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Droughts in many regions of the world are increasing in frequency and severity which,
coupled with effects from anthropogenic water extraction and diversion, are reducing river
discharges. Yet to date, few studies have investigated the impacts of hydrological
droughts (i.e., reduced river outflows to the ocean) on seabirds. Here, we examined the
consequences of the “Millennium Drought” on the local decline of an iconic Australian
seabird, the little penguin (Eudyptula minor). We analysed monthly and annual penguin
numbers in relation to river outflow, rainfall, the characteristics of the coastal waters (sea
surface temperatures and chlorophyll-a concentrations), and local abundance of key
predators and prey species. We found a negative association between monthly penguin
numbers and both sea surface temperatures and river outflow. Annual penguin numbers
were positively associated with southern garfish numbers (our local indicator of food
availability) but negatively associated with annual chlorophyll-a concentrations. Our
findings emphasizing the need for further research into the effect of hydrological
droughts on seabird populations and for improved river management that account for
potential downstream impacts on the coastal environment receiving freshwater
from rivers.

Keywords: climate change, predation, population decline, seabirds, drought

INTRODUCTION

Seabirds are important bio-indicators within the marine environment (e.g., Croxall et al., 2002;
Lascelles et al., 2012) and are currently one of the most threatened group of birds, with 110 of 359
seabird species threatened globally (reviewed in Dias et al., 2019). Seabirds are highly sensitive to
changes in their food resources (Reid and Croxall, 2001; Crawford, 2007; Frederiksen et al., 2007;
Chiaradia et al.,, 2010), and disappearance of their primary prey often result in decreased breeding
success and population size (Croxall et al., 1999; Dann et al., 2000; Lynnes et al., 2004; Osterblom et al.,
2006). Climatic or oceanographic conditions can have contrasting consequences for seabird species
(e.g., Newton et al, 2009; Chambers et al., 2011; Kriiger and Petry, 2011; Tavares et al., 2016).
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For example, upwelling processes, and resulting cold surface waters,
may act differently on various prey species and thus may be
beneficial to some seabirds (by increasing their prey availability)
but increase mortality in other seabird species due to reduced food
productivity (see Newton et al., 2009) or thermoregulatory stress.
Understanding the impacts that climatic and oceanographic factors
can have on seabird population decline is thus crucial
but challenging.

Rainfall patterns are expected to change across the world as a
result of climate change (Milly et al., 2005; Power et al., 2013).
Droughts, in particular, are becoming more frequent and extreme
in many regions of the world (Dai, 2013), resulting in reduced
water outflow to the ocean and decreased oceanic productivity
across multiple trophic levels (Lamberth et al.,, 2009; Lee et al,
2012; Arnell and Gosling, 2013; Auricht et al., 2018). Human
interventions, such as water extraction and diversion, can greatly
exacerbate climatic effects of drought, and even lead to
hydrological droughts that are independent of climatic effects
(Wada et al.,, 2013). Increased nutrient loading from freshwater
outflows into the ocean stimulates phytoplankton and
zooplankton production (Morgan et al,, 2005), often leading to
large aggregations of larval fishes and their predators near river
estuaries (Cyrus and Blaber, 1987; Cyrus and Blaber, 1992; Grimes
and Kingsford, 1996; Gillanders and Kingsford, 2002). Therefore,
knowledge of the link between freshwater outflow and coastal
trophic communities is critical but this relationship is often poorly
understood (Gillanders and Kingsford, 2002; Gillson, 2011).

The Murray River is the largest river in Australia and a major
source of freshwater entering coastal waters in South Australia.
The Murray River discharges into two shallow and large
freshwater lakes (Lakes Alexandrina and Albert also known as
the “Lower Lakes”, regulated by a series of barrages), mixing in a
shallow estuarine-lagoon (the Coorong) before reaching the
mouth of the river (thereafter referred to as the “Murray
Mouth”) (Figure 1). Freshwater outflow into the coastal
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environment from the Murray River has declined significantly
over the past century due to intensive drought periods and
increased extraction for human use (Maheshwari et al., 1995;
Thom et al., 2020). Human demands have reduced the average
annual outflow at the Murray Mouth by 61%, meaning that water
now ceases to flow to the mouth 40% of the time compared to 5%
before increased extraction for human use occurred (Csiro,
2008). In addition, between 2001 and 2010, Australia
experienced one of the worst droughts recorded since
European settlement, known as the “Millennium Drought”.
This combined pressure resulted in reduction of both seawater
exchange and freshwater outflows (Mosley et al., 2012; Geddes
etal., 2016), as well as decreasing coastal productivity in the area
(Auricht et al., 2018).

