
Frontiers in Marine Science | www.frontiers

Edited by:
Susana Carvalho,

Center for Marine and Environmental
Sciences (MARE), Portugal

Reviewed by:
Romuald Lipcius,

William & Mary’s Virginia Institute of
Marine Science,

United States
Jose M. Fariñas-Franco,

Galway-Mayo Institute of Technology,
Ireland

Bayden D. Russell,
University of Hong Kong, China

*Correspondence:
Marina A. Richardson

marina.richardson@griffithuni.edu.au
Carmel McDougall

c.mcdougall@griffith.edu.au

Specialty section:
This article was submitted to
Marine Ecosystem Ecology,

a section of the journal
Frontiers in Marine Science

Received: 11 February 2022
Accepted: 24 May 2022
Published: 23 June 2022

Citation:
Richardson MA, Zhang Y,

Connolly RM, Gillies CL and
McDougall C (2022) Some Like it Hot:
The Ecology, Ecosystem Benefits and

Restoration Potential of Oyster
Reefs in Tropical Waters.

Front. Mar. Sci. 9:873768.
doi: 10.3389/fmars.2022.873768

REVIEW
published: 23 June 2022

doi: 10.3389/fmars.2022.873768
Some Like it Hot: The Ecology,
Ecosystem Benefits and Restoration
Potential of Oyster Reefs in
Tropical Waters
Marina A. Richardson1,2*, Ya Zhang1,2, Rod M. Connolly2,3, Chris L. Gillies4

and Carmel McDougall 1,2*

1 Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia, 2 Coastal and
Marine Research Centre, School of Environment and Science, Griffith University, Gold Coast, QLD, Australia, 3 Australian Rivers
Institute, School of Environment and Science, Griffith University, Gold Coast, QLD, Australia, 4 The Nature Conservancy Australia,
Carlton, VIC, Australia

Oysters are ecosystem engineers that form biogenic reef habitats in shallow coastal and
estuarine waters and provide important ecosystem services. Widespread global declines
have triggered a world-wide restoration movement, however a paucity of information on
tropical oyster reefs has resulted in their exclusion from existing global assessments and,
consequently, restoration. In this review we quantified the known global diversity of native
reef-building oysters to compare diversity between temperate and tropical regions and
assessed historic oyster reef presence and declines using two tropical case studies. We
then summarised the biology, ecology, and benefits of tropical oyster reefs, which have
four functional differences to temperate reefs: 1) the diversity of reef-building oysters is
over four times higher in tropical than in temperate regions; 2) tropical reef-building oysters
can have continuous spatfall throughout the year whereas temperate species have a
defined season; 3) tropical reef-building oysters are generally faster growing than
temperate reef-building oysters; and 4) tropical oysters commonly create mixed-
species oyster reefs whereas temperate oyster reefs are generally formed by a single
oyster species. There is evidence of unsustainable and destructive harvesting that has
resulted in the decline of tropical oyster reefs, and these reefs should therefore be included
in restoration efforts. We highlight knowledge gaps that can guide future research to
develop important foundational information that will remove barriers to tropical oyster
reef restoration.
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INTRODUCTION

Cumulative pressures of pollution, overfishing and climate
change have resulted in the destruction of marine ecosystems
around the world. The loss of these ecosystems, for example,
coral reefs (Palandro et al., 2008; De’ath et al., 2012), mangroves
(Goldberg et al., 2020), saltmarshes (Silliman et al., 2009), and
kelp (Filbee-Dexter and Wernberg, 2018), has subsequently
resulted in the loss of marine biodiversity as well as the
ecosystem services that these habitats provide (Sala and
Knowlton, 2006; Barbier, 2017). Oysters are ecosystem
engineers that are found globally in shallow coastal and
estuarine waters, and can grow in dense aggregations to form
three-dimensional biogenic structures (Beck et al., 2011). These
structures are often called ‘reefs’, ‘banks’, or ‘beds’, depending on
the physical shape of oyster aggregations, i.e., either high or low
profile structures, clumped aggregations in soft sediment, or
encrusting veneers on rocks and other hard substrates (Alleway
et al., 2015; Mcleod et al., 2020). Here we will refer to all of these
structures as ‘reefs’. Oyster reefs provide important ecosystem
services including shoreline stabilization, water filtration,
nutrient assimilation, and the provision of habitat for marine
life including commercially important fishes and crustaceans
(Coen et al., 2007; Grabowski and Peterson, 2007; Hancock and
Zu Ermgassen, 2019). Destructive and unsustainable harvesting
coupled with pollution, disease, and coastal development, has
destroyed 85% of oyster reefs globally, making them one of the
most imperilled marine ecosystems (Beck et al., 2011).

Despite the magnitude of oyster reef loss, restoration efforts,
including over 5000 hectares of Crassostrea virginica reefs
restored on the east coast of the USA, show that restoration is
possible (Hernández et al., 2018). Restoration has now expanded
to other species including Ostrea lurida on the west coast of the
USA and Canada (Pritchard et al., 2015), Ostrea edulis in Europe
(Pogoda et al., 2019; Preston et al., 2020), and Ostrea angasi and
Saccostrea glomerata in Australia (Alleway et al., 2015; Gillies
et al., 2018). More research has been conducted on C. virginica
than all other species combined, and there is now a need to
Frontiers in Marine Science | www.frontiersin.org 2
broaden research to a wider range of reef-building bivalves to
provide ecological evidence to inform restoration beyond the
United States (Toone et al., 2021). A review of the benefits of
other bivalve species that are targets of shellfish reef restoration
demonstrated that they provide similar ecosystem services to
those provided by C. virginica (Zu Ermgassen et al. (2020),
however most of these species reviewed are subtropical and
temperate. Very little is known about tropical oyster reefs.
Tropical marine systems generally harbour greater biodiversity
than temperate systems (Gray, 1997; Roberts et al., 2002) and
this also holds true for oysters where the diversity of species is
higher in the tropics (Guo et al., 2018). Despite this, tropical
oysters remain underrepresented in global reviews and oyster
reef restoration manuals (Beck et al., 2011; Fitzsimons et al.,
2019; Fitzsimons et al., 2020; Zu Ermgassen et al., 2020).

