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The simultaneous effects of human activities in the ocean and climate change have 
already produced a series of responses from the marine ecosystems. With the potential 
increment of future human activities, such as offshore renewable energy developments, 
proactive management is required. To facilitate effective management and conservation 
actions, it is imperative to identify species potentially at risk and their critical habitats. Here 
we examine 16 cetacean species habitat suitability in the western North Atlantic Ocean 
using generalized additive models developed from data collected by NOAA- Northeast 
and Southeast Fisheries Science Centers from 2010 to 2017. The models were based 
on observed species distribution as a function of 21 environmental covariates and 
compare species-specific core habitats between 2010 and 2017. We identified seasonal 
differences in patterns of habitat change across guilds and an average northward shift 
of 178 km across the study area. The effects of these shifts are still unknown, but for 
already stressed species, the contraction or displacement of their historical habitat could 
worsen their population status. Therefore, the imminent development of offshore regions, 
in addition to the effects of climate change emphasize the need of adaptively managing 
ecosystems on the face of multiple challenges.
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INTRODUCTION

Marine species are being affected by global climate changes, where and in most cases the documented 
responses include distribution shifts from their historical habitat (Chang, 2020). In addition, 
human-caused drivers such as the noise and physical disturbances from oil and gas exploration, 
fishing, boat traffic and infrastructure such as offshore renewable energy developments, as well as 
other maritime activities could also result in shifts (Chang, 2020). A more complete understanding 
of the potential impacts of climate change on cetaceans is necessary to ensure their conservation 
(van Weelen et  al., 2021) However, identifying species-specific habitats and whether change is 
occurring is limited by our ability to identify the extent of the change. This uncertainty is due to 
the lack of sufficient information to accurately identify the historic distribution range, seasonal and 
interannual variability, and individual species’ tolerance to environmental change (Chang, 2020). 
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Our goal in this paper is to use Northwest Atlantic cetacean 
location data collected in its changing environment to investigate 
if their habitats are changing, and if so, to what extent.

The premise of the redistribution of marine organisms and 
directional shifts based on their preferred temperatures has 
been well established for fish, seabird, sea turtle and invertebrate 
species (Pinsky et  al., 2013; Kleisner et  al., 2016). In addition, 
projections of sea surface temperature (SST) has been used as a 
proxy to predict potential distribution shifts in multiple species. 
For example, Hazen et al. (2012) using climate change scenarios 
predicted significant changes in core habitats for fish, seabirds 
and sea turtle species and a northward displacement across the 
North Pacific. Morley et al. (2018) used the SST pattern changes 
to identify changes in distribution among 686 species of fish and 
invertebrates in regions of United States and Canada. Lavender 
et al. (2021) predicted contractions in thermal habitat suitability 
of fish species at the tropics and habitat expansion at higher 
latitudes. Patel et  al. (2021) used thermal habitat patterns to 
predict loggerhead sea turtle shifts in response to scenarios of 
warming temperatures. Van Weelen et al. (2021) concluded that 
changes in SST and the reduction of sea ice extend affects the 
distribution of cetaceans in subarctic and subantarctic regions, 
with some species displaying a poleward shift to higher latitudes 
following their preferred SST.

However, a shift in distribution of marine animals, in 
particular for mobile predators such as cetaceans’ in temperate 
and warm regions is not necessarily directly related to 
changes in SST. Instead, as Pinsky et  al. (2020) described, 
the distribution patterns are a consequence of interactions 
between the individuals and their entire thermal, oxic and 
biotic environment Current climate changes are indicated by 
increasing sea surface temperature. But the climate changes also 
involve increasing levels of carbon dioxide, increasing thermal 
heat, and decreasing oxygen levels throughout the entire water 
column. Consequently, these changes result in changes in 
water column stratification, primary productivity, and ocean 
circulation patterns (such as the location and strength of the 
Gulf Stream in the Northwest Atlantic). For highly mobile, large 
animals, such as cetaceans, their distribution and response to a 
changing environment is influenced by its feeding behaviors, 
preferences, and flexibilities, along with its physiological 
needs and tolerances, particularly those of the newborns. For 
example, Meynecke et  al. (2021) reviewed over 148 studies 
to identify humpback whale habitat preferences during their 
annual cycle. They found in feeding grounds the explanatory 
covariates included upwelling strength, high chlorophyll-a 
concentrations, depth and currents. In calving grounds, the 
explanatory covariates included shallow areas, and warm 
temperatures with slow water movement. During migration, 
humpback whales prefer shallow waters close to shorelines with 
high chlorophyll-a concentrations.

