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Mačić V, Montefalcone M, Pergent G,  

Pergent-Martini C, Ricart AM and 
Reinartz P (2022) Spatially Explicit 
Seagrass Extent Mapping Across  

the Entire Mediterranean. 
Front. Mar. Sci. 9:871799. 

doi: 10.3389/fmars.2022.871799

Spatially Explicit Seagrass Extent 
Mapping Across the Entire 
Mediterranean
Dimosthenis Traganos 1*, Chengfa Benjamin Lee 1, Alina Blume 1, Dimitris Poursanidis 2, 
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The seagrass Posidonia oceanica is the main habitat-forming species of the coastal 
Mediterranean, providing millennial-scale ecosystem services including habitat 
provisioning, biodiversity maintenance, food security, coastal protection, and carbon 
sequestration. Meadows of this endemic seagrass species represent the largest carbon 
storage among seagrasses around the world, largely contributing to global blue carbon 
stocks. Yet, the slow growth of this temperate species and the extreme projected 
temperature and sea-level rise due to climate change increase the risk of reduction and 
loss of these services. Currently, there are knowledge gaps in its basin-wide spatially 
explicit extent and relevant accounting, therefore accurate and efficient mapping of its 
distribution and trajectories of change is needed. Here, we leveraged contemporary 
advances in Earth Observation—cloud computing, open satellite data, and machine 
learning—with field observations through a cloud-native geoprocessing framework to 
account the spatially explicit ecosystem extent of P. oceanica seagrass across its full 
bioregional scale. Employing 279,186 Sentinel-2 satellite images between 2015 and 
2019, and a human-labeled training dataset of 62,928 pixels, we mapped 19,020 km2 of 
P. oceanica meadows up to 25 m of depth in 22 Mediterranean countries, across a total 
seabed area of 56,783 km2. Using 2,480 independent, field-based points, we observe 
an overall accuracy of 72%. We include and discuss global and region-specific seagrass 
blue carbon stocks using our bioregional seagrass extent estimate. As reference data 
collections, remote sensing technology and biophysical modelling improve and coalesce, 
such spatial ecosystem extent accounts could further support physical and monetary 
accounting of seagrass condition and ecosystem services, like blue carbon and coastal 
biodiversity. We envisage that effective policy uptake of these holistic seagrass accounts 
in national climate strategies and financing could accelerate transparent natural climate 
solutions and coastal resilience, far beyond the physical location of seagrass beds.
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INTRODUCTION

The Mediterranean coastal seascape hosts 18% of all known 
marine species, 31% of the global tourism, and 2% of the 
global population across 48,300 km of coastline (Coll et  al., 
2010; UNEP/MAP, 2012). Seagrasses—marine flowering plants 
forming submerged meadows up to 40 m deep—and especially 
the endemic and most common species in the basin Posidonia 
oceanica—have been the bioengineers of this structurally 
complex seascape framework for millennia (Arnaud-Haond 
et al., 2012). Covering less than 2% of the total Mediterranean 
seabed, the P. oceanica seagrass meadows provide a plethora 
of ecosystem services valued between 57,000 to 184,000 €/
ha/year (Paoli et  al., 2018; Rigo et  al., 2021) and are globally 
significant carbon sinks, with greater organic carbon density 
than the observed one in estuarine mangroves, peatlands 
or tropical forests (IUCN, 2021). The large efficiency of such 
vegetated coastal ecosystems in absorbing and storing carbon, 
and thus reducing atmospheric carbon dioxide concentration, 
has led to initiatives to include them in climate change 
mitigation strategies like REDD+ (Reducing Emissions from 
Deforestation and Forest Degradation) (Duarte et  al., 2013). 
Such initiatives are further supported by the observation that P. 
oceanica seagrass meadows could have sequestered up to 42% 
of the carbon emitted by all Mediterranean countries since the 
onset of the Industrial Revolution (Pergent et al., 2014).

Due to numerous anthropogenic impacts, including coastal 
development, eutrophication, anchoring, and illegal fishing, the 
Mediterranean seascape has experienced a net loss of 6,990 ha in 
the coverage of P. oceanica meadows between 1869 and 2016, with, 
however, a reversed decline trend since the 1990s (de los Santos 
et  al., 2019). A regional climate warming of 1.5°C above pre-
industrial levels coupled with P. oceanica’s slow growth (1 cm yr  -1) 
(Marbà and Duarte, 1998) would accelerate its loss (Jordà et  al., 
2012) with associated risks to biodiversity, food security, livelihoods, 
tourism, and, ultimately, coastal protection. The observed decline of 
the P. oceanica meadows and the lack of suitable spatially explicit 
monitoring necessitate accurate and continuous mapping and 
monitoring of their extent, trajectory of change, and condition. 
Such monitoring efforts can enable a better understanding and 
detection of hotspots of sensitivity and resilience not only for 
effective management and protection but also for climate change 
mitigation and adaptation strategies across the basin.

In the past five years, advances in Earth Observation 
technology—high spatial and temporal satellite data 
archives—as well as cloud computing power and artificial 
intelligence (AI) have enabled data-driven measurements, 
monitoring, and change detection in the distribution, trends, 
and health of the coastal environment, from a regional 
to global scale (Bunting et  al., 2018; Murray et  al., 2019; 
Purkis et al., 2019; Lyons et al., 2020). Such large-scale Earth 
Observation efforts require consistent, accurate, and well-
distributed reference data of extensive magnitude in space 
and time to calibrate and validate their mapping products. 
These mapping products could enable seascape management 
and conservation at national and global scales, and climate 

change mitigation schemes like the Nationally Determined 
Contributions (United Nations Framework Convention on 
Climate Change, 2021); and could support the efficacy of 
the Sustainable Development Goals relevant to the coastal 
marine environment—namely Goal 6, 13 and 14—by 2030 
(United Nations, 2015).

In this study, we have expanded an end-to-end cloud-
native—built and run entirely within a cloud computing 
environment—Earth Observation algorithmic framework 
(Traganos et  al., 2018) using the cloud geospatial platform 
of the Google Earth Engine (GEE) (Gorelick et al., 2017). We 
utilized this algorithmic framework to map, for the first time, 
the P. oceanica seagrass ecosystem extent at its whole bioregion 
scale of 56,783 km2 that includes 22 countries. The GEE 
cloud geospatial platform enabled the storage, processing, 
and analysis of a mosaic of 279,186 open satellite Sentinel-2 
images (Gascon et  al., 2017) between 2015 and 2019, the 
mosaic classification via the cloud-based machine learning 
(ML) algorithm of the Random Forests (RF) (Gislason et al., 
2006), and the development of an inventory of human-labeled 
training data to guide the ML-based classification. For the 
latter, we annotated 1,748 training blocks consisting of 62,928 
100-m2 pixels indicative of the different Mediterranean 
benthic classes i.e., seagrass meadows, rocky reefs and sandy 
bottom, and optically deep water. Optically deep waters are 
regions where the remote sensing signal does not provide 
any bottom information due to the light attenuation from the 
water column. To validate the mapping results, we collected 
and utilized an independent (both spatially and source-wise) 
inventory of existing field-based data (2,480 points).

METHODS

The Cloud-Native Earth  
Observation Framework
As part of this study, we improved a recent cloud-native 
algorithmic framework (Traganos et  al., 2018). This framework 
was built upon the advances in Earth Observation technology in 
terms of open petabyte-scale satellite datasets, high-performance 
cloud computational power, supervised machine learning, web-
based visualization capabilities, and human-guided design of 
large-scale training data suitable for the supervision of the ML 
component—all of which are powered by the cloud infrastructure 
of the GEE.

