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A new genetic lineage of
Asparagopsis taxiformis
(Rhodophyta) in the
Mediterranean Sea: As the DNA
barcoding indicates a recent
Lessepsian introduction

Omri Nahor1,2, Tal Luzzatto-Knaan1* and Álvaro Israel2*

1Department of Marine Biology, the Leon H. Charney School of Marine Sciences, University of
Haifa, Haifa, Israel, 2Department of Marine Biology, Israel Oceanographic & Limnological Research,
Ltd. (PBC), Haifa, Israel
Asparagopsis taxiformis (Delile) Trevisan is a red marine macroalga

(Bonnemaisoniales, Rhodophyta) with high invasive potential and broad

worldwide distribution. In the Mediterranean Sea, A. taxiformis was reported

before the opening of the Suez Canal and is comprised of two different cryptic

lineages, named L2 and L3. As for the Israeli Mediterranean Sea (IMS), A. taxiformis

benthic populations have seemingly expanded with several large seasonal blooms

recorded in recent years. However, neither ecology nor molecular substantial

studies have been conducted for this particular geographical area. Increasing

sampling intensity and geographical coveragemay reveal new lineages or indicate

human-mediated spread routes not only for A. taxiformis but for macroalgae in

general. This approach is particularly important in areas such as the eastern

Mediterranean Sea, which experiences intense biological invasion on a global

scale. In this study, randomly samples specimens (n = 30) of A. taxiformis and

preserved herbarium samples (n = 4) collected from the IMS in the past, were all

barcoded and taxonomically identified using three molecular genetic markers

(LSU, cox2-3 spacer, and rbcL). We found a cryptic lineage 4 (L4) of A. taxiformis

first reported here for the Mediterranean Sea, and previously described for the

western Indo-Pacific and Hawaii. Herbarium samples confirmed the presence of

L4 as early as 2013. Comparative assessment of cox2-3 spacer marker indicates

100% similarity to sequenced L4 samples fromEgypt in the Red Sea. The IMS cox2-

3 spacer sequences differed from previously sequenced samples from the

Mediterranean Sea by 2.3% and 3.9% bp, compared to L3 and L2 Mediterranean

populations, respectively. Morphological inspections indicate monoecious L4
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gametophytes which are larger than the L4 population reported previously from

Hawaii. Altogether, our results strongly indicate a Lessepsian migration route for A.

taxiformis L4 with yet unknown consequences for the local marine ecosystems.
KEYWORDS

Asparagopsis taxiformis, cox2-3 spacer, Lessepsian migration, Mediterranean
Sea, seaweed
Introduction

Marine coastal habitats in the Mediterranean Sea are

severely biologically invaded ecosystems (Boudouresque and

Verlaque, 2002). This is largely due to human-mediated

introduction of non-native species through various vectors

such as ballast waters of ships, regional aquaculture activities,

and by natural dispersal via the Suez Canal (Lessepsian

invasion) (FD, 1978; Grosholz, 2002; Rilov and Crooks,

2009; Katsanevakis et al., 2014). The total number of non-

indigenous seaweed species (NISS) reported for the whole

Mediterranean Sea is somewhat variable, which is not
02
surprising given the complex cryptic nature of some of the

species involved. The date of introduction and total numbers

are subject to conjecture; nonetheless, agreed estimates may

vary from as high as 148 species (as calculated for the year

2022 using the suggested 2–3 new immigrants per year by

Zenetos et al. (2012), down to 118 species (Verlaque et al.,

2015). The arrival of NISS is more intense in the eastern

Mediterranean Sea since there is a consensus that the major

vector of the introduction of macroalgae is of Lessepsian

origin (Boudouresque and Verlaque, 2005; Zenetos, 2010;

Zenetos et al. , 2012; Verlaque et al. , 2015; Romero

et al., 2016).
GRAPHICAL ABSTRACT
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In the last decades, the Israeli Mediterranean coast has

become the host of several NISS, primarily in subtidal areas,

and witnessed intense onshore drifts (Israel et al., 2019).