Focusing on the Northwest Atlantic Ocean, regional ocean 
current pattern indicators remain at unprecedented levels. In 
2019, the Gulf Stream was at its most northern position since 1993  
(US NMFS NFSC, 2021). A higher proportion of warm salty 
Slope Water in the Northeast Channel increased sea surface 
height along the U.S. east coast (Goddard et  al., 2015). Also, 

the second lowest proportion of cool and fresh water from 
the Labrador Slope Water was observed entering the Gulf of 
Maine since 1978. These changed the proportions of source 
water affecting temperature, salinity, and nutrient patterns to 
the Gulf of Maine ecosystem (US NMFS NFSC, 2021). Ocean 
temperatures continue to warm at both the surface and bottom, 
although warming is not seasonally uniform. The 2020 winter 
and spring surface temperatures were just slightly warmer 
than average, while the summer and fall temperatures were 
2-4°C above the climatological mean (US NMFS NFSC, 2021). 
Increased temperatures, as reported above, can increase the 
rate of photosynthesis by phytoplankton. As a result, annual 
primary production has increased over time, primarily driven by 
increased productivity in the summer months and larger than 
average phytoplankton blooms were observed from late fall into 
winter in 2020 (US NMFS NFSC, 2021).

Given the complexity of all the changing attributes of the 
Northwest Atlantic Ocean, a comprehensive data collection 
program and its associated analyses are required to understand 
the relationship between environmental factors and the 
distribution of cetacean species. The Atlantic Marine Assessment 
Program for Protected Species (AMAPPS) program has 
provided such cetacean data on over 250,000 km of systematic 
line transects. Chavez-Rosales et al. (2019), used the AMAPPS 
aerial and shipboard survey data from 2010-2013 to develop a 
habitat suitability baseline for 17 cetacean species in the western 
North Atlantic using 17 candidate covariates to model their 
habitat usage. To improve the habitat models of the previous 
study, new models were developed using the same methodology 
with a longer time series of data collected from 2010 to 2017 
and additional candidate covariate characteristics of the marine 
environment (Palka et  al., 2021). The seasonal distribution 
maps and underlying data are available through https://apps-
nefsc.fisheries.noaa.gov/AMAPPSviewer/ and are downloadable 
from https://github.com/NEFSC/READ-PSB-AMAPPS-public in 
addition monthly average distribution maps are also available in the 
github site. Hereby, the objective of this paper is to use the habitat 
density models developed from these survey data to compare 
the species-specific core of the habitat suitability between 2010 
and 2017 to identify seasonal differences in patterns of habitat 
suitability in the Northwest Atlantic.

METHODS

Study Area
The study area ranged from Halifax, Nova Scotia, Canada to the 
southern tip of Florida; from the coastline to slightly beyond the 
US exclusive economic zone and covers approximately 1,193,320 
km² (Figure  1). Locations of the line transect track lines were 
developed to systematically cover the survey area with a random 
starting point within a stratum, in accordance to standard line 
transect procedures to produce approximate equal survey 
coverage within a stratum (Laake and Borchers, 2004). The 
cetacean distribution and abundance data were collected by the 
AMAPPS surveys. In coastal regions NOAA Twin Otter aircrafts 
were used, and for the offshore regions NOAA ship Henry B. 
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Bigelow was used by the Northeast Fisheries Science Center 
(NEFSC), and the NOAA ship Gordon Gunter was used by the 
Southeast Fisheries Science Center (SEFSC). The track lines were 
repeatedly surveyed in all seasons and in all years.

Static and dynamic covariate characteristics of the 
environment within the study area were compiled from a 
variety of sources (Table 1). All line transect and environmental 
covariate data were subdivided into 10x10 km cells and 8-day 
time periods. In addition, average sea state and glare collected 
during the line transect surveys within each spatiotemporal cell 
was included as a continuous predictor variable, to account for 
sighting conditions encountered on the surveyed track lines.