Restoration of tropical marine systems such as coral reefs
(Meesters et al., 2015), seagrass (Paling et al., 2009) and
mangroves (Hashim et al., 2010; Su et al., 2021) is occurring,
but to date there has been no documentation of tropical oyster
reef restoration in the scientific literature. Oyster reefs occur
throughout tropical inshore coastal and estuarine systems (Naik
and Gowda, 2013; Lau et al., 2020) but knowledge of these
assemblages, including the extent of occurrence, the identity of
the dominant ecosystem engineers, their biology and ecology,
and the benefits they provide, remains poorly understood.
Oysters exhibit high levels of morphological plasticity and
molecular techniques are required for accurate identification
(Sekino and Yamashita, 2016). These techniques have only
recently been applied in the tropics, revealing an unexpectedly
high diversity of oysters and a number of new and undescribed
species (Guo et al., 2018; Mcdougall et al., 2020; Al-Kandari et al.,
2021; Cui et al., 2021). Obtaining foundational information for
tropical reef-building oysters is an important precursor for
assessing their conservation status, ecological significance, and
potential for restoration.

The aim of this review is to elucidate the global diversity of
reef-building oysters, summarise the known biology and ecology
of tropical oyster reefs and the ecosystem services that they
GRAPHICAL ABSTRACT | Graphical depiction of tropical oyster reefs (left) and temperate oyster reefs (right).
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provide, and identify functional differences between tropical and
temperate oyster reefs to guide future oyster reef restoration in
the tropics. We cover five key topics: 1) global diversity and
distribution of reef-building oysters; 2) the decline of tropical
oyster reefs; 3) biology and ecology of tropical reef-building
oysters; 4) ecosystem benefits of tropical oyster reefs; and 5)
addressing tropical oyster reef knowledge gaps to guide restoration.
ASSESSING THE GLOBAL DIVERSITY
AND DISTRIBUTION OF REEF-BUILDING
OYSTERS

To date, no assessments have estimated the global diversity of
reef-building oysters in shallow coastal and estuarine waters.
Previous studies focus on the most common and widely
distributed species or those important to aquaculture, meaning
some species are yet to be reported definitively as reef-building or
non-reef-building (Gillies et al. , 2018). Our limited
understanding of which species of oysters are reef-building is a
problem when planning and setting objectives for oyster reef
restoration. In this review, we considered “reef-building” to be
oysters that created biogenic habitat by settling gregariously
(when oysters attach and grow on each other to form clumps)
on soft sediment and/or hard substrates, and excluded
endobenthic species that reside in sediments (Gillies et al., 2018).

Compiling Reef-Building Oyster Species
To assess the global diversity of reef-building oysters, we
compiled a list of oyster genera known to contain reef-building
species from reef restoration reviews and reports (Alleway et al.,
2015; Fitzsimons et al., 2019; Pogoda et al., 2019; Zu Ermgassen
et al., 2020). From this search five genera were identified:
Crassostrea, Isognomon, Ostrea, Pinctada and Saccostrea.
Oyster species have undergone extensive taxonomic
reclassifications (Salvi and Mariottini, 2016; Guo et al., 2018).
To account for reclassified species, we searched for reassigned
and alternative representations of identified genera in the World
Register of Marine Species (WoRMS), an authoritative and
comprehensive list of names of marine organisms, including
information on synonymy (https://www.marinespecies.org).
From this search we identified the additional genera Hyotissa,
Lopha , Magallana , Planostrea, Pteria, Striostrea , and
Talonostrea. Reassigned genera from Ostrea were excluded
from this search as all oysters were originally described as this
genus (Linnaeus, 1758).

To create a species list, we searched each genus using an
advanced search for “Status = accepted” and “Fossil = extant, not
fossil-only” in WoRMS. This search returned a total of 156
species. All species discussed in this review are referred to by
their accepted name as they appear in WoRMS which includes
the accepted reclassification of some Crassostrea species as
Magallana (Salvi and Mariottini, 2016). Once species were
identified, we searched for reviews in Google Scholar using the
search terms “species name” + “review”. Where reviews were
found, evidence of reef-building (reference to reef-building,
Frontiers in Marine Science | www.frontiersin.org 3
habitat-forming, restoration, existing reefs, or gregarious
settling) was recorded. For each species, we then searched the
terms “species name” + “beds” OR “reefs” OR “banks” OR
“restoration” to document existing reefs or evidence of reef-
building where reviews did not exist. These search terms were
repeated using alternative representations and past species
names when accepted names did not yield reviews or reef-
building evidence. If these search terms did not yield papers,
we searched “species name” to scan additional papers for evidence
of reef-building (as described above) in understudied species.

Assessing Reef-Building Oyster
Distributions and Ecological Interactions
Once reef-building oysters were identified, we recorded their
native distributions from reviews and original papers published
in English. Almost all species had some subtropical distributions.
To delineate which species were tropical or temperate, we classed
species with subtropical and temperate distributions as
temperate and species with subtropical and tropical
distributions as tropical. Species found in tropical, subtropical,
and temperate regions were classed as eurythermal. Species that
only had subtropical distributions in the Arabian Gulf have been
considered tropical as these regions are separated from
temperate zones and are latitudinally closer to the tropics. We
also recorded any reported instances of oysters co-habiting to
form mixed-species assemblages within native distributions.

To explore the ecology of oysters in tropical waters, we
searched literature for interactions between tropical and
eurythermal oyster species and co-occurring habitats.
Interactions were garnered from identified reviews and, where
a review did not exist, we searched Google Scholar using the
terms “species name” + “coral” OR “seagrass” OR “mangrove”
OR “saltmarsh”. These search terms were repeated using
alternative representations and past species names when
accepted names did not yield results. For a full analysis, species
list and references see Supplementary Material. For a justification
of species inclusions and exclusions see Supplementary Methods.