Examples are the green alga Codium parvulum (Bory ex

Audouin) P.C.Silva (Israel et al., 2010), the red alga Galaxaura

rugosa (J.Ellis & Solander) J.V.Lamouroux (Hoffman et al.,

2008), the brown algae Stypopodium schimperi (Kützing)

Verlaque & Boudouresque (Verlaque and Boudouresque, 1991;

Einav and Israel, 2009), Dictyota sp. (unpublished observations)

and Lobophora lessepsiana C.W.Vieira (Vieira et al., 2019), and

many others which are unaccounted for. In this context, the red

alga Asparagopsis taxiformis (Delile) Trevisan, allegedly

introduced into the Mediterranean Sea in 1831 (Verlaque

et al., 2015) was hardly noticeable in the Israeli shores until

about a decade ago. A. taxiformis is highly invasive and has

therefore been underpinned as one of the ‘worst invasive alien

species threatening marine biodiversity in Europe’ (EEA, 2007),

and further listed within the 100 ‘worst invasive seaweeds in the

Mediterranean Sea’ (Streftaris and Zenetos, 2006)

A. taxiformis is regarded as a cryptic complex with high

diversity and cosmopolitan distribution from warm-temperate

to tropical marine environments (Harvey, 1849; Price et al.,

1986; Boni and Hawkes, 1987; Silva et al., 1996; Zanolla et al.,

2022). The heteromorphic life cycle of A. taxiformis includes the

erect gametophyte and a filamentous tetrasporophyte (Mairh,

1977; Guiry and Dawes, 1992). The gametophytic stage is highly

branched, colored pink to red reaching up to 40 cm tall and

commonly occurs on rocky substrates, or as epiphytes (Rojas

et al., 1982; Boni and Hawkes, 1987). The tetrasporophytic stage,

mistakenly referred in the past as a different species

(Falkenbergia hillebrandii (Bornet) Felkenberg) (Chihara,

1961), consists of microscopic three-cell row filaments

arranged in a pompon morphology up to 2 cm in diameter.

Tertrasporophytes can be found free-floating or attached to

other algae and are capable of dispersion by flotation. The

high vegetative reproduction potential of the tetrasphorophyte

stage serves as a prolific propagator for expanding population

and invasion to new habitats (Chihara, 1961; Mairh, 1977;

Zanolla et al., 2022).

To date, worldwide, six mitochondrial lineages have been

genetically distinguished in the A. taxiformis populations

(Andreakis et al., 2007; Sherwood, 2008; Dijoux et al., 2014;

Andreakis et al., 2016; Zanolla et al., 2022). The cox2-3 spacer is

considered the ideal marker for this linage separation differing in

6-23 bp out of the 338 bp of cox2-3 spacer marker (Dijoux et al.,

2014; Andreakis et al., 2016; Kurihara et al., 2016). Based on this

molecular tool, lineage 1 (L1) was described for the Pacific

region, whereas a L2 additionally described for the Indo-

Pacific (Andreakis et al., 2007; Dijoux et al., 2014), the

Mediterranean Sea (Andreakis et al., 2007), and North Atlantic

regions (Dijoux et al., 2014). L3 is known for the Mediterranean

Sea (Andreakis et al., 2007) and also described for the western

Atlantic (Andreakis et al., 2007), the Canary Islands and South
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Africa (Bolton et al., 2011). L4 can be found in Hawaii and the

western Indo-Pacific (Sherwood, 2008) while L5 is found in

Western Australia and the southern Indo-Pacific Ocean (Dijoux

et al., 2014; Andreakis et al., 2016). Recently, L6, considered

endemic to Australia was described by Andreakis et al. (2016).

As mentioned before, A. taxiformis was first documented in the

Mediterranean Sea before the opening of the Suez Canal, and its

current distribution is likely the result of several introduction

events including possible Lessepsian migration (Andreakis et al.,

2004; Nı ́ Chualáin et al., 2004; Andreakis et al., 2007; Dijoux

et al., 2014). To date, only two cryptic lineages, L2 and L3, have

been described for the Mediterranean Sea (Zanolla et al., 2022).

