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Awell designed observing network is vital to improve our understanding of the oceans and
to obtain better predictions of the future. As autonomous marine technology develops, the
potential for deploying large autonomous observing systems becomes feasible. Though
there are many design considerations to take into account (according to the target data
use cases), a fundamental requirement is to take observations that capture the variability
at the appropriate length scales. In doing so, a balance must be struck between the limited
observation resources available and how well they are able to represent different areas of
the ocean. In this paper we present and evaluate a new method to aid decision makers in
designing near-optimal observing networks. The method uses ideas from set theory to
recommend an irregular network of observations which provides a guaranteed level of
representation (correlation) across a domain. We show that our method places more
observations in areas with smaller characteristic length scales and vice versa, as desired.
We compare the method to two other grid types: regular and randomly allocated
observation locations. Our new method is able to provide comparable average
representation of data across the domain, whilst efficiently targeting resource to regions
with shorter length scale and thereby elevating the minimum skill baseline, compared to
the other two grid types. The method is also able to provide a network that represents up
to 15% more of the domain area. Assessing error metrics such as Root Mean Square
Error and correlation shows that our method is able to reconstruct data more consistently
across all length scales, especially at smaller scales where we see RMSE 2-3 times lower
and correlations of over 0.2 higher. We provide an additional discussion on the variability
inherent in such methods as well as practical advice for the user. We show that
considerations must be made based on time filtering, seasonality, depth and
horizontal resolution.

Keywords: observations, observing networks, greedy algorithm, observing system design, set cover approach
1 INTRODUCTION

A well designed observing network is vital for building towards a better understanding of our oceans
in the past, present and in the future. Properly placed observations help the development of our
scientific understanding of the oceans as well as the impacts of human activity. They can be used to
build reanalysis datasets, provide challenging validations for model output and generate more
in.org June 2022 | Volume 9 | Article 8790031
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accurate model initial conditions, giving us an improved
understanding of a model’s strengths and weaknesses. This in
turn can lead to better forecasting of the ocean, which is vital in a
world of climate change and rising sea levels. Nygård et al. (2016)
concluded that the value of marine monitoring systems is an
order of magnitude greater than the resources spent on the
observing system itself. Improving our knowledge of the oceans
can aid policy makers to make cost effective decisions that pay for
themselves. In this study we introduce a new methodology
designed to aid in the design of observing networks by
identifying optimal locations for point observations.

There is a huge variety of observing platforms available to
decision makers (Bean et al., 2017), each with varying spatial and
temporal scales (Nilssen et al., 2015). Research vessels, large or
small, observe the ocean along predefined and sometimes
repeated transects. They are highly versatile, with many sensor
options, however they generally do not provide data over a long
time series and are expensive. Voluntary Observing Ships
(Petersen, 2014) can provide some similar observations with
the added benefit of repeated observations along shipping lanes,
although they are spatially less flexible. Fixed point observations
such as tide gauges, moorings and landers are able to provide
long time series of data autonomously, however are fixed in
space. Subsurface floats (autonomous lagrangian platforms) such
as those in the ARGO network (Gould et al., 2011) are able to
provide cost efficient global coverage (Bean et al., 2017) at
varying depths. Satellites offer large scale observations at the
ocean surface with high temporal frequencies, although there can
be large gaps due to the specifics of orbits. Finally, autonomous
and remotely operated technologies such as ocean and wave
gliders can provide observations for weeks or even months
without human intervention (Wynn et al., 2014).

Modern observing networks are often constructed from a
combination of all of the above platforms and it is important to
understand how effective they are. This can be done objectively
using techniques from data assimilation and examining how
representative each observation is of its neighbourhood, for
example see (She et al., 2007; Oke et al., 2009; Fu et al., 2011;
Oke et al., 2015a; Oke et al., 2015b; Fujii et al., 2019). However,
quantifying the effectiveness of an observing network depends on
the driving motivations behind it. These motivations are usually
driven by scientific curiosity or policy constrained by governance
structures (Bean et al., 2017; Turrell, 2018). Scientists may be
most interested in studying a particular oceanographic feature,
placing observations in fixed locations, small grids or along
transects of interest. Researchers working on models used for
prediction will have interest in downstream impacts on the
forecasting capability of models. Government policy makers
may be most interested in improving observations of human
related impacts such as fishing, habitat damage, pollution and
commercial shipping to develop and enforce regulatory
approaches and other policy objectives (Defra, 2002). Both
groups require data to be generated where it is needed and for
this to happen as cost effectively as possible.