Global Diversity of Reef-Building Oysters
We found a total of 38 species of reef-building oysters from eight
genera: Crassostrea, Isognomon, Magallana, Ostrea, Pinctada,
Saccostrea, Striostrea and Talonostrea. Evidence of gregarious
settling (indicating reef-building) was found for three species
(Crassostrea columbiensis, Pinctada margaritifera and
Talonostrea zhanjiangensis); these have been included in our
diversity count. Tropical regions harbour over four times greater
diversity of reef-building oysters than temperate regions with a
total of 25 tropical species, six temperate species, and seven
eurythermal species (Figure 1). A paucity of literature from
tropical regions (Beck et al., 2011; Toone et al., 2021) coupled
with ongoing taxonomic ambiguities has likely resulted in some
species of reef-building oysters being undocumented or not yet
described. For example, Saccostrea cucullata has been used as a
catch-all name for what is likely multiple species comprised of at
least nine genetically distinct lineages (Lam and Morton, 2006;
Guo et al., 2018), while the reef-building species Talonostrea
June 2022 | Volume 9 | Article 873768
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salpinx was only described in 2021 (Al-Kandari et al., 2021). Our
diversity count is therefore conservative and will likely increase
as the taxonomy of these groups is refined.
THE DECLINE OF TROPICAL
OYSTER REEFS

Oyster reefs have declined in tropical regions, primarily as a result
of over-exploitation and unsustainable harvesting. Reef conditions
have been assessed in tropical South America and the Western
Atlantic, and range from “Good” to “Functionally extinct” (Beck
et al., 2009; Beck et al., 2011). Historical declines have also been
documented in literature for Striostrea prismatica reefs in Costa
Rica (Campos and Fournier, 1989; Rios Gonzalez et al., 2018),
Crassostrea brasiliana in the Western Atlantic (Carranza et al.,
2009; Westphal and Ostrensky, 2016), Pinctada imbricata in
Venezuela (Romero, 2003), and Crassostrea rhizophorae in
Venezuela (Carranza et al., 2009). Detailed assessments of reef
conditions and extent are still lacking, however, possibly due to a
lack of economic support and management interest in these
systems in South American countries (Beck et al., 2009). This is
also likely the case for tropical regions outside of South America
Frontiers in Marine Science | www.frontiersin.org 4
and could be a contributing factor to their relative absence in
existing global assessments and reviews.

There is very little information documenting the decline of
tropical oyster reefs outside South America. Some local declines
have been documented for pearl oyster reefs in Sri Lanka and
Qatar (Smyth et al., 2016; Ostroff, 2020), mixedMagallana belcheri
and Magallana bilineata reefs in India (Alagarswami and
Narasimham, 1973; Nagi et al., 2011), and Magallana bilineata
and Magallana hongkongensis reefs in Hong Kong (Lau et al.,
2020). Talonostrea salpinx reefs in Kuwait have also declined, with
historical photographs showing how extensive and well developed
the reefs once were (Al-Kandari et al., 2021). In the absence of
historical records in the scientific literature, evidence for the
presence and destruction of reefs can be obtained using indirect
methods (i.e., proxies). Previous studies have inferred the
historical presence of significant oyster populations from the
location of place names including the word ‘oyster’, or from the
presence of historical lime kilns as oysters were often the major
raw ingredient for lime prior to the use of limestone (Gillies et al.,
2018). Historical reef presence can also be garnered from grey
literature such as archived newspaper articles (Gillies et al., 2018;
Cook et al., 2021). Whist a complete analysis of the historical
presence of tropical oyster reefs in all data poor regions was
outside the scope of this study, we tested our hypothesis using two
case studies to assess the historical presence and decline of tropical
oyster reefs. These case studies outline two easily replicable
methods using alternate sources of information that can be
applied to other data poor regions in the tropics.

Case Study 1: Pearl River Delta, China
We chose the Pearl River Delta, China (which includes Hong
Kong and Macao) for our first case study. This region was
selected due to the presence of existing, degraded oyster reefs
(Beck et al., 2011; Lau et al., 2020) and the world’s longest
recorded history of oyster cultivation dating back 1000 years
(Cheung, 2019). Oyster reef restoration projects in this region are
also underway, however monitoring and results have not yet
been reported on. In Shenzen Bay, naturally high abundances of
oysters once supported cultivated reefs that covered 5123
hectares, however these reefs ceased to operate by the 1980s
due to a series of pollution crises (Liu, 1995; Watson, 2022).
Lime-burning was one of Hong Kong’s oldest and most
prosperous industries where shell was burned to create lime
for many purposes including construction, plastering,
brickmaking and curing leather (Tak-Yan, 1984; Watson, 2022;
Weng et al., 2021). The process of lime-burning involved
burning live oysters as well as dredged shell, which removed
hard substrates essential for new oyster growth. Lime kilns were
once prevalent across Hong Kong, with the island of Ping Chau
described as “having lime kilns thick along the sheltered western
and southern shores” (Schofield, 1983).

To search for evidence of undocumented historic oyster reefs
and their decline, we searched Google Maps for place names
containing ‘oyster’ (‘蚝’ and ‘蠔’ means oyster), historic lime
kilns, and the term ‘fui yiu ha’ which means ‘near a lime kiln’
(Schofield, 1983). We identified 10 historical lime kiln sites
FIGURE 1 | Global distribution of native reef-building oysters (tropical,
eurythermal and temperate). Blue boxes (A–C) and (G–I) are temperate
regions while yellow boxes (D–F) are tropical regions. C, Crassostrea; I,
Isognomon; M, Magallana; O, Ostrea; P, Pinctada; S, Saccostrea; St,
Striostrea; and T, Talonostrea. An asterisk* denotes multiple lineages which
are likely to be multiple species as per Lam and Morton (2006) and Sekino
and Yamashita (2016). For further details see Supplementary Methods.
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(which contained multiple kilns), and 14 oyster place names
including Macao which was previously called “Hao Jing Ao”
which translates to “oyster mirror bay” (Figure 2). For a full list
of place names and co-ordinates, see Supplementary Material.
These results indicate that oysters, and likely reefs, once had a
much wider distribution across the lower basin of the Pearl River
Delta than they do now.