Within the Israeli Mediterranean Sea (IMS), A. taxiformis has

become abundant at 0-15 m deep, generally attached to hard

bottoms. The presence of A. taxiformis along the Israeli coasts

has been documented only twice (Lipkin, 1962; Einav and Israel,

2008), and no ecological or molecular biodiversity were reported

for the local populations in the past. Field collections of

specimens preserved at the Seaweed Herbarium of the Israel

Oceanographic & Limnological Research, Ltd. (IOLR) (www.

seaweedherbarium.com) confirm the expansion of this species

during the last decade.

Global human activities are responsible for the spreading of

marine organisms and the changes imposed on marine

ecosystems on a worldwide scale. To detect and follow those

changes, surveys on a local scale are necessary, having

significant implications both for marine conservation and

coastal ecosystem management (Bickford et al., 2007;

Andreakis and Schaffelke, 2012). In this study we investigate

for the first time the A. taxiformis populations of the IMS,

integrating a DNA barcoding approach with morphological

tools. In order to gain a better understanding of the

distribution and origin of the IMS A. taxiformis, three

genetic markers, nuclear LSU, mitochondrial cox2-3 spacer

and plastid rbcL were used.
Materials and methods

Seaweed collection

Gametophytes (n= 28) and tetrasphorophyte (n= 2) of A.

taxiformis were collected from five sites along the northern coast

of the Israeli Mediterranean Sea (IMS) (Bat Galim 32°50’11.1”N

34°58’40.6”E, Tel Shikmona 32°49’33.8”N 34°57’16.8”E, Achziv

33°03’21.9”N 35°06’06.9”E, Rosh Hanikra 33°05’18.0”N 35°

06’20.1”E and Sdot Yam 32°29’29.0”N 34°53’02.6”E) (Figure 1)

between July 2020 and December 2021. At each site, thalli pieces

from three different specimens situated at least three m apart

from each other, were placed in 1 ml buffer lysis solution (40

mM EDTA, 50 mM Tris pH 8.3, and 0.75 M sucrose),

transported to the laboratory and kept at -80°C until DNA

extraction. Occasionally, fewer replicates were collected from
frontiersin.org
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sites with low algal density (Table S1). Part of the collected

material was kept in a cooler for binocular observations and

measurements of morphological parameters, that included:

thallus length and maximum width, basal diameter of the

main axis, height where branching begins and the length of

the branchlets and their basal diameter. Four herbarium samples

(www.seaweedherbarium.com) collected between 2013 - 2018

were also analyzed.
DNA extraction and molecular analyses

About 100 mg of fresh macroalgae biomass were placed in

1 ml buffer lysis solution (ISOLATE II Plant DNA Kit, Bioline)

and homogenized using a small plastic pestle. DNA extraction

from herbarium samples processed similarly as the fresh samples

with an additional bead beater step to brake the cells walls.

Genomic DNA was extracted as described in the ISOLATE II

Plant DNA Kit. Quantity and quality of DNA were examined
Frontiers in Marine Science 04
using a nanodrop (NANODROP 2000c Spectrophotometer,

Thermo Scientific, USA).
Molecular lineages identification

Three barcoding markers, nuclear LSU, mitochondrial cox2-3

spacer and plastid rbcL, were amplified by polymerase chain

reaction (PCR) for lineage identification (Zuccarello and

Succursale, 1999; Andreakis et al., 2004; Dijoux et al., 2014).

Primer information, such as locus names, nucleotide sequences,

and references are provided in Table 1. The following PCR

conditions were used for both LSU and rbcL PCR reaction: initial

denaturation at 94°C for 5 min, followed by 30 cycles of 95°C for 30

s, 50°C for 30 s, and 72°C for 90 s, with a final elongation step of 72°

C for 10 min. For the mitochondrial cox2–3 spacer the following

PCR conditions were used: initial denaturation at 94°C for 4 min,

followed by 5 cycles of 93°C 45°C, and 72°C for 60 s each, followed
FIGURE 1

Sampling site across the Israeli Mediterranean Sea (IMS). Stars indicate fresh specimens sampling sites and triangles indicate herbarium
sampling sites.
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by 30 cycles of 93°C, 50°C, and 72°C for 30 s each, with a final

elongation step of 72°C for 10 min as described by Zuccarello and

Succursale (1999). All PCR reactions were run in 50 µL containing 1

µL each of forward and reverse primers (10µM), 25 µL of readyMix

(Bioline Meridian Life Science Inc.), 1 µL template DNA, 20 µL of

PCR Grade H2O and 2 µL of bovine serum albumin (BSA). PCR

fragments were sequencedby Macrogen Europe(Macrogen;