Little penguins (Eudyptula minor) are colonial seabirds that
become central-place foragers during breeding, with most of
their prey being captured within less than 60 km of their colony
when provisioning chicks (Collins et al., 1999; Bool et al., 2007;
Hoskins et al., 2008). As a consequence, their breeding success is
strongly correlated to food availability (Chiaradia and Nisbet,
2006) and large colonies are expected to be located near areas of
high productivity, such as freshwater inputs or upwelling (see
also Fortescue, 1999; Poupart et al.,, 2017). Tracking studies at
several colonies in Victoria have shown that many little penguins
have a tendency to forage near estuarine environments or
freshwater outflows (Collins et al., 1999; Hoskins et al., 2008;
Preston et al., 2008; Kowalczyk et al., 2015). Kowalczyk et al.
(2015) in particular found that little penguins within Port Phillip
Bay (Victoria) foraged closer to the Yarra River mouth during
drought years, but increased their foraging range in years of high
rainfall - when outflows from the Yarra River increased - likely
to follow the dispersed nutrients (as nutrients play a crucial role
in regulating primary production and hence the food web;
Mortimer et al,, 1999; Cruzado et al, 2002; Sommer et al,
2002) and thus maximize resource acquisition.

MURRAY RIVER

MURRAY MOUTH

A

FIGURE 1 | Maps of the location of (A) the study area in Australia, (B) Granite Island in relation to the Murray River and West Island and (C) the night tours on Granite Island.
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Little penguins are generalist feeders that rely mainly on
clupeidae fish species, such as anchovy (Engraulis spp.) and
pilchards (Sardinops sagax) (Klomp and Wooller, 1988; Cullen
et al., 1992; Chiaradia et al., 2003; Chiaradia et al., 2012). In South
Australia, anchovies are the most frequently consumed prey
species and account for 31-67% of the little penguin estimated
prey biomass (Bool et al., 2007; Wiebkin, 2012). Both anchovies
(Wedderburn and Suitor, 2012) and little penguins (Colombelli-
Neégrel, unpublished data) have been recorded in the Coorong and
Lower Lakes system of the Murray River, and the Murray Mouth
is well within the foraging range of the little penguins breeding in
Encounter Bay (20-60 km; average 41 + 4 km; Figure 1; Bool et al.,,
2007). Therefore, it is likely that some dependence between the
Encounter Bay penguins and productivity of the Murray River
estuary exists. This hypothesis is further supported by the fact that
penguin numbers in Encounter Bay have experienced major
declines in the early 2000s (Colombelli-Negrel and Kleindorfer,
2014; Colombelli-Neégrel, 2015a), which coincides with the
Millennium Drought (2001-2010). While many factors have
been suggested to explain these declines in Encounter Bay -
such as predation on land or at sea, low reproductive success or
juvenile survival, as well as parasite abundance (Bool et al., 2007;
Wiebkin, 2011; Colombelli-Negrel, 2015b; Colombelli-Negrel,
2015a; Colombelli-Negrel, 2016) - only one study to date
investigated the role of these suggested factors. Specifically,
Colombelli-Negrel (2015a) reported that juvenile survival, but
not reproductive success, was the most critical variable affecting
little penguin population trends on Granite Island. Yet the
relationship between penguin numbers in Encounter Bay and
Murray River outflows has never been explored, which is the aim
of this study. Based on the findings from Auricht et al. (2018), we
hypothesised a significant and positive relationship between little
penguin numbers and river outflow, via primary productivity and
thus food availability (see conceptual model in Figure 2).

MATERIAL AND METHODS
Study Area

Penguin numbers (yearly and daily numbers; see below: penguin
numbers) were collected on Granite Island (Encounter Bay) and
environmental data (rainfall, sea surface temperatures,
chlorophyll-a concentrations, food availability, and predator
abundance; see below: predictor variables) were collected
around the coastal ocean zone between Granite Island and the
Murray River (Figure 1; see also Figure 2). Granite Island (35°
37°S, 138°36E) is a small island (approximately 500m wide and
900m long) oft Victor Harbor, connected to the mainland by a
bridge causeway. Little penguin numbers on Granite Island, the
largest population in Encounter Bay, have fallen from 1548
individuals in 2001 to 146 in 2010 (Wiebkin, 2011; Colombelli-
Negrel, 2017). Since 2012, after the end of the Millennium
Drought when a period of higher river flows occurred, the
population stabilised to approximately 20-30 individuals
(Colombelli-Negrel, 2020). All the other colonies within
Encounter Bay (Wright Island, West Island, Seal Island and

Pullen Island) are now considered extinct (Colombelli-Negrel
and Kleindorfer, 2014). As its name suggests, Granite Island has
a granite rock coastline. Little penguins come ashore at dusk to
breed and moult in naturally excavated burrows and artificial
nests (i.e., concrete tunnels and arrangement of rocks) located all
around the island. The Murray Mouth is located approx. 20 km
by sea from Granite Island (Figure 1).

Penguin Numbers

We used two datasets comprising daily and annual penguin
numbers: the daily data span was January 2003 to December
2018; the annual data span was January 1981 to December 2018
(specific periods for which data were obtained are specified in
brackets throughout the methods). Penguin numbers were
obtained via (1) nightly counts (daily data 2003-2018) and (2)
annual population census (annual data 1981-2018). The nightly
penguin counts report on the total number of adult little
penguins counted by the Penguin Tour Guides on the North
Shore of Granite Island during the Little Penguin Tours (see
Figure 1). Tours were conducted for visitors to spot little
penguins as they return from the ocean at sunset and ran all
year. Additional nightly counts were conducted by the Flinders
University research team in weeks when no penguin tours were
scheduled. These additional counts by Flinders University were
conducted under the guidance of one of the Penguin Tour
Guides and followed the same guidelines as the Penguin Tours;
hence the data collected by the two teams were comparable.
Counts were conducted within two hours after dark and lasted
approximately 1 to 1.5 hours.