Case Study 2: Central and Far North
Queensland, Australia
For our second case study, we chose tropical Queensland,
Australia, where the historical presence of oyster reefs remains
unknown. We searched newspaper articles (National Library of
Frontiers in Marine Science | www.frontiersin.org 5
Australia Trove database; http://trove.nla.gov.au/) for evidence
of oyster reefs by searching the terms “oyster beds” and “oyster
reefs” in 24 newspapers from coastal towns north of Seventeen
Seventy between the earliest available year and 1939 (after which
harvest years in northern Queensland had peaked, (Alleway
et al., 2015). Reference to plural “beds” or “reefs” were
recorded as two reefs unless a higher number was explicitly
stated. From this search we conservatively identified 94 historic
reefs across 58 sites (Figure 3). For a full list of Trove newspaper
results, see Supplementary Material. Reef size and structure was
rarely mentioned, however one reef in Cape Upstart (Figure 3B)
was reportedly “three quarters of a mile long” while in The
Narrows (Figure 3C), layers of old oyster shells were up to 1.2 m
FIGURE 2 | A map of the lower basin of the Pearl River Delta displaying oyster place names and historic lime kilns.
FIGURE 3 | A map of historical oyster reef sites in tropical Queensland. (A) 23 reefs across 14 locations between Townsville and Port Douglas; (B) 22 reefs across
15 locations between Carmila and Townsville; (C) 45 reefs across 29 locations between Seventeen Seventy and Yeppoon. The pink site at the northern tip of
Queensland represents at least four reefs comprised of pearl oysters and likely Saccostrea at Thursday Island.
June 2022 | Volume 9 | Article 873768
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thick, and calcareous rocky reefs rose 1.5 m above the water
“carrying millions of oysters and extending along the banks for
hundreds of yards”. Although the current extent of oyster reefs in
the region is unclear, declines over the last 110 years including
smothering induced die-offs, overharvesting and destructive
practices such as the use of dynamite in the Keppel Islands
suggests that oyster reefs have been severely reduced (Mcleod
et al., 2015). We found similar evidence for oyster reef declines,
and overharvesting, pollution and dredging was reported in 16
sites from as early as 1902 (see Supplementary Material).
Currently, Isognomon ephippium is the only species with
documented reefs in tropical Queensland (Mcleod et al., 2015),
however it is likely that most historic reefs we identified were
Saccostrea sp as most references were made to oysters being eaten
or commercially leased, and I. ephippium is generally not
consumed (Benthotage et al., 2020).
BIOLOGY AND ECOLOGY OF TROPICAL
REEF-BUILDING OYSTERS

Understanding the biology and ecology of tropical reef-building
oysters is important to inform restoration approaches, as
differences between temperate and tropical systems are likely
which may affect the method of restoration. Knowing these
differences will help to guide decision making and avoid
potentially costly mistakes. The information in this section is a
summary of what is currently known about tropical oyster reefs
and reef-building species.

What Types of Reefs Do Tropical
Oysters Build?
Like their temperate and subtropical congeners, tropical oysters
are capable of building different types of reef structures. The
shape of these structures includes high- and low-profile reefs,
encrusting veneers on rocks and mangroves, and aggregations
in soft sediment (Figure 4). Crassostrea brasiliana, Magallana
hongkongensis, Pinctada radiata, Saccostrea cucullata and
Striostrea margaritacea are capable of building reefs both
intertidally and subtidally (Dye et al., 1994; Lam and Morton,
2004; Al-Khayat and Al-Ansi, 2008; Westphal and Ostrensky,
2016). The eurythermal species Ostrea denselamellosa exists
subtidally in Hong Kong but it is unknown whether it builds
reefs there (Lam and Morton, 2004). Other tropical species may
be capable of building reefs subtidally, but this has not been
documented in English literature. By comparison, four of the
six temperate species are exclusively subtidal species [Ostrea
angasi (Gillies et al., 2020), O. chilensis (Cranfield, 1979), O.
edulis (Pogoda et al., 2019) and O. puelchana (Doldan et al.,
2018)], and S. glomerata and O. lurida are capable of building
reefs both subtidally and intertidally (Pritchard et al., 2015;
Gillies et al., 2018). Despite the high diversity of tropical reef-
building oysters that we identified, there is little evidence of
extant remnant reefs in the tropics. Reported extant remnant
reef information including location, reef area, oyster density,
abundance, and biomass has been recorded in Table 1 (see
Frontiers in Marine Science | www.frontiersin.org 6
Supplementary Material for references), however these
systems are likely degraded and therefore may not represent
hea l thy , hi s tor ic numbers . The ident ificat ion and
characterisation of reference systems (remnant reefs with
minimal degradation and healthy populations of oysters) are
important for setting and monitoring restoration targets
(Fitzsimons et al., 2019), and this represents a large
knowledge gap for tropical oyster reefs.

Growth, Size and Reproduction
Tropical species of reef-building oysters typically grow and
develop faster than temperate species. For example, Crassostrea
brasiliana (Legat et al., 2017), Crassostrea tulipa (Crow and
Carney, 2013), Crassostrea rhizophorae , Crassostrea
corteziensis, Magallana belcheri, Magallana bilineata and
Saccostrea cucullata (Angell, 1986) all reach market size,
generally between 60 – 70mm in shell height/length, within 12
months or as little as six months in favourable conditions. By
comparison all temperate species take a minimum of two years to
grow to market size. The fastest growing temperate species is
Saccostrea glomerata which takes approximately two years (Dove
and O’connor, 2009), followed by Ostrea angasi (Crawford,
2016) and Ostrea edulis (Newkirk and Haley, 1982) which take
2-4 years, and Ostrea chilensis (Cranfield, 1979) and Ostrea
lurida (Gillespie, 2009) which take 4-5 years. The fast growth
FIGURE 4 | Examples of reef structures built by tropical oysters around the
world. (A) Saccostrea sp reefs encrusting rocks in Far North Queensland,
Australia; (B) Talonostrea salpinx reefs encrusting rocks in Kuwait (see Al-
Kandari et al. (2021)); (C) Low profile intertidal Magallana sp reefs in Hong
Kong, China; (D) A low profile subtidal Pinctada radiata oyster reef and
gregarious clump near Dubai; (E) Low profile intertidal Isognomon ephippium
reefs on muddy banks in the Hinchinbrook Channel, Queensland, Australia;
(F) Crassostrea tulipa encrusting mangroves in The Gambia (see Crow and
Carney (2013)). Photo credits: (A) – Simon Walker; (B) – Manal Al-Kandari; (C) –
Marine Thomas (D) – Henry A Hänni; (E) – Ian McLeod; (F) – Judith Carney).
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rate of tropical species suggests that tropical oyster reefs may
establish faster and provide ecosystem services quicker post
restoration than temperate reefs.