The cloud-native existence of the evolved Earth Observation 
framework (Figure 1) allowed a time- and cost-efficient scalability 
in three dimensions: space (e.g., region, country, basin), time (e.g., 
monthly, seasonal, annual, multiannual), and satellite data input. 
The time dimension here encompassed multi-temporal analytics 
based on the combination of metadata selection and statistical 
analysis of all available satellite images within a given period. The 
result of multi-temporal analytics is a pseudo-image whose pixels 
contain the least amount of clouds, aerosols, waves, and reflection 
from the sea surface—all of the above being common natural 
obstacles within satellite scenes over coastal waters.
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The Multi-Temporal Sentinel-2  
Satellite Image Mosaic
The aforementioned three components were adjusted according 
to our mapping task. To map the basin-scale seagrass distribution 
of P. oceanica, we scaled up the framework (Traganos et al., 2018) 
throughout the first 25  m of the depth of the Mediterranean, 
a total of 56,783 km2. We identified this depth range utilizing 
the EMODnet Bathymetry Digital Terrain Model (DTM) for 
the European Seas of 2018 (https://www.emodnet.eu/new-
high-resolution-digital-terrain-model), which is a composite of 
bathymetric datasets from different sources at ~115m x 115 m 
resolution. We empirically selected the 25  m cut off depth as 
the most representative deep limit of seabed detection of the 
Sentinel-2 satellite—guided by water quality and human expert 
knowledge—in both the western and eastern basin part of the 

Mediterranean (Poursanidis et  al., 2019) (Supplementary 
Table S2; Figures S3−S8). This depth limit is a balance between 
removing as many optically deep water pixels as possible without 
accidentally misidentifying and removing seagrass pixels, since 
both classes have similar spectral values. A deeper limit would 
include many more optically deep pixels, which could lead to 
potential false positives of seagrass presence; while a shallower 
limit would conversely mask many potential true positives 
of P. oceanica seagrass regions, especially within the optically 
shallower eastern basin.

Additionally, we manually masked extensive regions 
of turbid waters (mainly in north Italy, Egypt, Syria, and 
southeast Turkey), which would obscure the seabed detection. 
Finally, pixels from 279,186 satellite image tiles of Sentinel-
2—100x100 km2 images—acquired between 23 June 2015 and 

FIGURE 1 |   Schematic workflow of our designed and utilized cloud-native Earth Observation framework
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31 December 2019 synthesized the multi-annual mosaic at 
10 m resolution—a full-archive synthesis of Sentinel-2 images 
over the Mediterranean at the time of its creation. The multi-
temporal synthesis was essentially a statistical reduction of all 
land, cloud and deep-water-filtered images to the 25th percentile 
per pixel, a reduction deemed necessary to automatically filter 
out natural interferences like remaining clouds, haze, waves, 
sunglint and similar. As these Sentinel-2 images are top-of-the-
atmosphere satellite data, we also employed the modified dark 
pixel subtraction method (Traganos et al., 2018) to account for 
the atmospheric effect in these data.

Training Data
Before describing the artificial intelligence component in 
the heart of our cloud-native framework, it is important to 
describe our training data design—essentially, the type of data 
that guides the AI. The training data were labeled following 
human-guided photointerpretation of the Sentinel-2 image 
mosaic by an expert on both Earth Observation image analysis 
and the nature of the Mediterranean coastal seascape. The 
expert spent 100 working hours within the cloud geospatial 
environment to annotate polygons indicative of the presence 
of three habitat classes: a) seagrasses (P. oceanica), b) optically 
deep water, and c) rocky and sandy seabed (Table  1). We 
decided to design polygons on P. oceanica seagrass meadows 
and not on other Mediterranean seagrass species (e.g., C. 
nodosa, Z. marina) as the sparse natural distribution of the 
latter species would have caused confusion on the 10 m spatial 
resolution of Sentinel-2. Therefore, it is expected that the 
spectral similarities between P. oceanica and other seagrass 
beds may have caused over-estimations and misclassification 
of the former class in our mapping effort. The human 
photointerpreter designed the training data by choosing 
polygons from all depths (shallow to deep), distribution 
(eastern and western basin), and density gradient (sparse to 
dense) of the studied habitats.

Sequentially, the final training dataset consisted of 1,748 
polygons which were first reduced to centroids (Figure  2) 
and then were grown to blocks of a 30-m circular radius 
buffer around the centroids i.e., ~36 Sentinel-2-pixel blocks 
of 3,600 m2 each (Table  1). This means that we allocated 
1.1 training point for each square kilometer of the mapped 
seabed, on average (62,928 training pixels for all 56,783 km2 
of seabed area). This ensured a robust plethora of training 
blocks of pure pixels for each class.

Artificial Intelligence
We employed the training data to guide the Random Forests 
artificial intelligence framework (Breiman, 2001) and classify 
the multi-annual Sentinel-2 mosaic at 10 m resolution. RF is an 
ensemble supervised machine learning classification algorithm 
that incorporates numerous self-learning decision trees that can 
handle both collinearity and non-linearity between predictor 
variables (e.g., the often non-linear border of P.oceanica seagrass 
meadows with the unconsolidated fine sediments). The rationale 
behind choosing RF was two-fold: a) their robustness against 
overtraining and noisy data (Gislason et al., 2006) that could still 
arise from our training data design; and b) their high accuracies 
in multi-scale coastal habitat mapping in local and serverless 
environments (Traganos and Reinartz, 2018a; Traganos and 
Reinartz, 2018b; Poursanidis et al., 2019; Lyons et al., 2020).

We parameterized and ran the RF within the GEE platform 
using the probability mode. This essentially creates an 
intermediate soft probability of presence or soft classification 
of each class varying between 0 and 100. This means that each 
pixel in this intermediate continuous layer represent probability 
of presence between 0 and 100%. We ran a series of quantitative 
and qualitative analyses to determine the best threshold 
value for the presence of seagrasses in both the western and 
eastern part of the basin. Then, we merged all classes into one 
hard probability habitat map containing all pixels—the hard 
classification. In contrast to the continuous soft probability layer, 
the hard probability/classification layer is a thematic product 
with each pixel representing a different class. This allowed us 
to delve into our classification experiments, further decreasing 
a possible over-estimation resulting from potential noise in 
the training data. Based on our analyses, the ideal threshold 
values for the soft-to-hard transformation were 45 in the West 
Mediterranean and 77 in the East. Figure 3 displays the spectral 
ranges of the training and validation data in both Western and 
Eastern Mediterranean across our utilized Sentinel-2 bands.

Validation Data and Accuracy Assessment
To assess the accuracy of our bioregional map, we synthesized 
existing independent field-based validation data of P. oceanica 
seagrass meadows and neighboring habitats. During this 
synthesis, we collected high-resolution seagrass habitat maps 
developed previously in the Mediterranean by trained experts 
and scientists in the seagrass domain resulting in in situ data of 
total coverage of 3,274 km2. Table  2 indicates information on 
the coverage, temporal range, and source of the reference data. 

TABLE 1 | Name and definition of the human-labeled classes along with the number of designed training pixel blocks and points. 

Class name Class definition Number of Blocks Number of Points Total area (km2)

Seagrass Seabed covered by P. oceanica seagrass meadows 401 14,436 1.4
Optically deep water Areas where the seabed is not visible on the Sentinel-2 mosaic 300 10,800 1.1
Seabed covered with sand or rocks Areas with fine unconsolidated sediments or exposed hard bare 

substrates
1,047 37,692 3.8

1,748 (total) 62,928 (total) 6.3

The training points were used to guide the pan-Mediterranean mapping with the aid of the ML classifier of Random Forests.
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In addition to approaching our annotated data with as much 
independence as possible to reduce possible bias, the reference 
data featured higher quality and finer spatial resolution (Finegold 
et  al., 2016) following field collection by trained experts via 
snorkeling, diving, and/or with the use of other technical 
equipment.

