.1002/lom3.10324
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1093/plankt/fbz023
https://doi.org/10.4319/lo.1975.20.6.0907
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://repository.oceanbestpractices.org/handle/11329/303
https://doi.org/10.1002/lno.11468
https://doi.org/10.1002/lno.11468
https://doi.org/10.6075/J00865GT
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1002/(sici)1522-7189(199905/06)7:3%3C85::aid-nt39%3E3.0.co;2-q
https://doi.org/10.1002/(sici)1522-7189(199905/06)7:3%3C85::aid-nt39%3E3.0.co;2-q
https://doi.org/10.3389/fmars.2019.00196
https://doi.org/10.1016/j.ecoinf.2019.02.007
https://doi.org/10.1016/j.ecoinf.2019.02.007
https://doi.org/10.1002/lom3.10285
https://doi.org/10.1002/lom3.10285
https://doi.org/10.1016/j.patcog.2011.06.019
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Le et al. Benchmarking and Automating Plankton Recognition
Nano- and Microplankton. Limnol. Oceanog.: Methods 5 (6), 195–203.
doi: 10.4319/lom.2007.5.195

Omori, M., and Hamner, W. M. (1982). Patchy Distribution of Zooplankton:
Behavior, Population Assessment and Sampling Problems. Mar. Biol. 72 (2),
193–200. doi: 10.1007/BF00396920

Orenstein, E. C., and Beijbom, O. (2017). “Transfer Learning and Deep Feature
Extraction for Planktonic Image Data Sets,” in 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV). 1082–1088. doi: 10.1109/
WACV.2017.125

Orenstein, E. C., Beijbom, O., Peacock, E. E., and Sosik, H. M. (2015). Whoi-
Plankton-a Large Scale Fine Grained Visual Recognition Benchmark Dataset
for Plankton Classification. ArXiv. Prepr. ArXiv., 1510.00745.

Orenstein, E. C., Kenitz, K. M., Roberts, P. L. D., Franks, P. J. S., Jaffe, J. S., and
Barton, A. D. (2020b). Semi- and Fully Supervised Quantification Techniques
to Improve Population Estimates From Machine Classifiers. Limnol. Oceanog.:
Methods 18 (12), 739–53. doi: 10.1002/lom3.10399

Orenstein, E. C., Ratelle, D., Briseño-Avena, C., Carter, M. L., Franks, P. J. S., Jaffe,
J. S., et al. (2020a). The Scripps Plankton Camera System: A Framework and
Platform for in Situ Microscopy. Limnol. Oceanog.: Methods 18 (11), 681–695.
doi: 10.1002/lom3.10394

Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola, L., Leymarie, E.,
et al. (2021). The Underwater Vision Profiler 6: An Imaging Sensor of Particle
Size Spectra and Plankton, for Autonomous and Cabled Platforms. Limnol.
Oceanog.: Methods 20 (2), 115–29. doi: 10.1002/lom3.10475.

Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and Gorsky, G.
(2010). The Underwater Vision Profiler 5: An Advanced Instrument for High
Spatial Resolution Studies of Particle Size Spectra and Zooplankton. Limnol.
Oceanog.: Methods 8 (9), 462–473. doi: 10.4319/lom.2010.8.462

Pinheiro, P. O. (2018). “Unsupervised Domain Adaptation With Similarity
Learning,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp 8004–8013.

Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., et al. (2016). Fish
SpeciesClassification inUnconstrainedUnderwater Environments Based onDeep
Learning. Limnol. Oceanog.: Methods 14 (9), 570–585. doi: 10.1002/lom3.10113

Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P.,
et al. (2000). Mortality of Sea Lions Along the Central California Coast Linked
to a Toxic Diatom Bloom. Nature 403 (6765), 80–84. doi: 10.1038/47481

Shihavuddin, A. (2017). Coral Reef Dataset, v2. Mendeley Data. Available at:
https://data.mendeley.com/datasets/86y667257h/2

Sinha, E., Michalak, A. M., and Balaji, V. (2017). Eutrophication Will Increase
During the 21st Century as a Result of Precipitation Changes. Science 357
(6349), 405–408. doi: 10.1126/science.aan2409