Faster growth may be associated with larger adult sizes.
Maximum adult size data has been reported for tropical
species in Brazil and the American Pacific but is lacking in
other parts of the world (Do Amaral and Simone, 2014; Do
Amaral and Simone, 2016; Lodeiros et al., 2020). From what is
known about the size of wild tropical oysters, there is great
variability among species with the largest being Magallana
belcheri which can reach 430 mm (Willan et al., 2021) and one
of the smallest being Talonostrea salpinx which grows to a
maximum of 41 mm (Al-Kandari et al., 2021). Size can be a
useful indicator to distinguish between species (Lodeiros et al.,
2020), but in areas where knowledge of species diversity and
distributions is poor, smaller species can be misidentified as
juveniles of larger species (Wu et al., 2013).

Like temperate species, tropical reef-building oysters in the
Indo-Pacific and South America tend to follow the trend of
summer spawning triggered by increasing water temperatures
Frontiers in Marine Science | www.frontiersin.org 7
(Angell, 1986; Wu et al., 2013; Lodeiros et al., 2020). Unlike
temperate species however, some tropical oysters can
continuously spawn throughout the year. This has been
specifically documented for Isognomon alatus, Crassostrea
columbiensis, Crassostrea rhizophorae and Saccostrea palmula,
and is likely the case for other tropical species (Angell, 1986;
Benthotage et al., 2020; Lodeiros et al., 2020). Continuous spatfall
throughout the year makes predicting spatfall difficult, as peaks
have been correlated with salinity as well as temperature, and
these parameters are highly variable in monsoonal areas (Angell,
1986). Reproductive strategies are generally not well documented
for tropical reef-building oysters, and basic information about
sexual maturity, reproductive cycles, fecundity and larval phases
remain a knowledge gap for most species (Benthotage et al.,
2020; Lodeiros et al., 2020). Summarizing species-specific
information is further complicated by taxonomic ambiguities
( Do Amaral and Simone, 2014; Sekino and Yamashita, 2016),
and studies published prior to the utilisation of molecular
identification techniques may therefore be inaccurate (Angell,
1986; Lam and Morton, 2003; Wu et al., 2013).
TABLE 1 | Summary of tropical extant reefs, habitat associations and co-occurring tropical and eurythermal reef-building oysters.

Region Extant reefs (reef size; average oyster
density)

Mangrove
oysters

Coral reef oysters Rock oysters Co-occurring species

Eastern Pacific S. palmula
St. prismatica: 0.2–176 m-2 (Campos and
Fournier, 1989; Rios Gonzalez et al., 2018)

C. columbiensis,
S. palmula

? C. corteziensis, O.
conchaphila, S.
palmula, St.
prismatica

C. corteziensis + S. palmula

Caribbean &
western
Atlantic

C. brasiliana: 4 702 m2; 0.2 m-2 (Westphal and
Ostrensky, 2016)
I. alatus

C. brasiliana, C.
rhizophorae, C.
virginica, I.
alatus, I. bicolor

I. bicolor C. brasiliana, C.
virginica

C. brasiliana + Crassostrea sp.

Eastern & SE
Atlantic

C. tulipa
St. margaritacea

C. tulipa ? St. margaritacea ?

Western Indian ? S. cucullata, S.
echinata

? S. cucullata, S.
echinata

?

Arabian Gulf P. radiata: 21.7–50 m-2 (Al-Khayat and Al-Ansi,
2008)
T. salpinx

? P. radiata P. radiata, T.
salpinx, S.
cucullata, S.
scyphophilla

?

Central Indian M. bilineata + M. belcheri: 349 m-2 (Nagi et al.,
2011)
M. bilineata + M. belcheri + S. cucullata: 53 488
m2; 6–100 m-2 (Naik and Gowda, 2013)

M. belcheri, M.
bilineata, S.
cucullata

? M. belcheri, M.
bilineata, S.
cucullata

M. bilineata + M. belcheri,
M. bilineata + M. belcheri + S.
cucullata

Indo-Pacific I. nucleus + S. cucullata: 8000+ m-2

(Samakraman et al., 2010)
M. bilineata and/or M. hongkongensis: 91 000
m2; 1.1–100.6 m-2 (Lau et al., 2020)

I. ephippium, M.
angulata, M.
ariakensis, M.
belcheri, M.
bilineata, M.
hongkongensis,
M. sikamea, S.
cucullata, S.
echinata
S. kegaki

I. ephippium, I.
isognomum, P.
margaritifera

I. nucleus, I.
isognomum, M.
angulata, M.
ariakensis, M.
belcheri, M.
bilineata, M. gigas,
M. hongkongensis,
M. sikamea, S.
cucullata, S.
echinata, S. kegaki,
S. scyphophilla, T.
zhanjiangensis

M. ariakensis + M. sikamea,
T. zhanjiangensis + M. sikamea
+ M. hongkongensis,
O. denselamellosa + M.
ariakensis + M. gigas + M.
sikamea,
I. nucleus + S. cucullata,
P. margaritifera + S. cucullata,

Eastern Indian
(Australia)

? ? ? ? ?

SW Pacific
(Australia)

I. ephippium I. ephippium, S.
cucullata, S.
echinata

? S. cucullata, S.
echinata, S.
scyphophilla

?
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Habitat Associations
Tropical oyster reefs interact with co-occurring habitats in a
number of ways. For example, reef-building oysters require hard
substrates for settlement, and tropical oysters can be found
attached to rocks, mangrove roots and coral reefs, and many
species rely on these habitats to form biogenic reef structures
(Table 1). Driven by climate change, oyster reefs in parts of the
subtropical southeast USA are being replaced by mangroves,
primarily Rhizophora mangle, from tropical areas (Mcclenachan
et al., 2021). Both the tropical Crassostrea rhizophorae and
eurythermal Crassostrea virginica have been documented
growing on the roots of R. mangle (C. rhizophorae exclusively
so) (Aquino-Thomas and Proffitt, 2014; Lodeiros et al., 2020),
however the preferred habitat of C. virginica is hard rocky
substrates (Carranza et al., 2009). It is therefore possible that
tropical oysters may redistribute into subtropical habitats under
a changing climate, impacting temperate and eurythermal
species. Assessment of which species are likely to persist under
a changing climate should include research on their associated
habitats as these relationships in tropical regions are poorly
understood. These interactions could impact the broader
marine environment as connectivity between oyster reefs and
mangroves is an important factor in shaping fish and
invertebrate community assemblages (Grabowski et al., 2005;
Gilby et al., 2019).