An independent analyst (not being the same person who 
annotated the training data) randomly selected data for the three 
habitat classes from the total amount of training data (3.8% on 
average), which resulted in 680 points for the seagrass class, 
350 points for the optically deep water class, and 1,450 points 

for the sandy and rocky class (Figure  4). We decided to have 
a merged sandy and rocky class as the latter class was poorly 
represented across the entire basin based on both its natural 
distribution and the validation data availability and thus would 
have caused a rather biased representation in the confusion 
matrix and classification. The design was performed on a local 
GIS environment using three sources of data for guidance: a) 
the outline of the EMODnet DTM 0-25 m extent to ensure that 
all validation points fall within these limits; b) the higher spatial 
resolution satellite base maps of Google Earth Pro and the BING 
imagery platform independently from the Sentinel-2 data; and 

FIGURE 2 | Distribution of the centroids of the 1,748 image-annotated training data blocks indicative of the presence of the three mapped classes.

FIGURE 3 | Spectral ranges of the training and validation data in both eastern and western Mediterranean across the B1-B4, and B8 bands of our multi-temporal 
Sentinel-2 data mosaic. Bright and dark hues of each color code reflect eastern and western reference data and green, blue, and red hues reflect the seagrass, 
deep water, and sand classes respectively. The split into eastern and western regions was in consideration of their dissimilar spectral reflectances (Supplementary 
Figure S8). This is more pronounced in the validation data where many of the interquartile ranges (the boxes of the boxplots) within each class in all the bands have 
either a small or no overlap. The lines within the boxes indicate the median.
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c) a hot-spot map based on the training data to ensure spatial 
independency between the latter and the validation data to 
further reduce potential spatial bias.

To assess the accuracy of our habitat mapping approach, we 
employed standard quantitative metrics in Earth Observation 
analysis: the Overall Accuracy—the proportion of area that is 
classified correctly; the Producer’s Accuracy—informing whether 
map classes were under-estimations; and the User’s Accuracy—
reflecting whether the classified map is overestimated. We 
reported these metrics through the cross-tabulation of the labeled 
classes populated by the classification results and the reference 
data; the so-called “error matrix” (Supplementary Table S1).

RESULTS

The Pan-Mediterranean Extent of P. 
oceanica Seagrass Meadows
We estimated a basin-wide seagrass area of 19,020 km2 
between 0 and 25 m of depth in 22 countries with 72% overall 
accuracy—4,325 km2 in the Eastern basin (overall accuracy of 
79%) and 14,694 km2 in the Western basin (overall accuracy 
of 64%). The producer’s and user’s accuracies of our seagrass 
product are 55% and 62% respectively (Supplementary 
Table S1). Our coverage estimate at the basin scale is 55.3% larger 
than the seagrass area synthesis in Telesca et al. (2015) (12,247 
km2), 34.2% larger than the higher-confidence area synthesis 
of McKenzie et al. (2020) (14,167 km2), and around 1/6 of the 
MaxEnt-based modeled estimate of Jayathilake and Costello 

(2018) (118,913 km2). Figure 5 shows the bioregional extent of 
P. oceanica seagrass meadows across the entire Mediterranean.

Country-Scale P. oceanica Seagrass  
Area Inventories
Table  3 depicts the country-scale P. oceanica seagrass extent 
estimates across 22 Mediterranean countries between 0 and 25 m 
of depth, based on the spatial resolution of 10 m of Sentinel-2 data. 
The three countries with the largest P. oceanica seagrass meadows 
were Tunisia (6,369 km2), Italy (3,261 km2), and Greece (2,878 
km2) (Table  3). The three countries with the largest seagrasses 
by km of Mediterranean coastline were Tunisia (3.4 km2/km), 
Montenegro (0.8 km2/km), and Croatia (0.5 km2/km). The 13 
European countries with a Mediterranean coastline counted a total 
P. oceanica seagrass area of 10,932 km2 (57.5% of the total seagrass 
bioregional area). The five African countries have an estimated 
total seagrass area of 7,310 km2 (38.4% of the total bioregional 
seagrass area) and the five Asian countries a total seagrass extent 
of 778 km2 (4.1% of the pan-Mediterranean seagrass extent).

In comparison to the data gaps in P. oceanica seagrass 
meadows in Telesca et  al. (2015) (46.7% featured missing data 
on seagrasses), our baseline spatially explicit estimate features: a 
greater coverage of the coastline of several countries (e.g., +92% 
in Greece, +89% in Libya, +86% in Croatia, and +84% in Algeria), 
one additional country-scale estimate (Bosnia and Herzegovina), 
and one additional overseas territory (UK - Gibraltar). Finally, in 
relation to the country-scale seagrass area of Greece, we estimated 
a 13.7% larger area than the estimation of 2,510 km2 (Traganos 

TABLE 2 | Analytical information about the herein employed independent validation (reference) data.

Country Coverage (km2) Temporal Range Citation

Croatia 63.6 2012-2017 Čižmek (2017)
France 2,166.1 2010-2016 Andromède Océanologie (2019)
France 569.8 2010-2016 Pergent-Martini et al. (2015)
Montenegro 98.6 2010-2018 DFS Montenegro Engineering (2012)
Spain 142.8 2008-2017 Ricart (2016); Atlas of Posidonia 

(2019) GENCAT (2021)
Turkey 233.2 2016-2018 Duman et al. (2019)

3,274 (Total)

FIGURE 4 | Distribution of the employed 2,480 validation data points.
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FIGURE 5 | Pan-Mediterranean P. oceanica seagrass extent (this paper: green, pink (Telesca et al., 2015)). The four inset panels depict the two estimates of 
mapped seagrass extent in Ibiza and Formentera, Spain (blue inset), Gulf of Gabes, Tunisia (green inset), NW Peloponnese and South Ionian Sea, Greece (red inset), 
and the country scale of Cyprus (yellow inset).

TABLE 3 | Country-scale P. oceanica seagrass mapping estimates (km2) in the entire Mediterranean basin. 

Country Coastline 
 length1(km)

0-25 m  
coastal area (km2)

Seagrass area - this paper  
0-25 m deep (km2)

Seagrass  
area 4(km2)

Seagrass area (km2) relative  
to coastline length (km)

Seagrass area (%) of 
 total 0-25 m coastal area

Albania 397.95 1,035.62 149.56 48.03 0.38 14.44
Algeria 1,487.57 401.79 167.91 40.72 0.11 41.79
Bosnia &  
Herzegovina2

15.11 8.36 6.90 NA 0.46 82.56

Croatia 4,165.41 2,870.70 2,029.99 314.37 0.49 70.71
Cyprus 442.27 682.11 44.45 90.40 0.1 6.52
Egypt 1,214.31 1,309.97 2.96 NA 0.002 0.23
France 2,299.10 1,723.78 900.28 940.30* 0.39 52.23
Greece 14,772.08 9,621.20 2,877.78 449.39 0.2 29.91
Israel 137.27 357.20 10.43 0 0.08 2.92
Italy 8,914.69 7,929.72 3,261.23 3376.11 0.37 41.13
Lebanon 190.80 178.06 26.94 0 0.14 15.13
Libya 1,441.92 8,249.06 622.03 12.35 0.43 7.54
Malta 153.61 38.45 29.44 58.60 0.19 76.55
Monaco 4.23 0.42 0.41 Included in France* 0.1 98.87
Montenegro 173.46 211.39 146.62 N/A 0.84 69.36
Morocco 551.68 490.63 148.03 N/A 0.27 30.17
Slovenia3 37.60 0.00021 0.00021 0.09 0.000006 99.98
Spain 3,227.89 3,579.31 1,480.88 1726.69 0.46 41.37
Syria3 147.57 0.00 0.00 0 0.000 0.00
Tunisia 1,871.04 15,178.60 6,369.05 5186.85 3.4 41.96
Turkey 3,411.52 2,910.61 740.59 2.87 0.22 25.44
UK (Gibraltar) 16.49 5.17 4.20 N/A 0.26 81.23
Total 45,073.55 56,782.1 19,019.6 12,247.07 - -

1Mediterranean coastline.2Bosnia and Herzegovina has a very short coastline length of 20 km considered in this study due to the depth masking beyond 25 m.
3Slovenia and Syria have an almost non-existent seagrass area due to the manual exclusion of turbid waters from our satellite mosaic.4Based on Telesca et al., 2015. Included for 
comparison are the basin and country-scale.  
P. oceanica seagrass area estimates in Telesca et al. (2015), the Mediterranean-wide seagrass area synthesis in McKenzie et al. (2020) —14,167 km2 (Moderate-High 
Confidence), and the MaxEnt-based modeled potential seagrass area in Jayathilake and Costello (2018)—118,913 km2.
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et al., 2018) that also used Sentinel-2 multi-temporal data within 
GEE.