There are many components and considerations to designing,
implementing and operating an observing network and these
Frontiers in Marine Science | www.frontiersin.org 2
have been elucidated in (Turrell, 2018) and (Elliott, 2013). These
include societal and financial implications, as well as technical
and logistical. However, a fundamental question underlying all
observational systems is whether the scales of measurement are
capturing the desired characteristics, both spatially and
temporally, and if so, what is the most efficient way of
achieving this? There are existing methods and ideas for
tackling this problem. For example, it is common to consider
designing an observational network around spatial length scales,
[for example see (Mazloff et al., 2018)]. However, using this
method alone can involve spatial averaging of the data and a level
of arbitrary decision making. More rigorous methods have also
been studied, such as variation based quadtree methods
(Minasny et al., 2007) and Mean of Surface with Non-
homogeneity methods (Hu and Wang, 2011).

In this paper we aim to address the question of network
design using a new idea, examining how best to deploy (in a
theoretical sense) limited observational resources. We introduce
and evaluate in detail a mathematical tool to aid decision makers.
The tool uses ideas from set theory to find a set of observation
locations that are capable of efficiently representing a variable
over an entire predefined region. We describe the method and
present an analysis of its output, making independent
comparisons to length scales and other grid types. We also use
network scoring techniques to compare the outputs from our
method with regularly and randomly designed observing
networks. We present the method in the context of
temperature and salinity point measurements although expect
it to have far reaching applications.

The tool presented in this paper is flexible and can be used to
develop network recommendations for any variable and any
region. Additionally, it can be used in an adaptive manner,
providing solutions for different time periods, different scales
and different depths. For example, we will show that the method
can be used to provide separate network recommendations for
each season. In combination with improvements in autonomous
technology and increases in data demands, this is a vital step
towards having a fully autonomous and dynamic observing
network, which is capable of adapting to changes in the ocean
over any timescale.
2 METHODOLOGY

2.1 The Set Cover Optimization Problem
The set cover problem is a classical question in mathematics
concerning how to cover a finite set with the union of a number
of subsets (Vazirani, 2001). To illustrate this, suppose we have a
set of integers U = {1,2,3,4,5} and a family of subsets S1 = {1,2,3},
S2 ={2,5}, S3 = {4}, S4 = {4,5}, S5 = {1,3,5}. We can U by taking, for
example, the subset families {S1,S4} or {S2,S3,S5}. This is not an
exhaustive list. Figure 1 shows an illustration of the problem in 2
dimensions, demonstrating that a family of subsets {B, C, D} can
be used to cover all points. The set cover optimization problem
(SCOP) additionally concerns finding a family of covering
June 2022 | Volume 9 | Article 879003
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subsets whilst minimizing the number of subsets chosen or the
sum of some associated weights.

More formally, this is often posed as follows. Suppose we have
a finite set:

U = u1, u2,…, unf g, (1)

henceforth called the universe, and a family of sets:

S = s1, s2, :::, smf g, (2)

such that the union of si is equal to U:

s1 ∪  s2 ∪ :::∪  sm = U : (3)

A set covering is any subfamily of S whose union is also equal
to U (therefore S is itself a covering of U). For each subset si there
is an associated cost ci >0. The optimization problem is then to
find a set covering X = {x1,x2,…,xn} which minimizes the sum of
associated costs. In the simplest case ci may be constant for all i
meaning that the objective is to minimize the total number of sets
in X.
Frontiers in Marine Science | www.frontiersin.org 3
This can be further expressed as an integer linear
programming problem (ILP) (Korte and Vygen, 2012). We
aim to satisfy the objective function:

minimize o
m

i=1
ciyi, (4)

where

yi =
1 if subset si is chosen

0 otherwise,

(
(5)

such that all elements in U are covered.
For application to observing network design, we repose the

problem as:
Can we find a minimal set of observation locations which are

able to fully represent (cover) all parts of a domain?
In other words, each possible observation location may be