There are likely to be differences in the interactions between
oyster reefs and the same co-occurring habitat types between
temperate and tropical regions. For instance, oyster reefs and
seagrass meadows co-occur in both temperate and tropical
systems. Positive and negative interactions have been
documented between these ecosystems in subtropical and
temperate environments (Booth and Heck, 2009; Wagner et al.,
2012; Sharma et al., 2016; Valdez et al., 2020), however in a
review of plant-bivalve interactions, positive interactions
between plants and bivalves decreased in warmer intertidal
areas, likely due to competition for space (Gagnon et al., 2020).
Interactions between oyster reefs and seagrass in tropical waters
should not be extrapolated from non-tropical studies without
further research. Similarly, saltmarsh and oyster reefs co-occur in
both tropical and temperate seascapes and positive interactions
have been documented in subtropical and temperate regions
(Chowdhury et al., 2019; Gagnon et al., 2020), but nothing is
known about interactions in tropical regions.

Mixed Species Reefs
We found evidence that 15 species of reef-building oysters co-
habited to form mixed-species assemblages in their native
distributions; ten of these species were tropical, four were
eurythermal, and only one was temperate (Table 1).
Documentation of co-occuring reef-building oysters was
highest in the Indo-Pacific, where we found the greatest
diversity of oyster species. In southern China, Talonostrea
zhanjiangensis was previously thought to be juvenile
Magallana hongkongensis, a species it co-occurs with, until
molecular analysis revealed that it was a new species (Wu
et al., 2013). T. zhanjiangensis directly competes for space with
Frontiers in Marine Science | www.frontiersin.org 8
M. hongkongensis, and commonly suffers mass mortalities after
its first fast growth season. Restoration of M. hongkongensis
therefore needs to consider competition for settlement space
with T. zhanjiangensis where distributions overlap, and
mechanisms to target M. hongkongensis recruitment such as
timing substrate deployment with peak spawning times should
be considered (Wu et al., 2013). The eurythermal species
Magallana sikamea and Magallana ariakensis also form mixed
species reefs, however the two species prefer to settle in the upper
and lower intertidal zones respectively (Wang et al., 2020).
Similar zonation patterns were observed in mixed Isognomon
nucleus and Saccostrea sp populations in Thailand, with I.
nucleus preferring to settle higher in the intertidal zone than S.
cucullata (Samakraman et al., 2010). It is unclear whether these
species compete for space or facilitate each other’s recruitment to
niche tidal zones via chemical cues (Tamburri et al., 2008) or
abiotic stress amelioration (Mcafee et al., 2018; Wang et al.,
2020). Positive interactions between conspecific reef-building
oysters, including settlement improvement and refugia from
physical and biological stress, are well documented (Reeves
et al., 2020). Interactions between co-occurring reef-building
species however (both positive and negative), are poorly
understood and it is unclear which species inhibit or facilitate
the settlement of other species, and the mechanisms behind these
processes. Similarly, it is unknown whether co-occurring species
compete for food or if there are niche partitioning of food particle
types and sizes between species, or whether they support unique
faunal assemblages.

Oysters are not the only bivalves capable of building
habitats. Mussels can also form three-dimensional biogenic
reefs by settling gregariously (Gillies et al., 2018; Zu
Ermgassen et al., 2020), however no studies in either
temperate or tropical regions have investigated interactions
between these two reef types. Oysters and mussels can also co-
occur to build mixed species reefs (Christianen et al., 2018;
Lipcius and Burke, 2018). Interactions in temperate reefs are
known to affect ecosystem function; for example, in Chesapeake
Bay, C. virginica and the hooked mussel Ischadium recurvum
form mixed-species reefs that have double the filtration
capacity of single-species reefs (Gedan et al., 2014; Lipcius
and Burke, 2018). Habitat-building mussels have been observed
on Pinctada radiata reefs in Qatar (Al-Khayat and Al-Ansi,
2008) as well as mixed Magallana bilineata x Magallana
belcheri reefs in Pakistan (Aslam et al., 2020), demonstrating
that this association occurs in tropical regions. It is unknown
whether there are any interactions, positive or negative,
between co-occurring mussels and oysters on tropical reefs.
Similarly, no research has documented interactions between
oysters and corals which are known to occur in the same reef
habitats (Figure 5).

Supported Biological Communities
Subtropical and temperate oyster reefs provide important habitat
for fishes. Assessments of fish abundances, community
assemblages and habitat use are well documented in the USA
(Tolley and Volety, 2005; Hancock and Zu Ermgassen, 2019; La
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Peyre et al., 2019) and somewhat documented in other countries
(Quan et al., 2009; Gilby et al., 2018b), however no research has
documented relationships between oyster reefs and fishes in the
tropics. This leaves a significant research gap and many
questions yet to be answered. For example, to what degree do
tropical oyster reefs support fish diversity and abundance? What
types of fish community assemblages do tropical oyster reefs
support? How do fish use tropical oyster reef habitats? What are
fish movement patterns between intertidal reefs and other
habitats? Do tropical oyster reefs support juvenile coral reef
fish the way that mangroves and seagrasses do (Nagelkerken
et al., 2001; Dorenbosch et al., 2005)? Given that habitat for fish,
especially commercially important species, is a key ecosystem
service of oyster reefs and driver of restoration in other parts of
the world (Coen et al., 2007; Grabowski et al., 2012; Karp et al.,
2018), this is possibly one of the most significant knowledge gaps
for tropical oyster reefs.