DISCUSSION

Using a cloud-native Earth Observation framework for 
big-satellite-data processing and analysis, we showcase 
here the first data-driven, spatially explicit seagrass extent 
accounting across an entire bioregional scale. Featuring a 
plethora of cutting-edge frameworks and algorithms in Earth 
Observation such as multi-temporal data analytics, machine 
learning, cloud computing, and big-data processing, we map 
19,020 km2 of area of the seagrass P.oceanica across the entire 
basin using 10 m 279,186 open Sentinel-2 satellite image tiles 
(2015-2019) and 65,408 reference data points. Undoubtedly, 
the most important novelty of our mapping effort is the fact 
that we designed, synthesized, and employed a single and 
consistent data source—the multi-temporal Sentinel-2 data 
mosaic—within the moderately small temporal window of 
4 years to account the bioregion-wide seagrass ecosystem 
extent.

The present mapping effort covers important gaps in 
the previous charting of the Mediterranean seagrasses. The 
previous Mediterranean-wide effort (Telesca et  al., 2015) 
mapped 55.3% fewer seagrasses than our effort, lacking data 
on their distribution in 46.7% of the entire Mediterranean 
and 93% of the entire Eastern basin. Additionally, this effort 
featured multiple data sources based primarily on experts’ 
knowledge spanning 39 years (1972-2011) in contrast to the 4 
years in this present study. An additional synthesis (McKenzie 
et  al., 2020) used an existing inventory (UNEP-WCMC and 
Short, 2018) and only quantitative polygons with accompanied 
accuracy to calculate 14,167 km2 of Mediterranean seagrasses—
that is 34.2% less than our calculation. The reliance of the 
two latter studies on multiple data sources and interpolated 
expert knowledge may have led to a possible under-estimation 
of the seagrass extent throughout the Mediterranean basin 
(United Nations Environment Programme, 2020). This 
was also highlighted in a recent national-scale seagrass 
mapping venture in the Greek territorial waters (Traganos 
et al., 2018) which yielded four times more seagrass habitats 
than the inventory of UNEP-WCMC and Short (2018). Last 
but not least, we calculated only one-sixth of the modeled-
based area of Jayathilake and Costello (2018) (118,913 km2), 
which nonetheless was not an actual seagrass area estimate, 
but rather the potential regional occurrence of seagrasses in 
the basin according to their habitat suitability. Such model-
guided output could complement the ability of the two former 
data syntheses to guide the scalability of data-driven mapping 
approaches like the one presented here. It is also worth noting 
that our basin-wide mapping estimate features a producer’s 
accuracy of 55% which increases the uncertainty in the 
aforementioned comparisons.

Our cloud-native framework was built on the latest 
technological advances in Earth Observation: cloud 

computing power, AI, and open and free satellite data. More 
specifically, we describe below four important technological 
innovations alongside their associated benefits and space for 
improvement, if applicable:

a) Scalability: We can scale up the cloud-native framework 
in terms of space (region, country, basin), time (monthly, 
seasonally, annually, multi-annually), as well as satellite 
data input depending on the final goal. The framework 
could be tuned to also ingest the multi-decadal satellite 
data archive of NASA/USGS Landsat series within GEE 
(Dwyer et al., 2018). The spatial scalability is demonstrated 
by the adaptation of the present Earth Observation system 
to ingest two orders of magnitude of Sentinel-2 tiles (1,000 
to 100,000s) across tens of thousands of km² to map both 
the Greece-wide (Traganos et  al., 2018) and the pan-
Mediterranean seascape here.

b) Time efficiency: Through the high-performance 
computation within the Google Earth Engine, our 
framework requires less than 5 minutes (the maximum 
allocated time for on-demand interactive computations 
in the platform) to run its end-to-end big data processing 
to classify seagrasses; we estimate that just downloading 
279,186 Sentinel-2 tiles, with an approximate size of 
600MB/tile, would have taken somewhat less than 6 months 
on a 100 Mbps Fast Ethernet connection and 167.5TB of 
disk space, rendering the present venture unfathomable 
within a local server.

c) Multi-temporal Analytics: The cloud-native availability of 
the public satellite data archive of Sentinel-2 allowed the 
implementation of all available images within a selected 
period (> 4 years in this study) in a multi-temporal 
fashion. Following a statistical and metadata-based 
approach, this enabled the automated reduction of natural 
optical interferences (e.g., clouds, sunglint, waves, etc.) 
that impede the traditional off-the-shelf single-image 
approaches. In the future, the availability of larger temporal 
stacks within the cloud will enable more accurate multi-
annual mapping analytics through the improved filtering 
of the aforementioned interferences.

d) Artificial intelligence: The Google Earth Engine platform 
contains a large set of available, ready-to-use, and easily-
tuned ML algorithms, which ease the implementation and 
tuning of the AI component in the heart of our cloud-native 
algorithmic pipeline. Paired with hundreds of thousands 
of human-labeled training data, our selected algorithm of 
the Random Forests enabled a better classification result in 
comparison to the majority of applications in our targeted 
domain, most of which employ local-scale unsupervised 
and/or supervised classifiers in local servers. Looking into 
near-future potential AI developments, we expect that 
ensemble—voting systems consisting of several different 
ML classifiers which output the most voted class per 
pixel—and deep learning architectures could bring further 
breakthroughs in data-driven approaches in seagrass 
mapping. All of the above will be achieved by increasing 
automation and accuracy in the image annotation and 
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streamlining of seagrass data and related reference data 
(Zhang, 2015; Islam et  al., 2020). Nevertheless, deep 
learning techniques in Earth Observation have not 
yet reached the necessary maturity to provide a clear 
understanding of whether the extra scientific effort for a 
theoretically greater accuracy justifies the needed extra 
vast manual annotation and processing power compared 
to ML classifiers. Nor, in any way, have cloud-native earth 
observation frameworks within a coastal aquatic context 
matured.