Europe BV, Amsterdam, Netherlands).
Sequence analysis

DNA sequences from this study and sequences deposited

from GenBank were aligned using BioEdit v4.8.5 (Hall, 1999).

The evolutionary history tree was inferred using the UPGMA

method (P.H.A and Sokal, 1973) in MEGA- X software (Kumar

et al., 2018). The evolutionary distances were computed using

the p-distance method (No Nei and Kumar, 2000).
Results

Overall, 30 specimens of Asparagopsis taxiformis, 28

gametophytes and 2 tetrasphorophyte were collected in five sites

along the northern Israeli coastline, from July 2020 until December

2021. Sampling efforts in southern shores, which are largely
Frontiers in Marine Science 05
composed of sandy bottoms, indicated the absence of this species

in soft bottoms. Morphological features of mature samples collected

from the dense Rosh Hanikra site populations are shown in Table 2.

IMS samples showed cystocarps (female reproductive structures)

and spermatangia (male reproductive structures) in the majority of

the samples examined (Figures 2, 3). Specifically, out of the 28

collected gametophytes, 20 were found to be monoecious, and no

reproductive organs were observed for the rest.

A total of 27 sequences were successfully generated for the

cox2-3 spacer marker, 29 for the rbcL, and 23 for the LSU

(Table S1). Phylogenetic trees constructed for the three different

genes (Figure 4) revealed that all samples examined clustered

within the lineage 4 (L4). All three markers, cox2-3 spacer, LSU

and rbcL, show clustering with the IMS samples together with all

L4 lineages samples deposited from GenBank. One exception is

the LSU marker of the L4 sample (GenBank KJ772105) from the

Egyptian Red Sea which clustered alone and may be a result of a

single nucleotide polymorphism which is unique from all of the

other samples and most likely may represent a sequencing error.

Previous sequencing of the cox2-3 spacer from distant

geographic sites such as Hawaii and Panama differ by 0.98%

(3 out of 306 bp) from the IMS samples. Closer sequencing can

be seen from L4 samples from French Polynesia and Papua New

Guinea which have a discrepancy of 0.65% (2 out of 306 bp)

from the IMS samples (Andreakis et al., 2007; Sherwood, 2008;

Bolton et al., 2011; Dijoux et al., 2014; Andreakis et al., 2016;
TABLE 2 Morphological characters measured in gametophytes of A. taxiformis collected from the Rosh Hanikra site in Nov 2021.

L4 IMS

Thallus

Length (cm) 9.51 ± 2.01

Maximum width (cm) 1.76 ± 0.47

Main axis

Basal diameter (mm) 1.41 ± 0.24

Height where branching begins (cm) 1.88 ± 0.81

Branchlets

Length (cm) 1.05 ± 0.32

Basal diameter (mm) 0.37 ± 0.07
fron
Values are given as mean ± SD (n = 16).
TABLE 1 Molecular markers used in this study.