Smith, J., Connell, P., Evans, R. H., Gellene, A. G., Howard, M. D. A., Jones, B. H.,
et al. (2018). A Decade and a Half of Pseudo-nitzschia Spp. And Domoic Acid
Along the Coast of Southern California. Harmf. Algae. 79, 87–104.
doi: 10.1016/j.hal.2018.07.007
Frontiers in Marine Science | www.frontiersin.org 15
Sosik, H. M., and Olson, R. J. (2007). Automated Taxonomic Classification of
Phytoplankton Sampled With Imaging-in-Flow Cytometry. Limnol. Oceanog.:
Methods 5 (6), 204–216. doi: 10.4319/lom.2007.5.204

Stroming, S., Robertson, M., Mabee, B., Kuwayama, Y., and Schaeffer, B. (2020).
Quantifying the Human Health Benefits of Using Satellite Information to
Detect Cyanobacterial Harmful Algal Blooms and Manage Recreational
Advisories in U.S. Lakes. GeoHealth 4 (9), e2020GH000254. doi: 10.1029/
2020GH000254

Tetko, I. V., Livingstone, D. J., and Luik, A. I. (1995). Neural Network Studies. 1.
Comparison of Overfitting and Overtraining. J. Chem. Inf. Model. 35 (5), 826–
833. doi: 10.1021/ci00027a006

Utermöhl, H. (1931). Neue Wege in Der Quantitativen Erfassung Des Plankton.
(Mit Besonderer Berücksichtigung Des Ultraplanktons). SIL. Proc. 5 (2), 567–
596. doi: 10.1080/03680770.1931.11898492

Utermöhl, H. (1958). Methods of Collecting Plankton for Various Purposes are
Discussed. SIL. Communicat. 1953-1996 9 (1), 1–38. doi: 10.1080/
05384680.1958.11904091

Wang, Y.-X., Ramanan, D., and Hebert, M. (2017). “Learning to Model the Tail,”
in Advances in Neural Information Processing Systems, vol. 30 . Eds. I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R.
Garnett (Curran Associates, Inc), 7029–7039. Available at: http://papers.nips.
cc/paper/7278-learning-to-model-the-tail.pdf.

Whitmore, B. M., Nickels, C. F., and Ohman, M. D. (2019). A Comparison
Between Zooglider and Shipboard Net and Acoustic Mesozooplankton Sensing
Systems. J. Plankt. Res. 41 (4), 521–533. doi: 10.1093/plankt/fbz033

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How Transferable are
Features in Deep Neural Networks? Adv. Neural Inf. Process. Syst. 27. 1–9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Le, Yuan, Syed, Ratelle, Orenstein, Carter, Strang, Kenitz,
Morgado, Franks, Vasconcelos and Jaffe. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2022 | Volume 9 | Article 869088

https://doi.org/10.4319/lom.2007.5.195
https://doi.org/10.1007/BF00396920
https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.1002/lom3.10399
https://doi.org/10.1002/lom3.10394
https://doi.org/10.1002/lom3.10475
https://doi.org/10.4319/lom.2010.8.462
https://doi.org/10.1002/lom3.10113
https://doi.org/10.1038/47481
https://data.mendeley.com/datasets/86y667257h/2
https://doi.org/10.1126/science.aan2409
https://doi.org/10.1016/j.hal.2018.07.007
https://doi.org/10.4319/lom.2007.5.204
https://doi.org/10.1029/2020GH000254
https://doi.org/10.1029/2020GH000254
https://doi.org/10.1021/ci00027a006
https://doi.org/10.1080/03680770.1931.11898492
https://doi.org/10.1080/05384680.1958.11904091
https://doi.org/10.1080/05384680.1958.11904091
http://papers.nips.cc/paper/7278-learning-to-model-the-tail.pdf
http://papers.nips.cc/paper/7278-learning-to-model-the-tail.pdf
https://doi.org/10.1093/plankt/fbz033
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Benchmarking and Automating the Image Recognition Capability of an In Situ Plankton Imaging System
	1 Introduction
	2 Materials and Methods
	2.1 Traditional Microscopy Analysis: Lab-Micro
	2.2 Automated Imaging Systems: SPC-Pier and SPC-Lab
	2.3 Species Selection and Manual Classification
	2.4 Sample Selection
	2.5 Automated Imaging Classification Using Convolutional Neural Networks
	2.6 Analyses of the Three Sampling Methods
	2.6.1 Volume Computation Analyses
	2.6.2 Counting Analyses
	2.6.3 Classification Analyses


	3 Results
	3.1 Analysis of the Neural Net Results
	3.2 Classification Performance and Comparison of the Lab Micro vs SPC+CNN
	3.3 Volume Computation
	3.3 Continuous Observation Data

	4 Discussion
	5 Comments and Recommendations
	Data Availability Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