Population census data prior to 2001 were collected by R.
Brandle over five sections of the island and interpolated for the
entire colony by D. Colombelli-Negrel. Maps of these surveys
confirmed that the area monitored before 2001 corresponded to
half of the area surveyed since 2001. Surveys before 2001
established that the density of little penguin across the island
did not vary until 2006. Therefore, the numbers obtained by R.
Brandle were doubled for the interpolation. From 2001 onwards,
annual population censuses were carried out each year (except in
2004) by a large team of local volunteers and a penguin ecologist.
Each year, the island was divided into separate smaller sections
and each section was thoroughly searched for presence or
absence of penguin nests. Once a nest was found, its status was
noted as active or inactive. A nest was recorded as active if it
contained eggs, chicks, or adults, or had clear evidence of
penguin presence such as fresh droppings, a strong penguin
smell or recent nest excavation. A nest was recorded as inactive if
none of the above criteria were found or if it had cobwebs at the
entrance indicating that no adult penguin was regularly entering
or exiting the nest. Nests were also marked with talcum powder to
avoid double counting by different teams of volunteers. Censuses
were conducted during the peak of the breeding season to ensure
comparability of the data between years, and total population
numbers were estimated as two adult penguins per active nest
found. Little penguins are asynchronous breeders that can breed
any time between April/May and January/February of the following
year in South Australia (Wiebkin, 2012; Colombelli-Negrel, 2015a;

Frontiers in Marine Science | www.frontiersin.org

May 2022 | Volume 9 | Article 875259


https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Colombelli-Négrel et al.

Drought and Little Penguins

z-

RIVER
OUTFLOW

T

‘ CHLOROPHYLL-A
D

Johnson and Colombelli-Negrel, 2020). As a result, the beginning
and duration of each breeding season (and hence the peak of the
breeding season) is highly variable among years (Allen et al., 2011;
Wiebkin, 2012; Colombelli-Négrel, 2018; Johnson and Colombelli-
Negrel, 2020). During our study, the peak of breeding on Granite
Island shifted from winter/spring (~July-September) to spring/
summer (~October-December) following 2012 (Colombelli-
Negrel, 2018).

The reported decreases in penguin numbers were not due to
migration to other colonies based on mark-recapture data
collected on Granite and West Islands between 1998 and 2003,
which showed that only 0.9% of the 1255 marked individuals
moved between the two islands, with no individual breeding on
another island than their island of origin (see (Colombelli-
Neégrel, 2015a). Additional mark-recapture data in the area
showed that little penguin adult survival rate in South
Australia was less than 10% during this period (see also
(Colombelli-Neégrel, 2015a; Colombelli-Negrel et al., 2020). In
addition, all adjacent colonies became extinct during the
monitoring period (Wiebkin, 2011; Colombelli-Négrel and
Kleindorfer, 2014).

Predictor Variables

The dynamics of marine productivity are intricate as many variables
can interact (Behrenfeld et al., 2006). Therefore, to understand the
relationship between penguin numbers and the Murray River
outflow, we included other environmental variables in addition to
river flow in our analyses to determine which variable(s) had the
most influence on penguin numbers (see conceptual model in
Figure 2). We specifically focused on rainfall, sea surface
temperatures, and chlorophyll-a concentrations as these have
been shown to influence the dispersion and abundance of fish
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/
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FIGURE 2 | Conceptual model detailing the relationships between the environmental variables included our study (rainfall, sea surface temperatures, and chlorophyll-
a concentrations), food availability (prey abundance and location), little penguin survival, and their predators (long-nosed fur seals). Straight arrows represent direct
relationships, while dashed arrows represent time lagged relationships. We also present in grey other variables (upstream water extraction and diversion, other
climate variables, ocean mixing processes and nutrient concentration) that were not included in our models but affect food availability and environmental variables.

species (Congdon et al., 2007; Nicolas et al., 2014; Syed and Ahmed,
2015; Auricht et al., 2018), and as a result, seabird breeding success
and survival (e.g., Pinaud and Weimerskirch, 2002; Monticelli et al.,
2007; Le Bohec et al., 2008; Cullen et al., 2009; Sidhu et al., 2012;
Mills et al., 2020). In addition, chlorophyll-a concentrations are
recognised indices of phytoplankton abundance and biomass
(primary productivity) and often serve as indicators for prey
availability (Monticelli et al., 2007; Lo-Yat et al., 2011). Similarly,
sea surface temperatures are good indices of climatic variability as
seabirds are known to be sensitive to extreme temperatures because
of thermal stress (e.g., Hochscheid et al., 2002; Oswald and Arnold,
2012; Meyer, 2014) and often correlate with chlorophyll-a
concentrations (Radiarta and Saitoh, 2008; Kavak and Karadogan,
2012). Rainfall, sea surface temperatures, and chlorophyll-a
concentrations have all been found to correlate with survival in
little penguins in other studies (Sidhu etal., 2012; Agnew et al., 2015;
Ganendran et al., 2016). We present our conceptual model of how
all the variables interact in Figure 2. While chlorophyll-a
concentrations have a near immediate response to nutrients from
river outflow (Black et al., 2016), there may be a time lag of up to 12
months between primary productivity and actual prey availability
for marine top predators, such as seabirds (Price et al., 2020).
Therefore, we include in Figure 2, and in our analyses, both the
direct and time lagged relationships.