Analysis Methods
Two-step density surface modeling techniques were used to 
develop seasonal spatial models and maps of the density of 
the cetacean species (Miller et al., 2013) using the line transect 
sighting data collected during 2010 to 2017. The first step fits the 
detection functions to model the probability of observing animals 
away from the track line. The second step models the observed 
density estimated in the first step as a function of environmental 
covariate data and then uses the model to predict density over the 
entire survey area. The advantage of model-based techniques is 
the use of the additional environmental covariate data generally 
lead to more precise abundance estimates and the ability to 

A B

DC

FIGURE 1 |   Seasonal coverage of the survey effort in the study area during 2010–2017 by the AMAPPS surveys. A) Spring, B) Summer, C) Fall and D) Winter. Most 
spatiotemporal grid were repeatedly surveyed.
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predict abundance in regions in between the surveyed track 
lines. A key advantage of this technique is unbiased abundance 
estimates can be produced even when the data do not come from 
surveys designed to achieve equal coverage probability of the 
survey area (Hammond et al., 2021).

Mark-Recapture and Distance Analysis
The first step of the density surface modeling technique 
developed species-specific estimates of the line-transect detection 
probability parameters based on survey effort conducted in 
Beaufort Sea states from 0 through 4 (Palka, 1996; Barlow et al., 
2001; Palka, 2012).

The density estimates were based on the independent observer 
approach assuming point independence (Laake and Borchers, 
2004), calculated using mark-recapture distance sampling 
(MRDS) (Thomas et al., 2010), for each sampled spatiotemporal 
cell using a Horvitz-Thompson-like estimator (Borchers et  al., 
2006). With this approach, there was no need to independently 
model group size. To capture sightability differences between 
observation platforms and regions, data collected by each aircraft 
and ship from the SEFSC and NEFSC surveys were analyzed 
independently due to the differences in observers, data collection 
methods and habitats surveyed. Traditional MRDS distance 
analyses were used for the data collected by the shipboard 
surveys (Palka, 2020; Palka, 2012; Garrison, 2020). Data collected 
by the aerial surveys were analyzed using a two-step process as 
described by Palka et al. (2017) and Garrison (2020) to account 
for the slightly unbalanced area surveyed by the two teams in the 
planes.

Significant covariates were chosen following the method 
suggested by Marques & Buckland (2003) and Laake & Borchers 
(2004). For all of the analyses, the detection probabilities were 
estimated using right truncated perpendicular distances as 
suggested in Buckland et al. (2001) and model selection was based 
on the goodness-of-fit using the AIC score, Chi- squared test, 
Cramer-von Mises goodness-of-fit test and a visual inspection of 
the fit. The results of these test are available in Palka et al. (2021). 
The estimated sighting probability included an estimation of g(0) 
which is the probability of detecting an animal on the survey 
track line.

To ensure sufficient sample sizes to accurately estimate model 
parameters, when needed, several similar species were pooled. The 
criteria used to define species guilds included shape of the species’ 
detection functions, general animal behavior, perceived sightability 
of the species, and sample size. The estimated global parameters 
from the guild models were applied to the values of the covariates 
associated with each individual species in the guild to account for 
species-specific detection functions. An overall species-specific 
abundance estimate was then calculated for each spatiotemporal 
cell and corrected for species-specific availability bias by platform, 
as described in Palka et al. (2021); Palka et al. (2017).

Modeling Analysis
The second step in the density surface modeling technique 
developed a density habitat model. Generalized Additive 
Models (GAM) were developed in R (v. 4.1.1) using the package 
“mgcv” (v.1.8-36). Density estimates from the mark -recapture/
distance analysis in sampled spatiotemporal cells were defined 

TABLE 1 | Contemporaneous habitat covariates and interactions included in the habitat models; MDE is the mean deviance explained by a covariate when included in a 
model; Frequency is the number of models in which the covariate was included.