We identify here four main challenges and associated 
uncertainties of the present framework along with potential 
solutions:

a) Over- and under-estimation of seagrass class: We carried 
out an intensive training data design to differentiate 
P. oceanica from other seagrass species present in the 
basin (e.g., Cymodocea nodosa and Zostera marina) and 
optically deep water. Nonetheless, based on a qualitative 
and quantitative assessment, clusters of over and 
under-estimation of the seagrass extent were inevitably 
identified. This could arise from several reasons. On 
one hand, over-estimation could have been produced 
from the pre-processing of our satellite mosaic to the 
level of the surface reflectance, accounting for the 
effect of the atmosphere and water surface media, but 
not of the water column medium. This causes spectral 
similarities across habitats with increasing depths (e.g., 
P. oceanica seagrass features a similar color to other 
seagrass habitats and also optically deep water on the 
satellite mosaic) leading to misclassifications of the P. 
oceanica class. We quantitatively confirmed the similar 
spectral ranges of the classes of P. oceanica meadows 
and deep water in Figure 4. The differences in spectral 
reflectances between the training and validation data 
for these two classes would further accentuate such 
misclassifications, namely the over-estimation of 
seagrass areas in our study. On the other hand, the 
possible under-estimation of our seagrass product is 
highlighted by two facts. First, its producer’s accuracy 
is 7% less than its user’s accuracy. This indicates that 
most of the P. oceanica in the map was also P. oceanica 
in the validation data, but that the map failed to 
capture a fair amount of this class. Second, masking 
out all depths deeper than 25 m (deemed necessary to 
reduce over-estimations due to the spectral confusion 
between seagrass and optically deep water) may 
have produced under-estimations. The mean lower 
depth limit of P. oceanica in the majority of the basin 
is around 35  m which means that our mapped area 
omitted 10  m of potential P. oceanica vertical habitat 
suitability. We evaluated the magnitude of this possible 
under-estimation, estimating 12,267 km² of coastal 
area between 25 and 35 m of depth. Using the seagrass 
coverage percentage per country of the total coastal 
area in the first 25 of depth, we estimated 3,964 km² of 

potential additional P. oceanica meadows across 22,984 
km² at basin scale. This corresponds to 20.8% of possible 
under-estimation at the basin scale (Supplementary 
Table S2). The latter estimate is only 3.6% larger than 
the recent Mediterranean-wide estimate of Pergent-
Martini et al. (2021) (22,161 km²) which was based on 
national seagrass areas. This increases the confidence 
in our cloud-based method and estimate as well as 
the calculation of the potential under-estimation here. 
Using the potential under-estimation of 3,964 km², the 
true bioregional blue carbon storage of P. oceanica beds 
increases to 872.7 million MgC, considering a Tier 2 
assessment (Supplementary Table S4). Last but not 
least, other sources of over- and under-estimation of 
seagrass meadows and resulting uncertainties in our 
analysis could be potential confusion with macroalgae, 
existent seagrasses in waters of low to medium 
turbidity, varying seagrass density at the sub-pixel 
level, and, finally, relatively larger temporal differences 
between our mapping and implemented validation 
data (Table 2).
One way to alleviate these over and under-estimation 
trends could be to map bathymetry along with 
the habitat mapping and use cut-off depths for the 
optical presence of a certain class; for such a vast and 
diverse optical environment as the Mediterranean, 
this could be problematic due to the differences in 
optical properties between the western and eastern 
part. A second approach to solve this problem could 
be through forward modeling within the cloud to 
estimate the “true” seabed reflectance of seagrasses 
combined with the use of specific spectral indices that 
could allow differentiation between the seagrass and 
neighboring classes. A third way to resolve this could 
be the development of statistical thresholding on the 
attenuation coefficient layer which in turn will output 
only the optically shallow regions, offering the two-fold 
benefit of reduced computational power and improved 
detection accuracy.

b) Multi-temporal Analytics: Modern solutions are 
sometimes the forebears of equally modern problems. 
Our multi-temporal analytics employs a deep satellite 
image stack spanning more than 4 years. This allows 
us to address and correct natural optical interferences 
more efficiently. Yet, in baseline mapping estimations, 
this also means that such an approach would not detect 
any potential change within and across seagrasses or 
neighboring habitats over the studied period. Assuming 
no habitat loss, the slow growth of P. oceanica seagrass 
species is an advantage here. However, short-lived 
seagrasses in tropical regions undergo changes in much 
smaller time scales which would render obligatory 
the reduction of the temporal selection to monthly 
or seasonal composites to reflect their natural cycles. 
Nonetheless, tropical regions experience substantially 
more cloudy days than the Mediterranean, and thus 
the reduction of the time dimension would allow more 
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clouds and cloud shadows to negatively impact our 
detection capabilities. Currently, this trade-off between 
change detection through multi-temporal analytics 
and the correction of environmental noise poses a 
very interesting scientific question in multi-temporal 
coastal aquatic mapping efforts within primarily 
tropical systems.

c) Training data: Large-scale mapping requires large-scale 
training data. The case of sufficient training data is one 
of the emerging issues due to the transition of seagrass 
mapping from the local to the cloud environment, and 
from the local to the bioregional mapping scale. Due 
to the absence of suitable and standardized training 
data to guide our ML component, we spent a labor-
intensive effort to annotate an inventory that would 
match the multi-temporal Sentinel-2 mosaic. One 
possible approach to increase the time efficiency could 
be to design a machine or deep learning framework 
that, using the same satellite input with the mapping, 
could generate training data in a more automated 
way. Yet, to some extent, humans would still have to 
be involved in assessing the produced training data 
before these could be fed into the AI-based mapping. 
Anterior designed and implemented systems for semi-
automated and automated interpretation of coastal 
and marine habitats do exist (Beijbom et  al., 2015; 
González-Rivero et al., 2016; Griffin et al., 2017; Evans 
et al., 2018; Williams et al., 2019) and could be paired 
with our cloud-native framework in future endeavors.

d) Validation data: Large-scale mapping data also requires 
equally large-scale validation data. The four most 
important characteristics of suitable reference data 
for the validation of the Earth Observation mapping 
approaches include independence to the data source 
and location, higher quality and higher resolution than 
the training data in use, and temporal consistency of 
the source information with the mapping products. It 
was also very time-consuming to collect such reference 
data and transform them into a suitable format for 
the validation process (e.g., designing points within 
existing polygons in areas with sparse or no training 
data). Arguably, we could render the validation data 
design more time-efficient by developing a central 
user-friendly cloud-native tool (e.g., within Google 
Earth Engine), which could be used by experienced 
seagrass and seascape scientists for the design of large-
scale, high-quality validation data on high-resolution 
satellite base maps such as the ones within Google 
Earth and/or Google Maps.

At present, we infer that based on the observed producer’s 
and user’s accuracy of our produced seagrass mapping data, 
which fluctuates between 40.2 and 69.1%, considerable efforts 
must be placed to improve our multi-temporal analytics and 
reference data design. Such efforts will enable the quantification 
of additional seagrass biophysical parameters with at least 

moderate confidence (e.g., leaf area index, above-ground 
biomass, cover, density, fragmentation, carbon stocks). These 
efforts would have to rely on not only a greater wealth of available 
and/or new field data collections to train AI frameworks, but 
also optical data of higher spatial resolution to detect and map 
sparser features than the 100 m2 pixel of Sentinel-2. It is without 
doubt that near-future collaborations with seagrass and coastal 
habitat scientists in and beyond the Mediterranean would 
expand our mapping capacity beyond just seagrass extent.

Our cloud-native framework can be adapted to account 
seagrasses and other coastal aquatic ecosystems beyond the 
geographic limits of the Mediterranean in both temperate and 
tropical waters. New mapping efforts using our framework 
can enrich the sparsity of existing large-scale coastal habitat 
mapping results. Notable examples focused only on tropical 
marine systems of >10,000 km2 include the pan-Caribbean 
seagrass mapping of Purkis et  al. (2019), the merged 
geomorphic-benthic habitat product of Wabnitz et  al. (2008) 
across 65,000 km2, and the coincident geomorphic and benthic 
habitat mapping of Lyons et  al. (2020) across four orders of 
spatial magnitude. The latter multiscale Earth Observation 
framework is the only one, to the best of our knowledge, 
that can be compared to the herein framework as both use 
the same technological pillars (cloud computing, artificial 
intelligence, and satellite data) to produce scalable benthic 
habitat mapping products. Nevertheless, a qualitative and 
quantitative comparison of all the aforementioned mapping 
results would enable a better technical understanding of the 
challenges around these endeavors. Additionally, this would 
allow us to overcome the arising challenges towards continental 
and global-scale seagrass mapping following the examples of 
existing related global-scale EO frameworks and products: the 
Global Forest Watch (Hansen et al., 2013), the Global Mangrove 
Watch (Bunting et al., 2018), and the planetary-scale mapping 
of surface water (Pekel et  al., 2016), and tidal flats (Murray 
et al., 2019).