Daily outflow estimations (in mega-litres, ML; 1981-2018) from
the Murray Mouth (based on the sum of estimated flows from all the
barrages) were obtained from the Department of Environment,
Water and Natural Resources (South Australia) (see also Auricht
et al,, 2018). Daily rainfall data (mm; 1981-2018) were obtained
from the Australian Bureau of Meteorology database on the
following website http://www.bom.gov.au/climate/data/using
Victor Harbor meteorological station (distance: 2.8 km from
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Granite Island). Sea surface temperatures (°C; 1995-2018) and
chlorophyll-a concentrations (mg/m? 2002-2018) were only
available monthly. Data on sea surface temperatures within a 20
km radius of ocean surrounding Granite Island were sourced from
the Integrated Marine Observing System (IMOS; see http://imos.
org.au/home.html). Chlorophyll-a concentration estimations used
in this study were derived as monthly composite satellite imagery
from NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS), a sensor on board the polar-orbiting satellite ‘Aqua’.
MODIS-Aqua Level-3 chlorophyll-a products (at approximately 4
km spatial resolution) are free to access on the NASA Ocean Colour
website (https://oceancolor.gsfc.nasa.gov). Although daily
chlorophyll-a products are available from this source, cloud cover
can result in large numbers of missing pixels. Instead, monthly
composite imagery was used, where each image is an average of all
clear observations over each calendar month. The average
chlorophyll-a concertation was calculated in a region stretching
20 km south-west from the Murray Mouth (see Auricht et al., 2018
for additional details on the methodology), which captures the
ocean region surrounding Granite Island.

For the annual data analysis, the environmental data were
averaged for the three months prior to the moulting period as this
is a critical period for little penguins’ survival and includes a
significant part of the breeding period (Ganendran et al., 2016).
The beginning and duration of each moulting period on Granite
Island varied among years but generally started in December-
January and finished in March-April (Colombelli-Negrel, 2018).
For our analyses, we adjusted this three months period based on the
respective timing of the moult for each of our study years. We also
included (1) the annual number of long-nosed fur seals
(Arctocephalus forsteri) as an indicator of predation risk
(Wiebkin, 2011) and (2) the annual amount of southern garfish
(Hyporhamphus melanochir) commercially caught in the southern
Gulf St Vincent as an indicator of food availability. Garfishes have
been recorded in the diet of little penguins in other studies (Klomp
and Wooller, 1988; Montague and Cullen, 1988; Cullen et al., 1992)
and are the second most frequent prey item found in the diet of little
penguins in South Australia (20%; Bool et al., 2007). Local and
relevant data on their most frequent prey item (sardines) were not
available. Long-nosed fur seal and southern garfish data were only
available as annual datasets. Data on the annual southern garfish
commercial catch (tonnes; 2007-2017) were obtained from the
Fisheries Research and Development Corporation (https://fish.gov.
au/report/191-Southern-Garfish-2018). Annual long-nosed fur seal
population influence was also considered (recorded on non-
consecutive years between 1991 and 2018), using data
representing the highest number of seals observed during the
penguin breeding season on West Island, located 5 km from
Granite Island (see Figure 1). These observations were recorded
by alocal community member during repeated boat surveys, and by
the local rangers as part of regular surveys conducted for the
Department for Environment and Water.

Statistical Analyses
All analyses were conducted in R 4.1.1 (R Core Team, 2019) using
the packages Astsa, dplyr, forecast, fpp2, fpp3, ggplot2, GGally,

imputeTS, MASS, timeDate and trend. We used standard time
series regression (Shumway and Stoffer, 2017) and multiple
hypothesis testing (i.e., hypotheses being tested simultaneously)
to understand the associations between the time series of the
predictors (rainfall, sea surface temperatures, chlorophyll-a
concentrations, food availability, and predator abundance) and
the decline of the little penguins (our outcome of interest), using
daily (converted to monthly; see below) and annual penguin
numbers. The main aim of a regression analysis is to investigate
whether a change in an outcome variable can be explained by a set
of selected predictors, while controlling for multiple potential
confounding factors (Bhaskaran et al, 2013). Time series
regression is being applied to estimate the effects of the
predictors over time based on their effects on the previous
period of time. Poisson regression could not be used as the
variables were correlated, especially the predictor variables.
Standard assumptions for multiple linear regression apply for
time series regression (Hyndman and Athanasopoulos, 2018): the
relationships between the variables should be linear, the error
terms should be independent and identically normally distributed
with a zero mean and a constant variance. To find the best model,
we followed three steps: model specification (also referred to as
model identification; during this step, we established the trends of
the data, any correlation and seasonality, and selected a set of
candidate models through variable or model selection process),
model fitting (also referred to as model estimation; during this step,
we estimated the parameters of the models and tested for the
significance of the parameter estimates), and model diagnostics
(during this step, we checked the assumptions of normality (QQ
plot), constant variance (residual plots) and independence (ACF
of residuals; the Auto-Correlation Function, which measures
whether earlier data in the series have some relation to later
data). Furthermore, we estimated the goodness-of-fit by
comparing adjusted R* and the Akaike Information Criterion
(AIC). The best model is the one with the lowest AIC and the
highest R?).

