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The adverse impact of macroalgal blooms associated with nutrient enrichment on
seagrass habitats and carbon storage potential is an ecological concern. In the present
study, the soil carbon stock and sources were compared between a seagrass meadow
where a serious macroalgal bloom occurred (site M) and an adjacent site without apparent
macroalgae (site R) in a nutrient-enriched lagoon in South Hainan Island, China, to test
whether macroalgal blooms associated with nutrient enrichment would impact the soil
carbon in seagrass meadows. The soil organic carbon (OC) and total nitrogen contents in
the top 30 cm at site M were significantly lower than those at site R. The soil OC stocks
(top 30 cm) were 3.4 and 5.4 Mg C ha-1 at site M and site R, respectively, and no
difference was observed between sampling stations with different distances offshore at
either site. Soil d13C was more enriched and closer to the d13C of seagrass tissues at site
R than at site M. Bayesian stable isotope mixing model analyses suggested that seagrass-
derived material contributed ~50% to soil OC at site R, while at site M, the contribution
was reduced to ~25%. The results suggested that macroalgal blooms associated with
nutrient enrichment could drive the loss of seagrass-derived OC and the OC stock in the
soil, which is worthy of full attention for blue carbon conservation.

Keywords: soil carbon stock, soil d13C, total nitrogen, carbon sources, Enhalus acoroides, priming effect
INTRODUCTION

Seagrass meadows are important blue carbon ecosystems that occur in all coastal areas of the world,
except along Antarctic shores (Hemminga and Duarte, 2000). The organic carbon (OC) stored in
the top metre of soils was estimated to range from 9.8 to 19.8 Pg C in global seagrass meadows,
comparable to the organic carbon stored in the world’s mangrove forests and tidal salt marshes
in.org May 2022 | Volume 9 | Article 8702281
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(Fourqurean et al. , 2012). However, due to various
anthropogenic impacts, seagrass meadows are disappearing or
degraded (Dunic et al., 2021). A global assessment by Waycott
et al. (2009) suggested that seagrasses disappeared at a rate of 110
km2 yr-1 between 1980 and 2006, and the rates of decline have
accelerated since 1990 relative to those before 1940. The decrease
in seagrass extent has resulted in a loss of OC stored in seagrass
soils, in an annual loss of between 63 and 297 Tg C, since the
beginning of the twentieth century (Fourqurean et al., 2012).

Declines of seagrass populations have been observed in many
estuarine embayments, which are often associated with
anthropogenic nutrient loading (Waycott et al., 2009). Nutrient
enrichment by nitrogen fertilization has been found to increase
seagrass biomass and litter production (Armitage and
Fourqurean, 2016; Howard et al., 2016; Qin et al., 2021), which
provide more seagrass-derived detritus to be incorporated into
the soil. However, increased availability of nutrients in the
embayments may lead to b looms o f macroa lgae ,
phytoplankton and epiphytes, which reduces the light available
for photosynthesis and decreases seagrass productivity and
populations, leading to habitat loss and fragmentation
(Burkholder et al., 2007; Han and Liu, 2014; Santos et al.,
2020). Moreover, nutrient enrichment and macroalgal blooms
may impact the quantity and quality of OC storage in seagrass
soils by a ‘priming effect’, which trigger an extra decomposition
of OC after providing exogenous inorganic nitrogen and labile
OC to the soils (Kuzyakov et al., 2000). The priming effect of
exogenous OC input on the soil mineralization of OC have been
found through experimental addition of algal OC to seagrass soil
(Trevathan-Tackett et al., 2018; Liu et al., 2019), or through
comparing the OC contents and compositions among sites
subjected to different nutrient loadings (Liu et al., 2016; Jiang
et al., 2018). These results suggest that macroalgal blooms in
nutrient-enriched embayments may lead to the loss of soil OC in
seagrass meadows, while few studies have examined this effect.