Covariate Description Original Resolution MDE Frequency

SSTMUR SST multi-scale ultra-high resolution 1 km mapped to 2 km 7.43 5
SSTF Strength of SST fronts 1 km mapped to 2 km 5.19 7
CHLA Chlorophyll-a concentration 1 km mapped to 2 km 4.27 4
CHLF Strength of chlorophyll fronts 1 km mapped to 2 km 5.32 4
PIC Particulate inorganic carbon 1 km mapped to 2 km 3.00 4
POC Particulate organic carbon 1 km mapped to 2 km 1.15 2
PP Primary productivity 1 km mapped to 2 km 5.00 4
SLA Sea Surface Height Anomaly 1/4° 1.94 1
MLD Mixed layer depth, 1/12° 3.96 4
MLP Mixed layer thickness 1/12° 3.77 5
SALINITY Surface salinity 1/12° 7.30 3
BTEMP Bottom temperature 1/12° 8.61 12
DGSNW Distance to the Gulf Stream north wall meters 6.11 6
DGSSW Distance to the Gulf Stream south wall meters 4.40 2
Depth Depth 3 arc-sec 10.02 5
Dist2shore Distance to coastline 0.04° 5.40 4
Slope Seafloor slope 3 arc-sec 3.15 2
Dist200 Distance to the 200 m isobath/contour meters 7.60 5
Dist125 Distance to the 125 m isobath/contour meters 6.57 3
Dist1000 Distance to the 1000 m isobath/contour meters 9.50 7
Lat Latitude 14.25 13
Interaction Interaction time-DGSSW 28.18 1
Interaction Interaction time-Latitude 16.1 2
Interaction Interaction time-DGSNW 14.38 1
Interaction Interaction time-SSTMUR 8.66 1
Interaction Interaction time- CHLF 8.13 1
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as the response variable in the generalized additive models. A 
habitat model was produced for each species to identify the 
extent of their habitat suitability over space and time. Potential 
habitat predictors included in the models consisted of a suite of 
7 static physiographic characteristics in the study area and 14 
contemporaneous dynamic environmental covariates (Table 1). 
The data sources are described in Palka et al. (2021).

The parameter estimates were optimized using restricted 
maximum likelihood criterion and the data were assumed to 
follow an overdispersed Tweedie distribution (Miller et al., 2013) 
with null space penalization and thin plate splines with shrinkage 
(Wood and Augustin, 2002). Further, to avoid overfitting 
that could render parameter estimates difficult to interpret 
biologically, the maximum number of degrees of freedom was 
limited to 5 and all models were checked to ensure this limit 
was appropriate. Correlations among environmental covariates 
ranged from 0.01–0.80 in absolute values. Although “mgcv” is 
considered to be robust to such correlations (Wood, 2011), both 
variables in a highly correlated pair were not used together in the 
same model.

Variable selection was performed with automatic term 
selection (Marra and Wood, 2011) and a suite of diagnostic 
tests as proposed by Kinlan et  al. (2012) and Barlow et  al. 
(2009). Models with the lowest prediction error and the highest 
percentage of deviance explained were selected for further 
testing which included k-fold cross-validation with 25 random 
data subsets.

Habitat Suitability Analysis
It was assumed that habitat suitability (HS), is directly correlated 
with the species’ abundance in relation to the unique combination 
of environmental predictors, as defined in Chavez-Rosales et al. 
(2019):

HS N
i

n

i=∑


where N̆i is the estimated abundance from species-specific 
model for each spatiotemporal cell i. For this study the seasonal 
core habitat was defined as the area within a seasonal density 
map comprising of spatiotemporal cells with the upper 20% 
of predicted abundance values, based on the criteria defined 
in Hazen et al. (2012). Spring was defined from March to May, 
summer from June to August, fall from September to November 
and winter from December to February. Under this definition, 
the seasonal core habitat is meant to capture seasonal variability 
of the primary habitat used by each species. To determine if 
there were habitat shifts, we compared the core habitats for 
2010 and 2017 in two ways. First, we compared the locations 
of the weighted centroids defined as the average coordinate 
of all points within the core habitat polygon weighted by the 
density estimates of the core habitat. Second, we compared the 
latitudinal distributions of the estimated abundance within  
the core habitat, which was calculated by summing the proportion 
of the estimated abundance within the core habitat by every 
0.5-degree latitude.

RESULTS

The 2010 – 2017 data were collected from over 250,000 km 
of on-effort line transect track lines from AMAPPS surveys 
(Table 2) resulting in the detection of 8,332 groups of cetaceans of 
over 110,068 individuals from 16 species (Supplementary Tables 
S1, S2). Approximately 68% of these groups were detected by the 
northern surveys. After the data processing, the final input data 
for the habitat models included 25,856 surveyed spatiotemporal 
cells for the 2010-2017 timeframe.