Missing data in time series regressions introduce bias. As the
data collection was irregular in our study (see Methods and
Figure 3), instead of removing incomplete records, we created a
modified dataset for both the annual and daily penguin data using
interpolation method following Moritz et al. (2015) as the time
series plots of the variables showed either trend or seasonality. For
the daily data, missing datapoints were estimated using an
interpolation method, except for 2004 and 2011, for which too
many penguin datapoints were missing to apply this method.
Missing datapoints for 2004 and 2011 were therefore estimated
using data from 2005 and 2012 respectively, as patterns observed
in 2004 and 2011 were likely to be similar to those observed in
2005 and 2012. For the annual data, missing datapoints for the
penguin (1991-1999, 2004) or predictor data (long-nosed fur seals:
prior to 1991, 1995-1998, 2001-2003, 2005, 2007; garfishes: prior
to 2007, sea surface temperatures: prior to 1995; and chlorophyll-a
concentrations: prior to 2002) were estimated using either
interpolation or the moving average method. To test for the
robustness of our interpolations, we used the forecast and
imputeTS R packages (Hyndman and Khandakar, 2008; Moritz
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et al,, 2015; Moritz and Bartz-Beielstein, 2017). The ImputeTS
package is designed specifically to address imputation for
univariate time series. We use the interpolation method
following Moritz et al. (2015) as the time series plots of the
variables showed either trend or seasonality. We first analysed the
distribution of the missing vales using the plots for each variable
(penguin data, sea surface temperatures, rainfall, chlorophyll-a
concentrations, and river outflow) using the function
plotNA.distribution within the ImputeTS package. We then did
the imputation for univariate time series, plotted the results, and
compared the functions na.interpolation and na.kalman within
ImputeTS R package. We decided to use the results from
na.interpolation as they were similar to na.kalman but simpler
and faster computationally. We then aggregated the daily data
(penguin count, river outflow and rainfall) to monthly data using
the average function. Determining trends prior to building time
series models is a critical first step for time series analyses.
Therefore, we confirmed declining trends in penguin numbers
in the time series with non-parametric Mann-Kendall trend tests
(Mann, 1945; Kendall, 1975), which are used to check whether
data collected over time have constant increasing or decreasing
trends (i.e., Mann-Kendall trend tests check for difference in
trends between earlier and later data). Statistics obtained from
the Mann-Kendall trend tests are determined by the sequences
and the ranks of the time series rather than the original values.
Both datasets (monthly and annual) were then explored using
exploratory data analysis and correlation analysis; variables, such
as penguin counts and river outflow, exhibiting nonconstant
variance were log-transformed (i.e., to stabilize the variance).
After model fitting, we performed model diagnostics on the
residuals by checking the ACF of the residuals to ensure
independence of the data, along with normality and constant
variance (Table 1). Seasonality existed for the monthly rainfall and
chlorophyll-a concentrations data; and such seasonality has been
considered in the modelling. Variable selection method, the

forward selection based on Akaike Information Criterion, was
implemented to choose the subset of the predictors that was “best”
in a given sense (Sheather, 2009). While we acknowledge that
variable selection may affect the properties of the estimators, as
well as the standard inferential procedures such as tests and
confidence intervals (ie., the regression coefficients obtained
after variable selection are often biased and the P-values
obtained from F- and t -statistics are generally much smaller
than their true values; Sheather, 2009), no model selection is
immune to these difficulties (Sheather, 2009). In this study, we
used three criteria to evaluate the subsets of predictor variables: the
Akaike’s Information Criterion, the Deviance and the Residual
Deviance (Burnham and Anderson, 2002). The corrected AIC,
AICc (a bias corrected version of the AIC) is used for the annual
data as the sample size was small. As stated above, we conducted
two analyses for the annual penguin numbers: one including the
direct relationships between the variables and one including the
time lagged relationships described in Figure 2.

RESULTS

There was a clear reduction in daily river outflows from the
Murray Mouth to the coastal ocean during the Millennium
Drought, with minor discharges occurring between 2003 and
2006 and zero discharge between 2007 and 2010 (Figure 3A).
High river outflows started to occur again following 2011-2012
(Figure 3A), which coincided with a stabilisation in the decline
of little penguin numbers on Granite Island (Figure 4).
Chlorophyll-a concentrations in the ocean around the Murray
Mouth and Granite Island were elevated in years with high river
outflows and low in years when outflows were reduced
(Figures 3B, C). A comparison of the chlorophyll-a
concentrations in a year of extreme-drought period with
no river outflow (low chlorophyll-a concentrations; 2006)

TABLE 1 | Best fitted models examining the variation in (a) monthly and (b) annual little penguin numbers in relation to river outflow, sea surface temperatures, rainfall,
chlorophyll-a concentrations (monthly and annual numbers), as well as long-nosed fur seal numbers and southern garfish numbers (annual numbers only).