Seagrass meadows are commonly found in China either in the
tropical/subtropical regions in the South China Sea or in the
temperate northern provinces. Hainan Island within the tropical
Indo-Pacific bioregion has been suggested to have the greatest
extent and number of species of seagrass in China (Zheng et al.,
2013), where seagrass mostly occurs in lagoons and on coral
platforms (Wang et al., 2012). Due to threats from sea
reclamation, marine aquaculture and harvest activities, a
massive loss in the seagrass extent has taken place since the
2000s (Chen et al., 2015). In some embayment areas, the nutrient
input from adjacent mariculture has resulted in nutrient
enrichment, macroalgal blooms, and the degradation of
seagrass meadows (Wang et al., 2012). In this study, we
investigated the soil OC stocks and sources in seagrass
meadows in a nutrient-enriched lagoon, namely, Xincun Bay
in southeastern Hainan Island, to test whether macroalgal
blooms would result in a loss of soil organic carbon. We
hypothesized a lower soil organic carbon stock associated with
the macroalgal bloom in the nutrient-enriched area, and the
macroalgal bloom also resulted in a change in the carbon
composition of the seagrass soil.
Frontiers in Marine Science | www.frontiersin.org 2
MATERIALS AND METHODS

Study Area
The Xincun Bay Lagoon is located southeast of Hainan Island,
between 18°22′ –18°47′ N and 109°45′ –110°08′ E (Figure 1A).
The region has a tropical monsoon climate, and the monthly
mean temperature ranged from 20°C to 29°C from 2009 to 2018,
with the highest temperature recorded in June (Weather China,
2022). The monthly mean precipitation ranges from 6-445 mm,
and the annual precipitation is 2011 mm. Tides in the Xincun
Bay area are mixed semidiurnal, with an annual tidal range of
1.34 m.

In the Xincun Bay Lagoon, seagrass meadows occur mainly
along its southern coast on the sandy substrate. The seagrass is
dominated by Enhalus acoroides in terms of biomass, while
Thalassia hemprichii is also commonly found. However,
nutrient enrichment of the lagoon area has occurred in recent
decades due to various anthropogenic activities, including
offshore restaurants and residences, marine aquaculture and
shipping. The inorganic nitrogen concentration in the seawater
around the seagrass sites increased by ~1.5 times between year
2005 and 2013 (Jiang et al., 2018). A recent study reported an
inorganic nitrogen concentration of the seawater with a range of
0.10-0.38 mg N L-1 in 2017 in the lagoon area (Fang et al., 2021).
The nutrient enrichment has resulted in adverse impacts on
seagrass ecosystems, e.g., habitat fragmentation and macroalgal
blooms. A macroalgal biomass up to 19 g m-2 was reported at a
seagrass site close to fish cage culture area in the Xincun Bay, ~5
time as that at a seagrass site with greater distance (~800m versus
3 km) off the culture area (Liu et al., 2016).

In this study, sampling was carried out at two E. acoroides-
dominated seagrass sites (site M and site R) on the southern coast
of the lagoon (Figure 1B). Site M had a longer semi-exchange
time of seawater and stronger cumulative impacts of
anthropogenic nutrient input than site R (Fang et al., 2020),
where intensive overgrowth of macroalgae was observed
(Figures 1C, D). The macroalgae was observed at this location
in 2008, indicating that the algal bloom had been lasted for a
decade before our sampling. Site R represented a reference site
without apparent macroalgal blooms. The two seagrass sites had
similar canopy coverage, density and biomass of E. acoroides
(Table S1), while site M, as observed, presented more
fragmentation of the seagrass canopy. At each of the two sites,
two sampling stations (LW and SW) with different distances
offshore were established. LW was designated the landward
station of the E. acoroides zone, while SW (~150 m away from
LW) signified the seaward zone. The substrate was sandy at these
two sites, consisting of >90% sand (Table S1).

Sample Collection
Soil cores were collected in January 2018 using PVC tubes (inner
diameter 70 mm) with metal cutters on their bottom edges. The
tubes were manually inserted into the soil at the E. acoroides-
covered areas by gently turning the tube until a depth of 30 cm
was reached at each sampling plot. At each sampling station,
whole seagrass samples of E. acoroides (including leaves, roots
May 2022 | Volume 9 | Article 870228
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and rhizomes) were collected in three replicates and transported
to the laboratory. Moreover, macroalgal samples of the dominant
species, Ulva lactuca were collected at site M, and seawater was
sampled in triplicates using plastic bottles in the central lagoon
area during the high tide period to collect the suspended
particulate organic matter (SPOM).