Applying our pan-Mediterranean seagrass extent estimate 
of 19,020 km2 between 0 and 25  m and the region-specific 
seagrass carbon storage of Fourqurean et  al. (2012), we 
estimate a 722.2 million MgC of blue carbon storage for all P. 
oceanica seagrass meadows in all 22 countries (Supplementary 
Table S3). Furthermore, applying our extrapolated bioregional 
extent estimate of 22,984 km2 between 0 and 35 m, we estimate 
872.7 million MgC of P. oceanica seagrass blue carbon storage 
(Supplementary Table S4). While these bioregional and their 
underlying national blue carbon accounts are based on a single 
region-specific seagrass carbon estimate—and not on more 
accurate and dense country-specific data—we envisage that a 
broader availability of the latter data at the nationwide scale will 
unlock standardized, spatially explicit monitoring programs of 
seagrass blue carbon in and beyond the basin. These monitoring 
programs and their provided spatial accounts are expected 
to aid effective blue carbon policy actions and much-needed 
investments, especially in countries with large yet unaccounted 
seagrass carbon sinks (Macreadie et al., 2019; Macreadie et al., 
2021).Within the era of Space Renaissance that we are currently 

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Traganos et al.

11Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 871799

Pan-Mediterranean Seagrass Extent Mapping

traversing, the stability and frequency of the cultural heritages 
that constitute the Copernicus Sentinel and Landsat satellite data 
collections could facilitate the transformation of comparable cloud-
native frameworks into powerful, global decision support and 
knowledge systems that will:

a) Enhance the effective protection and management of seagrasses 
and their vital ecosystem services and functions.

b) Strengthen climate change resilience through the promotion 
and assessment of the role of seagrasses as a nature-based 
solution to climate change.

c) Assist the accounting of the seagrass-related Sustainable 
Development Goals and enforce their alignment with 
Nationally Determined Contributions and Ecosystem-
based Adaptation approaches.

Namely, a new project entitled “Global Seagrass Watch” is 
established to impel this Earth Observation framework into a 
long-term standardized ecosystem accounting system. Its near-
future implementation will empower scientists, governments, and 
policymakers to develop tangible solutions beyond their standard 
operating procedures in terms of communication, partnerships, and 
actions for the entirety of the coastal seascape environment.
The latest advances in Earth Observation, namely the 
democratization and widespread availability of satellite data, AI, 
and cloud-based, large-scale satellite data processing paired with 
human-labeled reference data, allowed the adaptation of the cloud-
native framework of this project in an innovative and scalable way. 
This scalability yielded in the present study bioregional seagrass 
ecosystem accounts with increased accuracy, cost and time-
efficiency, as well as automation. Following the availability of suitable 
reference data and big satellite data analytics, we envisage that the 
present spatially-explicit seagrass ecosystem accounting effort will 
assist in paving the way towards future national to bioregional-
scale accurate accounting of seagrass extent and related blue carbon 
stocks following recent mapping efforts (Murray et al., 2019; Serrano 
et al., 2019; Lyons et al., 2020) and needs (Macreadie et al., 2019).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material. Further inquiries can be 
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DT conceived the idea, designed the work, annotated the 
training data, and wrote the manuscript with the input of all 
co-authors. CL and DT designed, developed, and executed the 
cloud-based Earth Observation framework. DP coordinated 
the collection and design of the in situ validation data. HC, JD, 
VM, MM, GP, CP-M, and AR provided their validation data. 
AB ran the Tier 1 and Tier 2 blue carbon accounting. CL, AB, 
and DT designed all figures and tables. All authors contributed 
to the article and approved the submitted version.

FUNDING

DT acknowledges support from both a DLR-DAAD Research 
Fellowship (No. 57186656) and the DLR-funded Global 
Seagrass Watch Project. CL acknowledges support from a DLR-
DAAD Research Fellowship (No. 57478193).

ACKNOWLEDGMENTS

In France, data used to build the 1:10000 marine habitat map 
were collected by Andromède Océanologie, Agence de l’Eau 
RMC, Conservatoire du Littoral, DREAL PACA; Egis Eau, 
ERAMM, GIS Posidonie, IFREMER, Institut océanographique 
Paul Ricard, Nice Côte d’Azur, TPM, Programme CARTHAM—
Agence des Aires Marines Protégées, ASCONIT Consultants, 
COMEX-SA, EVEMAR, IN VIVO, Sentinelle, Stareso, 
Programme MEDBENTH, Université de Corse (EQEL), 
Ville de St Cyr-sur-mer, Ville de Cannes, Ville de Marseille, 
Ville de St Raphaël and Ville de St Tropez. We acknowledge 
and appreciate the assistance of an anonymous proof-reader 
towards improving the quality of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fmars.2022.871799/
full#supplementary-material

REFERENCES
Andromède Océanologie (2019) Seabed Map, Donia Project. Available at: www.

medtrix.fr.
Arnaud-Haond, S., Duarte, C. M., Diaz-Almela, E., Marbà, N., Sintes, T. and 

Serrão, E. A. (2012). Implications of Extreme Life Span in Clonal Organisms: 
Millenary Clones in Meadows of the Threatened Seagrass Posidonia 
Oceanica. PLos One 7 (2), e30454. doi: 10.1371/Journal.pone.0030454

Atlas of Posidonia (2019). Available at: https://ideib.caib.es/posidonia/ [Accessed 
July 5, 2022].

Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., 
et al. (2015). Towards Automated Annotation of Benthic Survey Images: 

Variability of Human Experts and Operational Modes of Automation. PLos 
One 10 (7), e0130312. doi: 10.1371/journal.pone.0130312

Breiman, L. (2001). Random Forests. Mach. Learn. 45 (1), 5–32. 
doi: 10.1023/A:1010933404324

Bunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L.-M., Hilarides, L., Thomas, 
N., et al. (2018). The Global Mangrove Watch — A New 2010 Global Baseline 
of Mangrove Extent. Remote Sens. Ecol. Conserv. 10 (10), 1669. doi: 10.3390/
rs10101669

Čižmek H. (2017). Marine Habitat Mapping Along Eastern Adriatic Coast.
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., 

et al. (2010). The Biodiversity of the Mediterranean Sea: Estimates, Patterns, 
and Threats. PLos One 5 (8), e11842. doi: 10.1371/journal.pone.0011842

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
https://www.frontiersin.org/articles/10.3389/fmars.2022.871799/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.871799/full#supplementary-material
http://www.medtrix.fr
http://www.medtrix.fr
https://doi.org/10.1371/Journal.pone.0030454
https://doi.org/10.1371/journal.pone.0130312
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs10101669
https://doi.org/10.3390/rs10101669
https://doi.org/10.1371/journal.pone.0011842


Traganos et al. Pan-Mediterranean Seagrass Extent Mapping

12Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 871799

de los Santos, C. B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C. 
M., van Katwijk, M. M., et al. (2019). Recent Trend Reversal for Declining 
European Seagrass Meadows. Nat. Commun. 10 (1), 3356. doi:  10.1038/
s41467-019-11340-4

DFS Montenegro Engineering (2012). Start Up of “Kati&ccaron;” MPA in 
Montenegro and Assessment of Marine and Coastal Ecosystems Along the Coast.