A total of 17 habitat models were developed that included data 
from all four seasons for most of the species. The exception was 
for species that inhabit only deeper shelf-edge waters that were 
only surveyed by the shipboard surveys during summer, such as 
Cuvier’s beaked whales and Sowerby’s beaked whales. In the case 
of harbor porpoise, two habitat models were developed to explain 
their distinct annual distribution patterns. One model included 
only data collected from months where the harbor porpoises were 
spatially clustered (June to October). The second model included 
data from months where the species was spatially spread out 
(November to May) (Supplementary Table S3; Supplementary 
Figures S1–S15).

The most frequent covariates included in the habitat models 
were latitude (13 models), bottom temperature (12 models), 
strength of the SST fronts (7 models), and distance to the 1000 m 
depth isobaths (7 models). Overall, the deviance explained by 
the habitat models ranged from 28% for bottlenose dolphin 
to 71% for striped dolphin. The models included between 3 
to 9 habitat covariates, the mean contribution to the model by 
individual covariates ranged from 1.15% for particulate organic 
carbon to 28.18% for the interactions between time (8-day 
period for each year) and distance to the Gulf Stream south wall 
(Supplementary Table S3; Table 1). For all species, the average 
abundance estimates within the core habitat comprised 0.77 of 
the total abundance for 2010 and 2017. In 2010, the proportion 
of estimated abundance in the core habitat ranged from 0.55 for 
minke whale for fall to 0.98 for long-finned pilot whale during 
winter. In 2017, the proportion of estimated abundance in the 
core habitat ranged from 0.54 for minke whale for summer to 
0.99 for long-finned pilot whale during fall (Supplementary 
Table S4). Comparisons of the weighted centroid for species-
specific core habitat identified seasonal differences in patterns of 
habitat change for most species north of 34° latitude. The greatest 
shifts and magnitudes varied by season and species, but the 
shift tendency was towards the northeast (NE) (Figure  2). On 
average, fall showed the greatest shifts of the weighted centroid, 
with 168 km, followed by winter (134 km), spring (115 km) and 

TABLE 2 | Seasonal effort in kilometers by platform from the AMAPPS surveys 
included in the analysis.

Platform Spring Summer Fall Winter TOTAL

NE Shipboard – 37,529 1,065 – 38,594
NE Aerial 13,314 25,867 37,850 12,179 89,210
SE Shipboard 8,853 12,968 3,012 – 24,833
SE Aerial 41,293 28,236 18,974 8,950 97,453
TOTAL 63,460 104,600 60,901 21,129 250,090
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summer (96  km). The largest shifts in the core habitat was for 
bottlenose dolphin, fin whale, short-finned pilot whale, Risso’s 
dolphin, sei whale, common dolphin, sperm whale and striped 
dolphin (Table 3).

Overall, for species that showed a clear NE displacement of 
the weighted centroid, the average magnitude of the shift was 
178  km. Bottlenose dolphin habitat showed the most drastic 
shift for all seasons except during winter: spring= 294  km, 

FIGURE 2 | Direction and magnitude of core habitat shifts, represented by 
the length of the line of the seasonal weighted centroid for species with more 
than 70 km difference between 2010 (black dot) and 2017 (tip of arrow).

TABLE 3 | Difference on the location of the core habitat weighted centroid (in km) and direction of the habitat shift between 2010 and 2017.

Species Spring Direction Summer Direction Fall Direction Winter Direction

Atlantic spotted dolphin 151 SW 25 SE 15 SE 165 NE
Beaked whale, Cuvier’s NA NA 69 NE NA NA NA NA
Beaked whale, Sowerby’s NA NA 5 SE NA NA NA NA
Common bottlenose dolphin 294 NE 505 NE 753 NE 211 NE
Fin whale 154 NE 162 NE 223 NE 33 NE
Harbor porpoise 17 SW 3 NE 10 SW 397 NE
Humpback whale 17 S 17 S 14 NW 3.9 SW
Minke whale 40 NE 14 NW 10 W 133 NE
Short-finned pilot whale 120 SW 149 SW 296 NE 218 NE
Long-finned pilot whale 39 NE 38 NE 69 E 2 NE
Risso’s dolphin 232 NE 89 NE 182 NE 202 NE
Sei whale 70 SW 97 SW 134 SW 179 SW
Common dolphin 267 NE 111 NE 216 NE 205 NE
Sperm whale 114 NE 202 NE 255 NE 71 NE
Striped dolphin 71 NE 41 NE 155 NE 30 NE
White-sided dolphin 29 NE 13 W 23 NW 26 NE
Mean 115 96 168 134

The difference in kilometers.