Model no. Response Model Type and Significant Predictors

(a) Monthly data

ACF of residuals Adjusted R? P-value

1 Penguin count Additive correlated 0.07 0.0002
Flow, Rain

2 Log (Penguin count)  Additive independent 0.39 < 0.0001
TS regression Log Flow, SST

3 Log (Penguin count)  All interactions independent but with many outliers and not parsimonious 0.48 < 0.0001
TS regression Interaction of Log Flow and SST

(b) Annual data

1 Population size Additive correlated 0.74 < 0.0001
TS regression Fur Seals, Chla, Flow and Rain

2 Log (Population size) Additive independent 0.88 < 0.0001
TS regression Fur Seals, Garfish, Chla and Rain

3 Log (Population size) Additive independent 0.90 < 0.0001
TS regression Fur Seals, Garfish, Chla, Flow and Rain

4 Log (Population size) Additive independent 0.8763 < 0.0001

TS regression Lagged Chla, Fur Seals, Garfish, Flow

Models marked with ** passed the model diagnostics (i.e., showed independence of the residuals, constant variance and a high adjusted R?) and were selected as our final models for the
model fitting. (ACF, auto-correlation function; SST, sea surface temperatures; flow, River outflow; Chla, chlorophyll-a concentrations; TS, Times Series). Significant P-values indicate that

the model is a good fit.
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vsa period of high river outflow (high chlorophyll-a
concentrations; 2012) is presented in Figure 3C. Monthly
sea surface temperature and daily rainfall temporal patterns are
presented in Figures 3D, E respectively. There was a strong and
distinct declining trend for both the annual and monthly little
penguin numbers over time (monthly data z = -10.56, N = 192,
P < 0.0001; annual data: z = -5.70, N = 38, P < 0.0001;
Figures 4A, B). For the monthly penguin numbers, while the
data showed a small and significant increasing trend after 2010
(z =7.65, N = 95, P < 0.0001; Figure 4A), the overall declining
trend (comparing before and after 2010) was stronger than the
small increasing trend after 2010 (z = -8.56, N = 97, P <
0.0001; Figure 4A).

The best model explaining the monthly penguin numbers
included river outflow and sea surface temperatures (Table 2A).
The model explained 39% of the variation in the data. Monthly
penguin numbers were predicted to decrease by a multiplied
factor of 0.94 for every 1 unit (°C) increase of sea surface
temperatures (B = 0.94, 95% CI: 0.90; 0.97; Figure 5A) and by

a multiplied factor of 0.86 for every 1 unit (ML) increase of river
outflow (B = 0.86, 95% CI: 0.84, 0.89; Figure 5B). Analysing the
direct relationships between the variables (see Figure 2), the best
model explaining the decline of the annual penguin numbers
included all predictor variables (river outflow, chlorophyll-a
concentrations, rainfall, numbers of long-nosed fur seals and
southern garfish commercial catch; Table 2B). The model
explained 74% of the variation in the data and the strongest
predictors were the numbers of southern garfish and
chlorophyll-a concentrations. Annual penguin numbers were
predicted to increase in the model by a factor of 1.4 [= exp (0.33)]
with increasing of 1 unit (tones) of southern garfish numbers
(B = 033, 95% CL: 0.17, 0.50; Figure 6A) but predicted to
decrease by a factor of 0.37 [= exp (-1.01)] with increasing of 1
unit (mg/m?®) of chlorophyll-a concentrations (B = -1.01, 95% CIL:
-1.65, -3.68; Figure 6B). Annual penguin numbers were also
predicted to increase with increasing river outflow (B < 0.001,
95% CI: 7.44e-07, 1.68e-05) and increasing rainfall (f = 0.01,
95% CI: 0.002, 0.03), but to decrease with increasing long-nosed

TABLE 2 | Best models explaining little penguin numbers on Granite Island. Data are presented for (a) the monthly dataset and (b) the annual dataset.

Model no. Response Model Type and Significant Predictors Resid Dev AIC Deviance

(@) Monthly data

1 Penguin count Additive 41402.42 1037.731 1094.950

Flow, Rain

2 Log (Penguin count) Additive 105.6947 -106.61263 1.216140
TS regression Log Flow, SST

3 Log (Penguin count) All interactions 103.2341 -109.13530 1.420749
TS regression Interaction of Log Flow and SST

(b) Annual data AlCc

1 Population size Additive 1969923 426.25 206745.0
TS regression Fur Seals, Chla, Flow and Rain

2 Log (Population size) Additive 9.943280 -37.21 1.02
TS regression Fur Seals, Garfish, Chla and Rain

3 Log (Population size) Additive 8.610347 -40.69 1.33
TS regression Fur Seals, Garfish, Chla, Flow and Rain

4 Log (Population size) Additive 10.563737 -36.47 0.88

TS regression

Lag Chla, Fur Seals, Garfish, Flow

Models marked with ** indicate the final models.