Tropical oyster reefs provide habitat for invertebrate
communities (Al-Khayat and Al-Ansi, 2008; Aslam et al.,
2020), which can be greater in diversity, abundance and
biomass compared to adjacent soft sediment habitats (Chan
et al., 2022). The effects of oyster reef habitats on invertebrate
communities, however, may vary depending on oyster traits and
environmental settings (Bateman and Bishop, 2017).
For example, on the subtropical and temperate east coast of
Australia, the provision of predation refuge played a more
important role in cooler estuaries, whereas shading by oysters
had a larger effect on biodiversity in warmer estuaries (Mcafee
and Bishop, 2019). Similarly, oyster habitat on rocky shores in
Frontiers in Marine Science | www.frontiersin.org 9
tropical Hong Kong ameliorated environmental and organismal
temperatures during summer low tides through the provision of
cooler microclimates (Mcafee et al., 2018). Temperate and
tropical oyster reefs are likely to support invertebrate
communities dominated by different taxa and, given that
invertebrate biodiversity is generally higher in the tropics,
higher biodiversity of tropical reefs might be expected. While
this question has not been explored in tropical zones,
comparisons between temperate and subtropical oyster reefs
and aquaculture sites do indicate some trends. In the USA,
amphipods are often reported as one of the most abundant
invertebrate taxa in temperate reefs and oyster farms, and
gastropod densities are low (Rodney and Paynter, 2006; Karp
et al., 2018; Ziegler et al., 2018; Ayvazian et al., 2020). At
subtropical remnant and restored reefs, however, gastropods
are reported as one of the dominant taxa while amphipods are
one of the least dominant taxa (Boudreaux et al., 2006; Brown
et al., 2014; De Santiago et al., 2019). Similar patterns were found
between temperate and subtropical Saccostrea glomerata reefs on
the east coast of Australia (Mcleod et al., 2020), and high
gastropod and low amphipod abundances were also observed
in mixed M. bilineata x M. belcheri reefs in Pakistan, Pinctada
radiata beds in Qatar and M. belcheri aquaculture in Thailand
(Al-Khayat and Al-Ansi , 2008; Kritsanapuntu and
Chaitanawisuti, 2018; Aslam et al., 2020). It is unclear whether
temperature is the only driver of these differences. Salinity can
also shape invertebrate community assemblages (Karp et al.,
2018) and other factors such as reef shape, size, location, or
connection to adjacent habitats may also play a part.
ECOSYSTEM BENEFITS OF TROPICAL
OYSTER REEFS

We found reported evidence for three environmental and three
social ecosystem services provided by oyster reefs in tropical
systems. Global quantifications of oyster reef ecosystem services
have been garnered primarily from studies in the USA, none of
which are tropical (Coen et al., 2007; Grabowski and Peterson,
2007). Although it is likely that tropical oyster reefs provide
similar benefits, we did not find any evidence for several potential
services including enhanced fish and crustacean production
(especially commercially important species), carbon
sequestration, and positive effects on co-occurring habitats. Re-
establishing ecosystem services is the main driver of oyster reef
restoration, and there is therefore a need to quantify the
ecosystem services provided by tropical oyster reefs.

Environmental Ecosystem Services
Tropical oyster reefs have been reported to protect shorelines,
provide habitat, and act as bioindicators of water quality. They
offer nature-based solutions to sea level rise and severe tropical
storms by ameliorating wave action and shoreline erosion
(Chowdhury et al., 2019; Rodolfo and Lapus, 2021). In
Bangladesh, growth of 2 cm per year on installed oyster
breakwater reefs kept pace with sea level rise while
FIGURE 5 | Examples of coral and reef-building oysters co-occurring in reef
habitats. (A) Saccostrea sp clustering above coral at Moreton Island,
Queensland; (B) Oysters, coral, hydroids and sponges co-habiting a dock at
the Smithsonian’s Bocas Del Toro Marine Station in Panama; (C) Isognomon
sp and coral co-occurring on a reef in the Philippines; (D) Multiple Saccostrea
species clustering on aquaculture furniture on a coral reef at Magnetic Island,
Queensland. Photo credits: (A) – Marina Richardson; (B) – Kristina Hall; (C) –
Phillippe and Guido Poppe; (D) – Carmel McDougall.
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simultaneously allowing for the harvest of 5.6 kg oysters per m2

per year (Tangelder et al., 2015). Tropical oyster reefs also
provide important habitat for marine invertebrates (Al-Khayat
and Al-Ansi, 2008; Aslam et al., 2020) and shelter from heat
stress for associated intertidal organisms during low tide (Mcafee
et al., 2018). By filtering large volumes of water and particulates,
oysters are capable of assimilating and bioaccumulating nutrient
loads in the water (Kellogg et al., 2013) and, in developed areas,
pollutants, microplastics and other contaminants can be traced
by using tropical oysters as bio-indicators (Patterson et al., 2019;
Patra et al., 2021). The tropical speciesMagallana hongkongensis
and M. bilineata have some of the highest known filtration rates
in the world and can filter 30 L/hour when they are only 90 mm
in size (Lau et al., 2020). Filtration rates of other tropical species
is missing from literature, but given that M. hongkongensis can
reach adult sizes of 160 mm under current high harvest pressures
(Lam and Morton, 2003), though individuals >300 mm have
been recorded, and that tropical species experience warm
conditions year-round thus avoiding slower feeding rates in
cool temperate conditions (Gray and Langdon, 2018; Eymann
et al., 2020), it is likely that mature tropical oysters could have
higher rates of filtration than temperate species.