FIGURE 3 | Difference in kilometers on the location of the core habitat 
weighted centroid and direction of the habitat shift between 2010 and 2017.
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summer=505 km, fall= 753  km and winter = 211 (Table  3; 
Figures 3, 4). There was a clear tendency where the proportion 
of the estimated population in southern latitudes decreased, 
while north of 35° the proportion of the estimated population 
increased, especially during summer 2017 (Figure  5). Other 

species that on average, showed a moderate-to-no spatial shift 
included humpback whale, minke whale, white-sided dolphin, 
Sowerby’s beaked whale, and long-finned pilot whale (Table 3; 
Supplementary Figures S1 -S14).

DISCUSSION

Climate change, most notably ocean warming is affecting the 
ecosystem in various ways leading to large and sometimes 
abrupt changes in the ecosystem’s structure. Those changes 
affect the interaction of multiple system covariates and can 
result in ecosystem reorganization (US NMFS NFSC, 2021). 
Previous studies used the premise of redistribution of marine 
organisms linked to their preferred thermal habitat, and 
several projections with future scenarios of species shifts were 
produced using coarse resolution global and earth climate 
models (Hobday et al., 2016; Tommasi et al., 2017). However, 
the difference in regional projections of climate change limit 
the confidence on the utility of those projections (Hawkins 
and Sutton, 2009; Frölicher et al., 2016). Our study explored 
a wider more expansive list of possible habitat predictors. We 
found bottom temperature and latitude more often correlated 
with the animal density, in comparison to SST or strength of 
SST fronts.

Latitude was the most common covariate included in the 
habitat density models. This covariate could be interpreted as 
denoting the general spatial patterns of a species distribution. 
Positive near-linear relationships between latitude and density 
were in the density-habitat models of the northern species 
usually found in waters north of North Carolina, about 37°N. 
In contrast, negative relationships were in the models for 
the southern species, such as the Atlantic spotted dolphins 
found mostly in waters south of New Jersey (about 40°N). 

FIGURE 4 | Direction and magnitude of core habitat shifts represented 
by the length of the line of the seasonal weighted centroid, for bottlenose 
dolphin between 2010 (black dot) and 2017 (tip of arrow).

FIGURE 5 | Seasonal comparison of the proportion of the estimated abundance within the core habitat for bottlenose dolphin by 0.5° latitudinal bins. 2010 dotted-
black line, 2017 solid blue line.
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The humpback whale’s model had a bimodal relationship with 
latitude that reflected its seasonal migration patterns up and 
down the coast. To model the large interannual variability 
in sei whale densities off the US coast, the most significant 
covariate was an interaction between latitude and time.

The second most common covariate included in the 
habitat density models was bottom temperature. Although 
SST and bottom temperature are somewhat related, the 
physical forcing factors for the two locations are different. 
It appears that bottom temperature was a good predictor of 
density for deep diving species, where this covariate could be 
interpreted to represent their prey preferences. The deepest 
divers that commonly feed at depths greater than 1500 m deep 
are the various beaked whales and Kogia sp. Their models 
indicated that high densities are in waters where the bottom 
temperature was below about 8°C. Other deep divers that 
commonly feed higher in the water column, at about 200 – 
1000 m depth on species such as squid, appeared to be found 
in only a limited range of warmer bottom waters, such as 
about 7-17°C for sperm whales, pilot whales, Risso’s dolphins, 
common dolphins, bottlenose dolphins, and striped dolphins. 
The bottom temperature values with the higher than average 
densities of Atlantic spotted dolphins was bimodal, <6°C  
and >20°C, which appears to reflect the bimodal distribution 
of these animals off Florida and off Massachusetts.