(SST, sea surface temperatures; flow, River outflow; Chla, chlorophyll-a concentrations; AIC, Akaike’s Information Criterion; TS, Times Series).
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fur seal numbers (B = -0.02, 95% CI: -0.003, -0.01). Adding the
time lagged relationships described in Figure 2 did not change
our results as the best model explaining the data remained model
3 (Table 1). While the assumption of independence was satisfied
in model 4 (Table 1; with the time lagged relationships), the
assumptions of constant variance and normality were not
satisfied. In addition, the adjusted R* for model 4 was lower
than for model 3 and the AIC and residual deviance of model 4
were higher than model 3 (Table 2).

DISCUSSION

Seabirds around the world can serve as sentinels of
environmental changes and help us understand how they are
affecting wildlife (e.g., Wanless et al., 2007; Divoky et al., 2015;
Thomsen and Green, 2019). In this study, we showed that (1)
monthly little penguin numbers, an iconic and locally breeding
Australian seabird, were negatively associated with sea surface

temperatures and river outflow, and that (2) annual penguin
numbers were positively associated with southern garfish
numbers (our local indicator of food availability) but negatively
associated with chlorophyll-a concentrations. The results of this
study suggest that decisions regarding river water management
should consider, not only human and terrestrial environmental
requirements, but also the long-term impacts that this may have
for the coastal environment outside the river system (see also
Auricht et al., 2018; Hallett et al., 2018; Thom et al., 2020).
Chlorophyll-a concentrations are considered a reliable
measure of primary productivity in an area (and hence food
availability) because they are a proxy for phytoplankton
production, which forms the base of the food chain as prey for
zooplankton, fish larvae and other heterotrophic organisms
(Monticelli et al., 2007; Lo-Yat et al., 2011; Lander et al., 2013).
A previous study showed that decreasing Murray River outflow
during the Millennium Drought had reduced primary
productivity in adjacent coastal waters, and postulated there was
likely consequences for higher trophic levels (Auricht et al., 2018).
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Specifically, the authors showed that primary productivity
collapsed in the near-shore region during the Millennium
Drought, and that the primary productivity plume was up to 60
km from the coast in years of high river outflows (Auricht et al.,
2018), which would encompass Granite Island (Figure 1 and 3B).
In our study, we found a negative relationship between
chlorophyll-a concentrations and annual penguin numbers,
which contrasts with a previous study on little penguins
showing that annual survival increased with increasing
chlorophyll-a concentrations (Agnew et al.,, 2015). As
previously stated, chlorophyll-a concentrations have a near
immediate response to nutrients from river outflow (Black
et al., 2016), while there may be a time lag of up to 12 months
between primary productivity and actual prey availability for
marine top predators, such as seabirds (Price et al., 2020). Yet
additional analyses including time lagged relationships (see
Results as well as Tables 1, 2) did not better explain the
variation in penguin numbers. Interestingly, there was also a
negative relationship between annual southern garfish numbers
and chlorophyll-a concentrations. It is possible that other
environmental variables, not accounted for in our study, may
have impacted food availability (and hence this negative
relationship) as small pelagic fishes (such as those preyed upon
by little penguins) are often highly dependent on plankton-based
food webs, which are very sensitive to short-term environmental
changes in salinity (see Kelly et al., 2016). Furthermore, increased
chlorophyll-a concentrations would increase the production of
fish larvae, thereby also increasing the presence of predators and
fishing intensity (see below) in the area, which in turn could have
long-term negative impacts on little penguins. Finally, this
negative relationship may be due to the low capacity of
recovery of the Granite Island little penguin population as
annual penguin numbers remained low and continued to
decline after 2010 when chlorophyll-a concentrations started to
increase. Indeed, previous study showed that the decline of the
little penguins on Granite Island was linked to low juvenile
survival (less than 2%; Colombelli-Negrel, 2015a). Delayed
sexual maturity (in little penguins, individuals do not breed
until they are two or three years old; Priddel et al., 2008) and a
decrease in juvenile survival can add significant lagged effects on
population size and recovery, especially for small population
where birth and death rates can be extremely random (e.g.,
Legrendre et al, 1999). This suggests that the observed low
juvenile survival may have had a stronger negative effect on
little penguin numbers than any of the potential benefits gained
from the increased river outflow (and consequent chlorophyll-a
concentrations) once the population reached critical levels.
Further investigation into the food web and association
between South Australian little penguin numbers and
chlorophyll-a concentrations are needed to fully understand
their causal and temporal relationships.

Monthly little penguin numbers were negatively associated
with sea surface temperatures and river outflow. This aligns with
studies in South Australia (Johnson and Colombelli-Negrel,
2020) and Western Australia (Cannell et al, 2012) showing
that little penguins had a lower breeding success when sea

surface temperatures were higher in the months before
breeding. However, studies in Victoria showed that foraging
effort and first year survival in little penguins were positively
associated with sea surface temperatures (Sidhu et al., 2012;
Berlincourt and Arnould, 2015) and little penguins had a greater
breeding success when sea surface temperatures were higher in
the autumn preceding spring breeding (Cullen et al., 2009). The
negative association with river outflow also contrasts with our
annual results, as annual little penguin numbers were positively
associated with river outflow. Monthly penguin numbers would
have been affected by the overall annual decline of the population
but also the probability that individuals be present on land at
certain time of the year. Hence the contrasting results may be
explained if greater numbers of penguins were fishing at sea for
longer periods during times of high river outflow. Results similar
to this were found by Kowalczyk et al. (2015) in Victoria where
penguins increased their foraging range when the outflow from
the Yarra River increased.