The soils were extruded in the laboratory by inserting a
plunger at the bottom of the cores and carefully drawing the
PVC liner down over the plunger. The soil cores were divided
into subsections at 10 cm intervals. Each subsection was weighed
and then sliced into two halves, with one half oven-dried at 60°C
to determine the water content of fresh samples. The other half
was then air-dried after removing visible animals, plant residues
and stones (> 2 mm). The whole-plant tissues of seagrass were
cleaned of epiphytes and sand and dried at 60°C for 24 h. The
seawater samples, after passing through a 75 mm mesh, were
filtered through a precombusted 0.7 mm GF/F filter to collect the
SPOM. Epiphytes on seagrass leaves were scraped and rinsed
using Milli-Q water and then filtered through a filter.

The OC, total nitrogen (TN) and d13C in the soil and plant
samples were measured using a Thermo Flash EA 1112 HT-Delta
V Advantages system. Air-dried subsamples of soils and seagrass
tissues were placed into silver cups, acidified with diluted HCl
(5%) and then oven-dried at 40°C to remove the carbonates.
Frontiers in Marine Science | www.frontiersin.org 3
Filtered samples of SPOM and epiphytes for isotope analysis
were acidified by fumigation overnight over 1 mol L−1 HCl to
remove inorganic carbonates. The stable carbon isotopic
composition is reported in the d notation as the ratio of the
heavy to the light stable isotope in the sample relative to that of a
standard. The reproducibility of OC and stable isotopic analysis
were 1.2% and 0.2‰, respectively.

Statistical Analysis and Estimation
of Organic Carbon Sources
The normality and homogeneity of variables were checked using the
Shapiro–Wilk test and Levene’s test, respectively, and if necessary,
data were transformed with the Blom method to follow normality
and homogeneity. A parametric three-way analysis of variance
(ANOVA) was conducted to test for any effects of the sampling
site, sampling station and soil depth and their interactive effects.
Differences in the soil OC stocks and variables of the seagrass
samples between the two sites and sampling stations were tested
using two-way ANOVA. One-way ANOVA was used to compare
the differences in variables among the carbon sources. The potential
contributions of the primary sources (seagrass, SPOM, macroalgae
and epiphyte at Site M; seagrass, SPOM and epiphyte at Site R) to
the soil carbon composition were estimated using a Bayesian stable
isotope mixing model, SIMMR.
A B

DC

FIGURE 1 | Locations of Xincun Bay Lagoon (A) and the two seagrass sites (B), and respective typical scenes from the two seagrass sites, site M (C) and site R
(D). Site M represents the nutrient enrichment site with macroalgal blooms, and site R represents the reference site without apparent macroalgal blooms. The panels
A and B were created with image obtained from ArcGIS version 10.3 and National Platform for Common Geospatial Information Services (https://
map.tianditu.gov.cn), respectively.
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RESULTS

Soil Characteristics andOrganic Carbon Stock
The soil bulk density of the top 30 cm was comparable between the
two seagrass sites andbetween the two sampling stations according to
the three-way ANOVA test (Figure 2A and Table S2), while a
difference was found between the surface (0-10 cm) and the 20-30m
layer (Table S3). TheOC content in the top 30 cmof the soil showed
significant differences with the seagrass site and soil depth. The
degradedsitehadOCvalues rangingbetween0.47mgg-1and1.06mg
g-1, whichwere lower than thosemeasured at the site R (0.80-1.86mg
g-1). No significant difference in soil OC content was found with
distance offshore (Figure 2B), and its value was significantly lower in
thebottom layer than in the twoupper layers. Similar spatial variation
patterns of the soil OC density (0.78-2.61 g cm-3) to those of the soil
OC content were observed in this study (Figure 2C), and higher
values were measured at the site R and in the top 20 cm soil layers.
Frontiers in Marine Science | www.frontiersin.org 4
The mean soil TN content was < 0.11 mg g-1 at site M
(Figure 2D), while at site R, the value was higher and reached
0.36 mg g-1. In contrast, site R presented a significantly lower C:N
ratio (in weight) than the values at site M (Figure 2E). There was
no significant change in soil TN and the C:N ratio with either soil
depth or sampling station.

The soil OC stock was higher at site R than at degraded site M
(F=22.661, p<0.01) and was similar between the two sampling
stations (F=0.974, p>0.05). The OC stocks were 3.5 ± 0.4 Mg C
ha-1 (M-LW), 3.4 ± 0.4 Mg C ha-1 (M-SW), 5.8 ± 0.8 Mg C ha-1

(R-LW) and 5.1 ± 1.1 Mg C ha-1 (R-SW) in the top 30 cm soil at
the four seagrass stations.