Abiotic factors that are usually considered indicative of 
environmental (climate) changes include latitude, bottom 
temperature, SST, distance to the Gulf Stream. Biotic factors that 
could be indicative of organisms reacting to changing abiotic 
factors include primary productivity and chlorophyll a. These 
are the types of factors that were in the common bottlenose 
dolphin density-habitat model, which demonstrated dramatic 
seasonal shifts. The model covariates, in order of the contribution 
to the deviance explained, were interaction between SST and 
time, distance to the northern wall of the Gulf Stream, primary 
productivity, bottom temperature, bottom slope, chlorophyll a, 
and surface salinity.

Previous studies showed several limitations associated 
with statistical correlative models when used to extrapolate 
in time and areas where sampling effort was absent (Elith 
and Leathwick, 2009; Webber et  al., 2011). For instance, the 
relationships implied from field data may not adequately 
describe factors determining species distributions, especially 
if the data are not collected consistently with a standardized 
protocol. Another limitation is large-scale environmental 
relationships developed from available data on past conditions, 
are generally considered less reliable to predict responses 
to extreme events or novel conditions under future climate 
changes (Hothorn et al.2011; Williams et al., 2007).

This study uses data collected with standardized protocols 
from only the area of interest for the 2010-2017 time period. 
We also used high resolution contemporaneous values of the 
habitat covariates in the models to increase the confidence in 
the estimation of the habitat suitability. In addition, this study 
presumed a robust environmental multivariate nonlinear 

relationship with the distribution of cetacean species in the 
region (see Palka et al., 2021).

The tendencies on the cetacean habitat shifts identified in this 
paper are consistent with the shifts observed in fishing stocks 
within the same regions, which showed movement towards the 
northeastward and into deeper waters (US NMFS NFSC, 2021).

These species are primarily distributed in the Georges Bank 
and Gulf of Maine during summer and fall seasons. This study 
does not attempt to answer why they did not shift. However, 
perhaps it could be because all of these species typically inhabit 
the same areas, are considered prey generalists (as they can 
feed on a variety of prey ranging from krill to small schooling 
fish), and Northern sand lance (Ammodytes dubius) is known 
to be a key prey to all of these species (Weinrich et al. 2001; 
Craddock et  al., 2009;   Smith et  al., 2015; Staudinger et  al., 
2020). As generalists they could be more adaptable to newly- 
available or changing prey species, if new prey species are 
arriving. Also, in this time and area since 2010 sand lance have 
probably been increasing because Atlantic herring (Clupea 
harengus) and Atlantic mackerel (Scomber scombrus) have been 
decreasing. Although scientists do not conduct assessments 
of Northern sand lance, this supposition is because the sand 
lance populations have been observed to oscillate out of phase 
with Atlantic herring and Atlantic mackerel (Staudinger et al., 
2020; Suca et al., 2021), who have been decreasing since 2010 
(Stock SMART 2021).

The results presented in this paper indicated the utility of 
using habitat models to estimate the core of habitat suitability. 
By including static and dynamic environmental covariates 
in the habitat models, these models provided an indicator of 
the seasonal and interannual variability and a good metric 
to detect habitat shifts and their magnitude. One important 
assumption of these models is the consistent statistical 
relationship within the spatiotemporal environment and the 
animal density (Chavez-Rosales et  al., 2019). Based on this 
assumption, it is possible to interpolate the habitat preference 
of species in areas or periods of time within the study area 
and timeframe where surveys did not actually occur (Guisan 
et al., 2002). However, while these models are robust for the 
study area and timeframe, as indicated by the cross-validation 
analysis, the models are unable to directly detect changes 
in fundamental ecological processes such as predator-prey 
relationships through time and space. For this reason, in the 
future there is the need to incorporate more biological data 
related to possible prey availability into the habitat models 
formulation. Doing so would improve our understanding of 
the abundance and distribution of cetaceans in the region.

Habitat suitability estimated by specific habitat-based models 
such as those presented in this paper provide information to 
document past changes in the distribution and abundance of 
cetaceans as related to changes in their abiotic and biotic habitat. 
These past changes could then be used to predict potential future 
changes. Therefore, these habitat-based models have the potential 
to support management decisions related to the development of 
offshore regions for renewable energy and other activities and 
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to promote conservation measures in a marine spatial planning 
context.
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