Target region Primer Sequence Product size References

28S (LSU) D1R 5’-ACCCGCTGAATTTAAGCATA-3’ ~606 bp Lenaers et al., 1989 and Orsini et al., 2002

D3Ca 5’- ACGAACGATTTGCACGTCAG-3’

cpDNA rbcL L 5’ - TGTGGACCTCTACAAACAGC-3’ ~264 bp Maggs et al., 1992

rbcL S 5’-CCCCATAGTTCCCAAT-3’

mtDNA Cox2AF 5’- GTA CCT TCG TTA GGT ATT AAG TGT GAT GC-3’ ~316 bp This study, based on Zuccarello et al. (1999)

Cox3AF 5’-GGA TCA ACT AAA TGA AAT GGA TGA C -3’
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Kurihara et al., 2016). Samples from South Africa, Europa Island,

and Sri Lanka diverged from the IMS samples in only one

nucleotide (0.32%). The closest sequencing to the IMS samples is

A. taxiformis L4 sampled from the Egyptian Red Sea with 100%

similarity (Figure 5). In comparison to previously sequenced

Mediterranean samples, the IMS cox2-3 marker differs by 2.3%

and 3.9% from L3 and L2 Mediterranean populations,

respectively (Andreakis et al., 2004; Andreakis et al., 2007;

Dijoux et al., 2014) (Figure 5).

Discussion

The seaweed Asparagopsis taxiformis is an iconic example of

macroalgal invasion from a global perspective, which has

invaded almost all oceans and seas around the world (Zanolla

et al., 2022). Until now, two cryptic lineages have been described

for the Mediterranean Sea, L2 and L3 (Zanolla et al., 2022). In

this study, we present solid evidence of an additional cryptic

lineage (so-called L4) of A. taxiformis first reported for the
Frontiers in Marine Science 06
Mediterranean Sea. We regard this lineage as relatively new

when compared to the introduction of L2 and L3 genetic lines

that were reported in the past. The wide geographic distribution

of A. taxiformis L4 seems to be the result of long-distance,

human-mediated dispersal events (Dijoux et al., 2014). The true

native origin of L4 is unknown, however, the pathways of

introduction into the Mediterranean Sea can be predicted. A

soundly invasion route includes two distinct geographic origins,

Sri Lanka or South Africa, both within the Indian Ocean. A.

taxiformis populations may have established in the eastern

Indian Ocean and reached the Red Sea, to eventually penetrate

into the eastern Mediterranean Sea via Suez Canal. This possible

route is supported by the similarity of the cox2-3 marker from

the IMS sequences and between South Africa, Sri Lanka, and the

Red Sea specimens (Figure 6). Whether A. taxiformis is a native

species or has been introduced into the Mediterranean Sea is still

unclear (Boudouresque and Verlaque, 2002; Zanolla et al., 2022).

However, based on previous data collected on common

Lessepsian migration route (Nunes et al., 2014) taken together
FIGURE 2

Typical A. taxiformis gametophyte collected from Tel Shikmona site (A, B) and tetrasporophyte collected from Rosh Hanikra site (C, D).
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with the proximity of the IMS to the Suez Canal, as well as the

molecular data presented in this study, we hypothesize that A.

taxiformis L4 is of a Lessepsian origin. From our observations

and viewing the lack of ecological and molecular studies in the

past, we suggest that A. taxiformis L4 introduction into the

eastern Mediterranean Sea may have occurred only a few

decades ago.

Morphological characters of A. taxiformis gametophyte have

been used to distinguish between cryptic lineages (Zanolla et al.,

2014). Furthermore, gametophytes from the same lineage may

show different characters when comparing populations from

different geographic regions. For instance, thallus height, basal

diameter, and length of the branchlets were all greater in

Mediterranean Sea invasive L2 as compared to Hawaiian L2

populations (Zanolla et al., 2014). The trend of increasing thallus

morpho-parameters in the Mediterranean Sea populations

compared to populations from the same lineage, but from

distant geographic sites, was also seen in L4. Specifically,

morphological traits of L4 from Rosh Hanikra site, namely
Frontiers in Marine Science 07
thallus height, main axis basal diameter, and height where

branching begins were higher compared to L4 from Hawaii.

There is still uncertainty as to whether this tendency is due to the

different biotic conditions in the Mediterranean Sea or whether

the increased size of some specimens gives them ecological

advantages, thus increasing their invasive rates and extent.