Characteristics of Primary Sources and
Soil Organic Carbon Sources
The d13C and C:N ratios of the SPOM were -21.89 ± 0.32‰ and
2.44 ± 0.14, respectively, in the Xincun Bay lagoon. The seagrass
A B

DC

FE

FIGURE 2 | Soil parameters of the two sampling stations at the two seagrass sites (M and R) in the Xincun Bay lagoon: (A) bulk density, (B) OC content, (C) OC
density, (D) TN content, (E) C:N ratio and (F) d13C. LW, landward station; SW, seaward station.
May 2022 | Volume 9 | Article 870228
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tissues had comparable d13C, OC, TN contents and C:N ratios
between the two seagrass sites and between the two sampling
stations (Table 1 and Table S4). Seagrass tissues had the most
enriched 13C, and their d13C values were -8‰. The epiphytes had
lower mean d13C and C:N ratios than the macroalgal and
seagrass tissues; the macroalgal and seagrass tissues had
comparable C:N ratios.

There were significant main effects of the seagrass site,
sampling stations and soil depth on the soil d13C, and a
significant interaction of the seagrass site with sampling depth
was found (Figure 2F and Table S3). The soil d13C were more
enriched at site R and were closer to the d13C of the seagrass tissues
at each soil layer. No significant difference in soil d13C with soil
depth was found at site M, while the value became less negative
when soil depth increased at site R. The soil d13C followed an
increasing trend with soil OC (r=0.553, p<0.01). The SIMMR
mixing model estimations showed a dissimilarity in the
composition of carbon sources as assigned to the top 30 cm of
the soil (Table 2). At site R, seagrass-derived material likely
contributed more than the epiphytes and SPOM, and its
respective proportional contribution was similar between the
two stations. At site M, the seagrass reduced its contribution to
the soil OC relative to its performance at site R, and macroalgae
had a greater contribution than seagrass at both sampling stations.
DISCUSSION

The present study compared the ecosystem OC stocks and soil
carbon sources between the two seagrass sites in the nutrient-
enriched lagoon, and the results showed that the OC content in
the top 30 cm soil at the degraded seagrass site where macroalgae
overgrew (site M) was 37% lower than that at the site R less
impacted by macroalgae, with a low soil OC stock and more
negative d13C value. The results suggest that macroalgal blooms
due to nutrient enrichment would impact the soil OC stock and
the carbon composition of seagrass soil. We also found
differences in the soil TN content and C:N ratio between the
two seagrass sites.

The OC stocks in the Xincun Bay were 3.4 and 5.4 Mg C ha-1

in the top 30 cm of the soil at site M and site R, respectively,
which were lower than the soil OC stocks at the same depth
Frontiers in Marine Science | www.frontiersin.org 5
reported in other seagrass meadows in the tropical and
subtropical areas (Lavery et al., 2013; Miyajima et al., 2015;
Serrano et al., 2021; Table S5), especially those in North Sulawesi
in Indonesia (32-68 Mg C ha−1, Chen et al., 2017) and the
Colombian Caribbean (50-85 Mg C ha−1, Serrano et al., 2021).
The low soil OC stock in the Xincun Bay was attributed to the
low OC content in the sandy seagrass soil. The soil OC contents
(0.47-1.86 mg g-1) at our sampling sites are comparable to those
reported by Jiang et al. (2018) at other seagrass sites (0.5-2.3 mg
g-1) in Xincun Bay and are much lower than the values reported
at other seagrass sites (Table S5) and the global average OC
content, 25 mg g−1, in seagrass soils (Fourqurean et al., 2012).
Previous studies have suggested a low OC content strongly
related to a high proportion of coarse grain size of seagrass
soils (Dahl et al., 2016), and that the OC in coarse-grained soils is
more refractory than in fine-grained soils (Howard et al., 2021).