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. and Marbà, N. (2013). 
The Role of Coastal Plant Communities for Climate Change Mitigation and 
Adaptation. Nat. Climate Change 3 (11), 961–968. doi: 10.1038/nclimate1970

Duman, M., Eronat, A. H., &Idot;lhan, T., Talas, E. and Küçüksezgin, F. (2019). 
Mapping Posidonia Oceanica (Linnaeus) Meadows in the Eastern Aegean 
Sea Coastal Areas of Turkey: Evaluation of Habitat Maps Produced Using the 
Acoustic Ground Discrimination Systems. Int. J. Environ. Geoinformatics 6 
(1), 67–75. doi: 10.30897/ijegeo.544695

Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K. and Lymburner, 
L. (2018). Analysis Ready Data: Enabling Analysis of the Landsat Archive. 
Remote Sens. 10 (9), 1363. doi: 10.3390/rs10091363

Evans, S. M., Griffin, K. J., Blick, R. A., Poore, A. G. and Vergés, A. (2018). 
Seagrass on the Brink: Decline of Threatened Seagrass Posidonia Australis 
Continues Following Protection. PLos One 13 (4), e0190370. doi:  10.1371/
journal.pone.0190370

Finegold, Y., Ortmann, A., Lindquist, E., d’Annunzio, R. and Sandker, M. (2016). 
Map Accuracy Assessment and Area Estimation: A Practical Guide (Rome: 
Food Agriculture Organization of the United Nations).

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, 
M. A., et al. (2012). Seagrass Ecosystems as a Globally Significant Carbon 
Stock. Nat. Geosci. 5 (7), 505–509. doi: 10.1038/ngeo1477

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., et al. 
(2017). Copernicus Sentinel-2A Calibration and Products Validation Status. 
Remote Sens. 9 (6), 584. doi: 10.3390/rs9060584

GENCAT (2021) Herbassars. Zones D’envolvents. Available at: http://agricultura.
gencat.cat/ca/detalls/Article/Herbassars.-Zones-denvolvents.

Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R. (2006). Random Forests 
for Land Cover Classification. Pattern Recognition Lett. 27 (4), 294–300. 
doi: 10.1016/j.patrec.2005.08.011

González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Holtrop, T., 
González-Marrero, Y., Ganase, A., et al. (2016). Scaling Up Ecological 
Measurements of Coral Reefs Using Semi-Automated Field Image Collection 
and Analysis. Remote Sens. 8 (1), 30. doi: 10.3390/rs8010030

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, 
R. (2017). Google Earth Engine: Planetary-Scale Geospatial Analysis for 
Everyone. Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Griffin, K. J., Hedge, L. H., González-Rivero, M., Hoegh-Guldberg, O. I. and 
Johnston, E. L. (2017). An Evaluation of Semi-Automated Methods for 
Collecting Ecosystem-Level Data in Temperate Marine Systems. Ecol. Evol. 7 
(13), 4640–4650. doi: 10.1002/ece3.3041

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., 
Tyukavina, A., et al. (2013). High-Resolution Global Maps of 21st-Century 
Forest Cover Change. Science 342 (6160), 850–853. doi:  10.1126/
science.1244693

Islam, K. A., Hill, V., Schaeffer, B., Zimmerman, R. and Li, J. (2020). Semi-
Supervised Adversarial Domain Adaptation for Seagrass Detection Using 
Multispectral Images in Coastal Areas. Data Sci. Eng. 5, 111–125. doi: 
10.1007/s41019-020-00126-0

IUCN (2021). Manual for the Creation of Blue Carbon Projects in Europe and 
the Mediterranean. Ed. Otero, M., 144 pages. Center for Mediterranean 
Cooperation, Malaga, Spain

Jayathilake, D. R. and Costello, M. J. (2018). A Modelled Global Distribution 
of the Seagrass Biome. Biol. Conserv. 226, 120–126. doi:  10.1016/j.
biocon.2018.07.009

Jordà, G., Marbà, N. and Duarte, C. M. (2012). Mediterranean Seagrass 
Vulnerable to Regional Climate Warming. Nat. Climate Change 2 (11), 821–
824. doi: 10.1038/nclimate1533

Lyons, M. B., Roelfsema, C. M., Kennedy, E. V., Kovacs, E. M., Borrego-Acevedo, 
R., Markey, K., et al. (2020). Mapping the World’s Coral Reefs Using a Global 
Multiscale Earth Observation Framework. Remote Sens. Ecol. Conserv. 6 (4), 
557–568. doi: 10.1002/rse2.157

Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, 
D. A., et al. (2019). The Future of Blue Carbon Science. Nat. Commun. 10 (1), 
1–13. doi: 10.1038/s41467-019-11693-w

Macreadie, P. I., Costa, M. D. P., Atwood, T. B., Friess, D. A., Kelleway, J. J., 
Kennedy, H., et al. (2021). Blue Carbon as a Natural Climate Solution. Nat. 
Rev. Earth Environ. 2 (12), 826–839. doi: 10.1038/s43017-021-00224-1

Marbà, N. and Duarte, C. M. (1998). Rhizome Elongation and Seagrass Clonal 
Growth. Mar. Ecol. Prog. Ser. 174, 269–280. doi: 10.3354/meps174269

McKenzie, L. J., Nordlund, L. M., Jones, B. L., Cullen-Unsworth, L. C., Roelfsema, 
C. and Unsworth, R. K. (2020). The Global Distribution of Seagrass Meadows. 
Environ. Res. Lett. 15 (7), 074041. doi: 10.1088/1748-9326/ab7d06

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., et 
al. (2019). The Global Distribution and Trajectory of Tidal Flats. Nature 565 
(7738), 222–225. doi: 10.1038/s41586-018-0805-8

Paoli, C., Povero, P., Burgos, E., Dapueto, G., Fanciulli, G., Massa, F., et al. (2018). 
Natural Capital and Environmental Flows Assessment in Marine Protected 
Areas: The Case Study of Liguria Region (NW Mediterranean Sea). Ecol. 
Model. 368, 121–135. doi: 10.1016/j.ecolmodel.2017.10.014

Pekel, J.-F., Cottam, A., Gorelick, N. and Belward, A. S. (2016). High-Resolution 
Mapping of Global Surface Water and its Long-Term Changes. Nature 540 
(7633), 418–422. doi: 10.1038/nature20584

Pergent, G., Bazairi, H., Bianchi, C. N., Boudouresque, C. F., Buia, M., Calvo, 
S., et al. (2014). Climate Change and Mediterranean Seagrass Meadows: A 
Synopsis for Environmental Managers. Mediterr. Mar. Sci. 15 (2), 462–473. 
doi: 10.12681/mms.621

Pergent-Martini, C., Pergent, G., Monnier, B., Boudouresque, C.-F., Mori, C. and 
Valette-Sansevin, A. (2021). Contribution of Posidonia Oceanica Meadows 
in the Context of Climate Change Mitigation in the Mediterranean Sea. Mar. 
Environ. Res. 165, 105236. doi: 10.1016/j.marenvres.2020.105236

Pergent-Martini, C., Valette-Sansevin, A. and Pergent, G. (2015). Cartographie 
Continue Des Habitats Marins En Corse / Résultats Cartographiques.

Poursanidis, D., Traganos, D., Reinartz, P. and Chrysoulakis, N. (2019). On 
the Use of Sentinel-2 for Coastal Habitat Mapping and Satellite-Derived 
Bathymetry Estimation Using Downscaled Coastal Aerosol Band. Int. J. Appl. 
Earth Observation Geoinformation 80, 58–70. doi: 10.1016/j.jag.2019.03.012

Purkis, S. J., Gleason, A. C., Purkis, C. R., Dempsey, A. C., Renaud, P. G., 
Faisal, M., et al. (2019). High-Resolution Habitat and Bathymetry Maps for 
65,000 Sq. Km of Earth’s Remotest Coral Reefs. Coral Reefs 38 (3), 467–488. 
doi: 10.1007/s00338-019-01802-y

Ricart, A. M. (2016). Insights Into Seascape Ecology: Landscape Patterns as Drivers 
in Coastal Marine Ecosystems (Barcelona, Spain: Universitat de Barcelona).