Social Ecosystem Services
Coastal communities in developing countries provide an
important social context when assessing the benefits of tropical
oyster reefs, with many heavily reliant on marine resources for
food and income (Bell et al., 2009; Haque et al., 2009; Crow and
Carney, 2013). Almost 100% of oyster farming in the tropics rely
on wild caught spat (Nowland et al., 2020), meaning that
dependent coastal communities are reliant on the health of
wild oyster populations. In particular, harvesting wild and
farmed oysters provides employment opportunities for women
with low levels of education and economic opportunity (Szuster
et al., 2008; Crow and Carney, 2013; Fao, 2020). In The Gambia,
for example, there is an expectation for women to provide for
their families and oyster harvesting is primarily driven by an
aversion to stigmatised waged labour (Lau and Scales, 2016).
Oyster farming can also provide broader cultural benefits, for
example, in Vietnam oyster farming gives local people a sense of
place by providing incomes and a community where people can
practice culture (Pierce and O’connor, 2014).
ADDRESSING TROPICAL OYSTER
REEF KNOWLEDGE GAPS TO
GUIDE RESTORATION

Oyster reef restoration requires the consideration of historical
presence, proximity to existing reefs, and environmental and
physical parameters to select appropriate restoration sites (Zu
Ermgassen et al., 2016; Fitzsimons et al., 2019), however for
many tropical species this information is lacking. In low
recruitment areas where oyster spat seeding may be necessary,
or where multiple reef-building oysters exist, species selected or
targeted for restoration should be chosen based on project goals,
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desired ecosystem services, and resilience to stressors and climate
change (Howie and Bishop, 2021). Species selection is likely to be
of greater importance in the tropics due to the higher diversity of
reef-building oyster species, and therefore restoration candidates,
compared to temperate regions where there may only be one or
two species to choose from. Current taxonomic ambiguities in
the tropics may lead to the misidentification of species with
overlapping distributions, and the accidental selection of
unsuitable restoration candidates, particularly the superspecies
Saccostrea cucullata (Lam and Morton, 2006). Significant
background research is needed to fill basic oyster biology
knowledge gaps to support successful restoration projects.

Oyster reef restoration that complements the restoration of
co-occurring seagrasses, saltmarshes and mangroves is likely to
yield greater ecosystem benefits and greater restoration success
(Gilby et al., 2018a; Mcleod et al., 2019), however this
information is also lacking in the tropics. Equally, it is
important to consider possible deleterious effects of oyster reef
restoration on co-occurring ecosystems. Oyster harvesting in
The Gambia has resulted in the destruction of mangroves when
roots are slashed to collect Crassostrea tulipa, and wood is
harvested to smoke and preserve oysters (Crow and Carney,
2013). Restoring oyster reefs in regions with widespread poverty
where people are reliant on marine resources therefore needs to
identify and mitigate unintentional deleterious effects on co-
occurring habitats. Similarly, restoration in these regions will
likely need to account for harvesting by local communities.

To guide research and remove barriers to successful tropical
oyster reef restoration, we identified nine key tropical oyster reef
knowledge gaps: 1) current extent and loss of tropical oyster
reefs, including the identification of existing threats; 2)
taxonomic ambiguities of reef-building oysters, particularly in
the Indo-Pacific and Africa; 3) the identification and
characterisation of tropical oyster reef reference systems,
including reef size and oyster density, abundance and biomass;
4) tropical reef-building oyster reproduction, including sexual
maturity, reproductive cycles, fecundity and larval phases; 5)
susceptibility of different reef-building species to a changing
climate; 6) relationships between tropical oyster reefs and co-
occurring habitats, specifically seagrass, saltmarsh, mussel beds
and coral reefs; 7) interactions between tropical reef-building
oysters, mussels and corals; 8) supported biological communities
and reef features that shape them; 9) quantified ecosystem
services, particularly the provision of habitat for harvestable
fish and crustaceans, filtration, and carbon sequestration.
Key Biological Differences Between
Temperate and Tropical Oyster Reefs
We identified four key differences between temperate and
tropical oyster reefs; 1) the diversity of reef-building oysters is
over four times higher in tropical compared to temperate
regions; 2) tropical reef-building oysters can have continuous
spatfall throughout the year whereas temperate species have a
defined season; 3) tropical reef-building oysters are generally
faster growing than temperate reef-building oysters; and 4)
tropical oysters commonly create mixed-species oyster reefs
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whereas temperate oyster reefs are generally formed by a single
oyster species. These differences have implications for restoration
and the provision of ecosystem services, as novel management
strategies will likely be required or be more appropriate in the
tropics. For example, temporary closures to allow oysters to
reach sexual maturity before harvesting is more feasible for fast
growing tropical oysters than it is for slower growing temperate
species (Angell, 1986; Crow and Carney, 2013; Lau et al., 2020).
In the USA, Grabowski et al. (2012) estimated that oyster reef
restoration costs could be recovered in as little as 2-14 years.
Given that oysters can grow faster in the tropics, it is possible that
restoration costs could be recovered even faster. Naturally
occurring mixed-species reefs in the tropics also provides the
potential for restoring reefs using multiple species of oysters
where known interactions occur, should the anticipated benefits
outweigh any additional costs in doing so. Tropical oyster
aquaculture is currently reliant on wild caught spat (Nowland
et al., 2020), which is likely to be the case for restoration as well
(at least initially). Future studies that identify biological
differences between tropical species of reef-building oysters will
be key to designing future reefs that target the recruitment of
multiple species.
CONCLUSION

Oyster reefs are biodiverse habitats in tropical coastal areas that
benefit people through the provision of environmental and
social ecosystem services. There is limited evidence in the
scientific literature that tropical reefs have suffered large
declines similar to temperate reef systems, although this is
likely due to under recording in the scientific (English)
literature rather than an accurate account of their
conservation status. We found evidence of oyster reefs
throughout the tropics in the past through other means such
as place name proxies and historical accounts, suggesting that
tropical oyster reefs were once much more common than they
are today. A proper assessment of historical distributions of
oyster reefs in the tropics, including the identification of
present threats, would be valuable for future research and
conservation. Taxonomic ambiguities for tropical species
remain, and there is a need for research that documents and
describes the biology of remnant tropical reefs and the
ecosystem services that they provide. Filling the knowledge
gaps highlighted in this review will produce foundational
knowledge and remove barriers to tropical oyster reef
restoration. Research to address these gaps could be
Frontiers in Marine Science | www.frontiersin.org 11
co-ordinated among research institutions, non-governmental
organisations, governments, and local communities to ensure
that all stakeholders are represented. No large-scale oyster reef
restoration has occurred in the tropics to date and, moving
forward, careful consideration is needed in regions where the
social context, biology and ecology of tropical oyster reefs
differs to that of temperate reefs.
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