The present study measured a lower soil OC content and
stock at the site M where macroalgal bloom had occurred for no
less than a decade than at the site R, and we consider that the
macroalgal bloom due to nutrient enrichment may result in the
loss of OC in seagrass soils. The macroalgal bloom reduces
advective water exchange in seagrass meadows, and the rapid
decomposition of macroalgal materials produces more labile
carbon as a potential source of soil OC. Experimental additions
of algal tissues to seagrass soils have shown promoted invertase
and polyphenol oxidase activities in the soils (Liu et al., 2019)
and stimulated metabolism and loss of recalcitrant components
(lignin and lipids) in the seagrass litter (Liu et al., 2020) or in the
soils (Trevathan-Tackett et al., 2018). During our sampling, we
observed a deposited liquid layer with a dark brown colour over
the soil surface from macroalgal decomposition at site M. The
priming effect of the labile OC released from the rapid
decomposi t ion of macroalgae would st imulate the
mineralization and loss of intrinsic OC in the seagrass soil at
site M in this study. The soils in fertilized nutrient-enriched
seagrass meadows were also found to present stimulated
exocellular enzyme activities associated with carbon cycling
(López et al., 1998; Liu et al., 2017), which are suggested to
enhance the decomposition and consequent loss of soil OC in
coastal wetlands (Luo et al., 2017). The soil OC contents at our
sites before the macroalgal bloom were not available; however,
we suspect that the soil OC content before macroalgal bloom at
TABLE 1 | d13C, organic carbon (OC) content, total nitrogen (TN) content and C:N ratio (in weight) of macroalgae (Ulva lactuca), epiphytes and seagrass (Enhalus
acoroides) samples in the Xincun Bay Lagoon.

Station d13C (‰) OC content (%) TN content (%) C:N ratio

Ulva lactuca -12.29 ± 0.60 25.7 ± 0.7 2.60 ± 0.20 9.9 ± 0.5
Epiphytes
Site M -16.48 ± 0.47 na na 3.8 ± 0.8
Site R -14.78 ± 0.64 na na 4.6 ± 0.2
Enhalus acoroides
Site M-LW -8.26 ± 0.48 35.5 ± 1.4 3.10 ± 0.09 11.4 ± 0.6
Site M-SW -8.17 ± 0.72 34.5 ± 1.1 3.23 ± 0.51 10.9 ± 2.1
Site R-LW -8.16 ± 0.28 35.1 ± 2.6 2.66 ± 0.31 13.4 ± 2.3
Site R-SW -8.01 ± 0.18 35.3 ± 1.2 3.04 ± 0.41 11.8 ± 2.1
May 2022 | Volume 9 | Artic
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site M was no less than that at site R, because site M had had a
longer semi-exchange time of seawater and reduced wave energy,
which favours the burial of more organic carbon in the soil
(Mazarrasa et al., 2021). The lower soil OC content and stock at
the site M therefore indicate a loss of OC relative to the site R.

Decrease in OC content with depth is a common feature of
soil profile of OC in seagrass meadows (Fourqurean et al., 2012),
as was found at the site R in this study. The upper layer at the site
M as the interface of macroalgae and soil, receives high
macroalgal OC loading. A more pronounced loss of soil OC
therefore may be expected at the upper layer relative to the
deeper layers, leading to different soil profile of OC at the site M
from that at site R. This is contrarily to our result at the site M
showing a lower OC content in the 20-30cm layer than the upper
layers. We consider that the loss of soil OC in the deeper layer
could also be apparent because the macroalgal OC could reach
the deeper layer of the sandy soil through penetration and
bioturbation, and trigger the mineralization of OC at a higher
rate than that in the upper layers (Trevathan-Tackett et al.,
2018). Soil profile of d13C at the two sites suggested a more
pronounced impact of macroalgal bloom on the OC composition
in the deeper layer. Moreover, the low OC content in the deeper
layer may also be attributed to continuous burial of depleted OC
by macroalgal bloom along with the sedimentation. However, the
lack of dating of soil in this study would affect the interpretation
of the observed differences in soil OC with seagrass site and soil
depth; further studies are therefore deserved to investigate the
priming effects of macroalgal bloom on the soil profile of OC
content and composition, with the duration of macroalgal bloom
and dating of soil considered.