Seals are recognised predators of penguins worldwide (e.g.,
Hofmeyr and Bester, 1971; Du Toit et al., 2004; Johnson et al.,
2006; Lee et al., 2019; Bester et al., 2020). In this study, we found
that annual little penguin numbers decreased when long-nosed
fur seal numbers increased, supporting the idea that seal
predation may have influenced the decline of little penguins in
South Australia (Bool et al., 2007; Wiebkin, 2011). Yet the
relationship between penguin and long nosed fur seal numbers
was close to 1:1, indicating that a decrease in penguin numbers
due to seal predation would be very slow. While the available
data may have underestimated the number of seals in the study
area, previous studies have shown that the relative importance of
little penguins in long-nosed fur seal diets varies significantly
across regions (Bool et al., 2007; Baylis and Nichols, 2009;
Reinhold, 2014), suggesting that little penguin availability is
not the main factor driving predation. It is therefore possible
that, in years of low river outflow when primary production was
low and food resources may have been scarce, long-nosed fur
seals switched to preying on little penguins (as seen in Antarctic
fur seals (Arctocephalus gazella) and chinstrap penguins
(Pygoscelis antarctica) when krill abundance was low; Daneri
etal, 2008). An increase in long-nosed fur seal numbers may also
have resulted in reduced food availability for little penguins as
seals can compete with penguins for food resources (Croll and
Tershy, 1998; Lowther et al., 2020) and long-nosed fur seals also
consume southern garfishes in South Australia (Reinhold, 2014).
These hypotheses should be further tested with additional
tracking and diet studies.

Our model predicted an increase in annual penguin numbers
with increasing southern garfish numbers, indicating that a
decrease in food availability may have been responsible for the
annual decline of the little penguin populations in the area
(on Granite Island but also on Wright, West, Seal and Pullen
islands; see Colombelli-Négrel and Kleindorfer, 2014). A
previous study showed that juvenile survival was the most
important driver of little penguin population trends on Granite
Island (Colombelli-Negrel, 2015a). While no information is
available for South Australian little penguins, studies in
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Victoria have suggested that mortality of juveniles in their first
years occurred mostly at sea (Reilly and Cullen, 1982; Dann,
1991), likely due to a combined effect of parasites and starvation
(Harrigan, 1992). These studies and our results suggest that low
juvenile survival on Granite Island (less than 2%; Colombelli-
Negrel, 2015a) may be driven by low food availability (see also
Reilly and Cullen, 1982; Dann, 1988), which in turn would drive
the observed populations declines. A study conducted in 2006 on
Granite and West islands showed that garfishes were the second
most frequent prey item consumed by little penguins (Bool et al.,
2007). Yet, the foraging behaviour and diet of South Australian
little penguins is little studied with only two studies to date (Bool
et al., 2007; Wiebkin, 2012), and additional dietary studies would
be beneficial, especially considering that southern garfishes are a
commercially fished species in South Australia. Further research
is therefore warranted to determine if commercial catch of
southern garfishes may have negatively impacted little penguins.

In conclusion, we found a strong association between little
penguin numbers and southern garfish numbers (our local
indicator of food availability), which may explain the local
decline observed in penguin numbers in Encounter Bay during
the Millennium Drought. The fact that the Granite Island little
penguin population still has not recovered in 2020 (Colombelli-
Negrel, 2020), despite larger outflows in 2012-2013 and at the end
of 2016, suggests that the population may have reached some
critical reduction in the number of breeding birds during the
drought period. While this study focused on a single colony,
further decrease in little penguin numbers (as recorded in South
Australia; Colombelli-Negrel and Kleindorfer, 2014; Johnson and
Colombelli-Negrel, 2020, this study) may be observed in the future
because of climate change and/or reduced rainfall/river outflow,
considering their high dependence with estuarine environments
and freshwater outflows (Collins et al., 1999; Hoskins et al., 2008;
Preston et al., 2008; Kowalczyk et al., 2015). Much of the research
to date on seabirds and climate change have focused on the
impacts of increased ocean temperatures (e.g., Sandvik et al,
2005; Chambers et al., 2011; Descamps et al., 2017; Johnson and
Colombelli-Negrel, 2020). Similar to other studies on Arctic
systems showing the importance of glacial outflows on marine
productivity as well as seabird foraging and populations (Gremillet
et al, 2015; Urbanski et al., 2017; Bertrand et al., 2021; see also
Michel et al., 2015), our findings highlight that other factors need
to be taken into consideration, such as the potential importance of
river outflow for the health and resilience of the coastal ecosystem,
and our results should be considered in future river management
strategies. Given the wide distribution of seabirds, their key role in
ecosystems, and the fact that droughts are becoming more and
more frequent (Dai, 2013), future studies, both within Australia
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