Rigo, I., Paoli, C., Dapueto, G., Pergent-Martini, C., Pergent, G., Oprandi, 
A., et al. (2021). The Natural Capital Value of the Seagrass Posidonia 
Oceanica in the North-Western Mediterranean. Diversity 13 (10), 499. doi:   
10.3390/d13100499

Serrano, O., Lovelock, C. E., Atwood, T. B., Macreadie, P. I., Canto, R., Phinn, 
S., et al. (2019). Australian Vegetated Coastal Ecosystems as Global Hotspots 
for Climate Change Mitigation. Nat. Commun. 10 (1), 1–10. doi:  10.1038/
s41467-019-12176-8

Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E. T., Fraschetti, 
S., et al. (2015). Seagrass Meadows (Posidonia Oceanica) Distribution and 
Trajectories of Change. Sci. Rep. 5 (1), 1–14. doi: 10.1038/srep12505

Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N. and 
Reinartz, P. (2018). Towards Global-Scale Seagrass Mapping and Monitoring 
Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and 
Ionian Seas. Remote Sens. 10 (8), 1227. doi: 10.3390/rs10081227

Traganos, D. and Reinartz, P. (2018a). Interannual Change Detection of 
Mediterranean Seagrasses Using RapidEye Image Time Series. Front. Plant 
Sci. 9. doi: 10.3389/fpls.2018.00096

Traganos, D. and Reinartz, P. (2018b). Mapping Mediterranean Seagrasses 
With Sentinel-2 Imagery. Mar. pollut. Bull. 134, 197–209. doi:  10.1016/j.
marpolbul.2017.06.075

UNEP/MAP (2012). State of the Mediterranean Marine and Coastal Environment 
(Athens: UNEP/MAP – Barcelona Convention).

UNEP-WCMCShort, F. T. (2018) Global Distribution of Seagrasses (Version 6.0). 
Sixth Update to the Data Layer Used in Green and Short, (2003). Available at: 
http://data.unep-wcmc.org/datasets/7.

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
https://doi.org/10.1038/s41467-019-11340-4
https://doi.org/10.1038/s41467-019-11340-4
https://doi.org/10.1038/nclimate1970
https://doi.org/10.30897/ijegeo.544695
https://doi.org/10.3390/rs10091363
https://doi.org/10.1371/journal.pone.0190370
https://doi.org/10.1371/journal.pone.0190370
https://doi.org/10.1038/ngeo1477
https://doi.org/10.3390/rs9060584
http://agricultura.gencat.cat/ca/detalls/Article/Herbassars.-Zones-denvolvents
http://agricultura.gencat.cat/ca/detalls/Article/Herbassars.-Zones-denvolvents
https://doi.org/10.1016/j.patrec.2005.08.011
https://doi.org/10.3390/rs8010030
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1002/ece3.3041
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1007/s41019-020-00126-0
https://doi.org/10.1016/j.biocon.2018.07.009
https://doi.org/10.1016/j.biocon.2018.07.009
https://doi.org/10.1038/nclimate1533
https://doi.org/10.1002/rse2.157
https://doi.org/10.1038/s41467-019-11693-w
https://doi.org/10.1038/s43017-021-00224-1
https://doi.org/10.3354/meps174269
https://doi.org/10.1088/1748-9326/ab7d06
https://doi.org/10.1038/s41586-018-0805-8
https://doi.org/10.1016/j.ecolmodel.2017.10.014
https://doi.org/10.1038/nature20584
https://doi.org/10.12681/mms.621
https://doi.org/10.1016/j.marenvres.2020.105236
https://doi.org/10.1016/j.jag.2019.03.012
https://doi.org/10.1007/s00338-019-01802-y
https://doi.org/10.3390/d13100499
https://doi.org/10.1038/s41467-019-12176-8
https://doi.org/10.1038/s41467-019-12176-8
https://doi.org/10.1038/srep12505
https://doi.org/10.3390/rs10081227
https://doi.org/10.3389/fpls.2018.00096
https://doi.org/10.1016/j.marpolbul.2017.06.075
https://doi.org/10.1016/j.marpolbul.2017.06.075
http://data.unep-wcmc.org/datasets/7


Traganos et al.

13Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 871799

Pan-Mediterranean Seagrass Extent Mapping

United Nations (2015). Transforming Our World: The 2030 Agenda for Sustainable 
Development (New York, USA: United Nations).

United Nations Environment Programme (2020). Out of the Blue: The Value of 
Seagrasses to the Environment and to People (Nairobi, Kenya: UNEP).

United Nations Framework Convention on Climate Change (2021) Nationally 
Determined Contributions (NDCs). Available at: https://unfccc.int/process-
and-meetings/the-paris-agreement/nationally-determined-contributions-
ndcs/nationally-determined-contributions-ndcs (Accessed 11 January 2022).

Wabnitz, C. C., Andréfouët, S., Torres-Pulliza, D., Müller-Karger, F. E. and Kramer, 
P. A. (2008). Regional-Scale Seagrass Habitat Mapping in the Wider Caribbean 
Region Using Landsat Sensors: Applications to Conservation and Ecology. 
Remote Sens. Environ. 112 (8), 3455–3467. doi: 10.1016/j.rse.2008.01.020

Williams, I. D., Couch, C. S., Beijbom, O., Oliver, T. A., Vargas-Angel, B., 
Schumacher, B. D., et al. (2019). Leveraging Automated Image Analysis Tools 
to Transform Our Capacity to Assess Status and Trends of Coral Reefs. Front. 
Mar. Sci. 6. doi: 10.3389/fmars.2019.00222

Zhang, C. (2015). Applying Data Fusion Techniques for Benthic Habitat Mapping 
and Monitoring in a Coral Reef Ecosystem. ISPRS J. Photogrammetry Remote 
Sens. 104, 213–223. doi: 10.1016/j.isprsjprs.2014.06.005

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is not 
guaranteed or endorsed by the publisher.

Copyright © 2022 Traganos, Lee, Blume, Poursanidis, Čižmek, Deter, Macˇic;, 
Montefalcone, Pergent, Pergent-Martini, Ricart and Reinartz. This is an open-
access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs
https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs
https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs
https://doi.org/10.1016/j.rse.2008.01.020
https://doi.org/10.3389/fmars.2019.00222
https://doi.org/10.1016/j.isprsjprs.2014.06.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	_GoBack
	Spatially Explicit Seagrass Extent Mapping Across the EntireMediterranean
	Introduction

	Methods

	The Cloud-Native Earth 
Observation Framework

	The Multi-Temporal Sentinel-2 
Satellite Image Mosaic

	Training Data

	Artificial Intelligence

	Validation Data and Accuracy Assessment


	Results

	The Pan-Mediterranean Extent of P. oceanica Seagrass Meadows

	Country-Scale P. oceanica Seagrass 
Area Inventories


	Discussion

	Data Availability Statement

	Author Contributions

	Funding

	Acknowledgments

	﻿Supplementary Material

	References


	﻿Spatially Explicit Seagrass Extent Mapping Across the EntireMediterranean
	﻿﻿Spatially Explicit Seagrass Extent Mapping Across the EntireMediterranean
	﻿﻿﻿Spatially Explicit Seagrass Extent Mapping Across the EntireMediterranean
	﻿﻿﻿﻿Spatially Explicit Seagrass Extent Mapping Across the EntireMediterranean