Seagrasses contribute to the OC sequestration in their soils in
the form of their above-/belowground litter, and ~16% of their
net primary production was estimated to be buried in the soil
pool of the global seagrass meadows (Duarte and Krause-Jensen,
2017). The seagrass canopy also enhances the deposition of
imported organic matter by tides by trapping seston particles
by seagrass leaves and reducing the particle-carrying capacity of
the water (Chen et al., 2017). Studies have demonstrated that the
soil OC sequestration and stock in seagrass meadows are highly
related to the vegetation population (Serrano et al., 2019; Bedulli
et al., 2020), while the loss of the seagrass canopy would result in
the erosion of soil carbon stocks (Marbà et al., 2015). In this
study, there was no significant difference in the seagrass
population of the sampled patches between the two sites
(Table S1); however, the fragmentation of the seagrass habitat,
a finding also reported by Santos et al. (2020), would also
contribute to the loss of OC in the seagrass soils at site M
Frontiers in Marine Science | www.frontiersin.org 6
because continuous meadows have a stronger carbon-holding
capacity than patchy ones (Ricart et al., 2015; Ricart et al., 2017).

The soil d13C values measured at the two seagrass sites reflect
a different carbon composition between these two sites. Organic
carbon in seagrass soil is potentially derived from seagrass and
allochthonous sources, including phytoplankton and epiphytes
(Kennedy et al., 2004). Previous studies recognized seagrass
tissue as the major contributor to the soil carbon pool under
the seagrass canopy, with a global mean of ~50% of the carbon in
the surface soil derived from seagrass sources (Kennedy et al.,
2010). The soil d13C in this study fell within a narrow range
between -11.8‰ and -13.8‰ at the site R, closer to the seagrass
signature than the SPOM, indicating a potentially major
contribution of seagrass material to the soil OC composition.
The soil d13C was more negative at the degraded site M due to the
incorporation of more 13C-depleted sources (e.g., macroalgae)
and mineralization of seagrass detritus in the soil, as reflected by
the increase in soil OC with less negative d13C. In our study, soil
cores were collected in the E. acoroides-covered area, and E.
acoroides and U. lactuca were sampled as the single sources of
seagrass and macroalgal, representatively. During our sampling,
T. hemprichii and another macroalgal Enteromorpha sp. were
also found, and they had a similar d13C to those of E. acoroides
and U. lactuca, respectively (Tables 1, S6). Other studies also
reported a similar d13C of whole plant samples between T.
hemprichii and E. acoroides, and a similar d13C of Hypnea
boergeseni, another species ever observed in the seagrass sites,
to that of Ulva species in the Xincun Bay (Liu et al., 2016; Jiang
et al., 2018). Regarding the dominance of the E. acoroides and U.
lactuca and the similarity in d13C between seagrass/macroalgae
species, we consider that the carbon sources extrapolated using E.
acoroides and U. lactuca signatures could be representative.

In the present study, we found a more rapid decline in the soil
TN content than the OC content, leading to a higher soil C:N
ratio at the degraded site, suggesting that nutrient enrichment
and macroalgae would impact N metabolism in seagrass soil. We
suspect that the soil microbes supplied with labile macroalgal or
epiphytic sources with lower C:N ratios than the soil values
would consume nitrogen in the seagrass soils. Further studies are
needed to investigate the soil nitrogen metabolism in seagrass
meadows under nutrient enrichment and macroalgal impacts.
CONCLUSION

In this study, we measured a lower soil OC content and stock at
the nutrient-enriched seagrass site where macroalgae bloom than
TABLE 2 | Means and ranges of proportional contributions of the potential sources to the soil organic carbon at the two seagrass sites in the Xincun Bay Lagoon.

Station SPOM Seagrass Macroalgae Epiphytes

Site M-LW 19.1 (0-52) 22.3 (0-62) 29.6 (0-88) 29.0 (0-87)
Site M-SW 21.5 (0-55) 20.0 (0-58) 27.5 (0-83) 31.0 (0-92)
Site R-LW 16.1 (0-39) 50.0 (19-75) – 33.9 (0-81)
Site R-SW 17.8 (0-42) 45.1 (13-71) – 37.2 (0-87)
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at the site without apparent macroalgae located in the same
lagoon and suggest that the degradation in the seagrass habitat
and the macroalgal bloom due to nutrient enrichment drove the
loss of seagrass-derived OC in the soil pool. The seagrass soils at
Xincun Bay are relatively OC-poor and have low OC stocks, and
we consider that the loss of the limited OC sequestered in the soil
due to the priming effect of macroalgal bloom is worthy of full
attention. Our results also suggest that nutrient enrichment and
macroalgae would impact nitrogen metabolism, which deserves
future detailed studies.
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