Recently observed drifts strongly indicate that A. taxiformis is

widespread in shallow habitats between Rosh Hanikra and

Mikhmoret sites. In these sites, A. taxiformis is frequently

attached to exposed rocky substrates both vertically and

horizontally, usually between 0-5 m deep. Nonetheless, A.

taxiformis is also quite abundant at depths of 20–30 m and

significant drifts of fertile gametophytes are carried out to the

shore following stormy sea days. We have no quantitative

seasonal data for the above observations, yet our frequent field

trips indicate that A. taxiformis exists all year round with

productivity declining during wintertime. Growth capacity

together with physiological and reproductive traits related to

environmental factors for the IMS L4 A. taxiforims are still
FIGURE 3

Fertile A. taxiformis from the IMS (photos of specimens correspond to samples collected during October 2021, from Tel Shikmona and Rosh
Hanikra sites). (A–D) light microscope. (E) scanning electron microscope (SEM). Cystocarps (which indicate the development of the
gonimoblast, the female reproductive structure) are shown with black arrow heads and spermatangium (male reproductive structure) by white
arrow heads.
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unknown. In a previous study which did not include genetic

characterization, some populations of A. taxiformis were

described as dioecious (Barone et al., 2013). As for the L4

lineage from Hawaii, Zanolla et al. did not report the presence

of any reproductive structures (Zanolla et al., 2014). In this

study, nearly every specimen showed reproductive structures

carrying both cystocarps and spermatangia strongly indicating

that IMS L4 is monoecious (Figure 3).

Detached gametophytes as seen in large amounts in the IMS

could promote further dispersal of the L4 population in two

possible ways. First, by vegetative reproduction via

fragmentation of the thalli as suggested by Mairh (1977) and

second, although the released gametes and tetraspores are not

thought to travel very far (Santelices, 1990), detached

gametophytes that drift with the currents can carry and release

reproductive structures for long distances. The presence of the
Frontiers in Marine Science 08
gametophyte in a site does not necessarily confirm the presence

of the tetrasporophytes stage, and vice versa (Bolton et al., 2011;

Orlando-Bonaca et al., 2017). The observation of both

reproductive stages in the same site indicates an active

reproductive population. Furthermore, the occurrence of

tetrasporophytes, which are known as a good dispersal unit,

makes this population a potential donor source for future

invasive populations

All A. taxiformis specimens analyzed from the Mediterranean

Sea so far were found to be either L2 or L3 (Zanolla et al., 2022).

Studies involving the population dynamics of the Mediterranean

L2 suggest the successful expansion of this lineage can be

explained by the temperate and tropical preferences of this

lineage (Zanolla et al., 2018). Furthermore, rising sea

temperatures in some regions due to climate change will also

increase the opportunity for this lineage to further spread in those
A B

C

FIGURE 4

Evolutionary relationships trees of A taxiformis with the percentage of clustering according to the bootstrap test. Tree according to the cox2-3
spacer (A). Tree according to the LSU marker (B). Tree according to the rbcL marker (C).
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FIGURE 5

Multiple alignments of the cox2-3 spacer sequence isolated from IMS sample (GenBank accession number ON529604) compared to sequences
from GenBank.
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areas (Zanolla et al., 2018). Zanolla et al. (2018) also highlight the

co-existence of L2 and A. armata in some areas, suggesting as the

former existence of A. armata promotes the L2 expansion in those

sites. This conjecture relies on the assumption that communities

under stress from an invasive species are more susceptible to

additional invaders (Simberloff and Von Holle, 1999).

Considering that A. taxiformis is already well established in

almost all of the Mediterranean Sea, the ability of L4 the

flourish in tropical-temperate regions, and the suggested

Lessepsian migration route, there is a significant likelihood that

L4 populations will spread to other Mediterranean basins.

Moreover, considering the classic Lessepsian migration route of

NISS we hypothesize Tsiamis and Panayotidis (2007) first

description of A. taxiformis in Greece (which not include

molecular work), might have corresponded to the L4 described

in this study. The increasing abundance of A. taxiformis L4 in the

eastern Mediterranean Sea underlines the need for a

comprehensive monitoring strategy for its distribution and

lineage description. Lastly, analyses of macroalgae herbaria

samples may be crucial to assess their impact on local

biodiversity and track their possible route over time.
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