considered to represent some region of the domain. With this in
mind, we would like to find a set of observations whose union
FIGURE 1 | Demonstration of the set cover optimization problem for a set of 2D grid points (universe) and 4 subsets indicated by dark grid squares. Subsets are
labelled (A–D). Of these four subsets, the greedy approximation algorithm would choose (B–D). After the reassignment step of the Modified Greedy Set Cover
algorithm, (B) would be removed from the final solution as all of its points can be reassigned to (C, D).
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represents all of the domain. This creates an additional question
however: what does it mean for an observation to represent other
locations? For this study, we define an observation location p0 =
(x0,y0,t0) to represent another point in the domain Di = D(xi,yi,ti)
to mean that the data pi = (xi,yi,ti) , can be modelled to some level
of quality using only the observed data D0 = D(x0,y0,t0). An
appropriate modelling scheme must then be chosen. In this
paper, we use simple linear regression as our representation
model and absolute linear correlations as our representation
metric. Therefore, p0 represents pi if and only if:

r Di,Dj

� ��� �� ≥ g , (6)

where r is the correlation function and g is some predefined
correlation threshold. This is a similar (but inverse) concept to
the effective coverage of an observation, as described by She et al.
(2007) and we discuss this further in Section-2.4.4. Another way
to think about this is in terms of the variance explained. Linear
correlation is equal to the square root of the variance that can be
explained in Dj when using a linear model in Di . Choosing a
correlation threshold of g = 0.9 will be able to model at least 81%
of the the time variance at every point in the domain using just
simple linear regression. More complex methods are possible
such as nonlinear models and multiple regression and we discuss
these further in Section-4.

Now we must reframe this in terms of the set cover
optimisation problem. We define the universe U to be the set
of all n points in a given 2-dimensional domain. For
computations, this domain is reshaped along a single axis.
With each element of U, there is a corresponding subset si
defined as all other points with which the data has an absolute
correlation of at least g. Therefore, the family S contains n
subsets. The threshold variable g is predefined and will affect
the shape and size of each individual subset but not the number
of subsets. This can be set to any value between 0 and 1, however,
for small values the subsets become more irregular and noisy, so
larger values are recommended.

2.2 The Modified Greedy Set Cover
Algorithm
For the set cover optimization problem, there are no known
algorithms which can give an exact solution in polynomial time
(Korte and Vygen, 2012). For very large problems such as ours,
this means that obtaining a guaranteed optimal solution is
unfeasible. Instead we must obtain an optimal or near-optimal
solution using an approximation algorithm that can be solved in
polynomial time. There are two methods commonly used to do
this: a greedy algorithm (Chvatal, 1979; Grossman and Wool,
1997; Slavik, 1997) and relaxation of the integer linear
programming problem (RILP) (Grossman and Wool, 1997;
Vazirani, 2001; Williamson and Shmoys, 2011). For this study
we use the greedy algorithm, an iterative scheme which selects
the remaining subset which covers the largest number of
remaining elements in U at each iteration. It is well studied
and has been shown to be the best polynomial time
approximation for lower order terms (Chvatal, 1979;
Frontiers in Marine Science | www.frontiersin.org 4
Grossman and Wool, 1997; Slavik, 1997; Feige, 1998; Alon
et al., 2006; Grossman and Wool, 2016). As an example, in
Figure 1 the greedy algorithm would select subsets in the order
B, D and C.

After we obtain the greedy solution, we can improve upon it
with an additional refinement step. With each observation
location recommended by the greedy algorithm, there is an
associated subset. As will be discussed in Section-3.1, some of
these subsets are very small in areas where correlation length
scales are small. In some cases, any element of one of these
subsets could be reassigned to another observation where the
representation metric g is still satisfied. If all elements of one of
these associated subsets can be reassigned to another point, then
the corresponding location is removed from the solution.
Experimentation showed that this extension to the algorithm
can reduce the number of points by up to 10%. This step can also
be illustrated using Figure 1. As discussed above, the greedy
solution to this example yields the subsets B, D and C. However,
all elements of B may be “given” to C or D, whilst still retaining a
full cover of all points. Therefore, B is removed from the final
solution and its elements are transferred to the subset which
provides the highest correlation.

The final step is to reassign all data points with the
observation that gives the largest correlation. A peculiarity of
the previous two steps is that any given point may not be
assigned to its best observation location. In terms of linear data
reconstruction, best results will be obtained when each point is
assigned to its ‘best’ observation location. We call this whole
process, from greedy algorithm to final reassignment, the
Modified Greedy Set Cover (MGSC), and will henceforth refer
to it as the MGSC (g) algorithm.

The algorithm may be approached from two different
perspectives. Using the above method directly will give the
user a set of points which guarantee a prescribed quality across
the domain. The user chooses the quality and the method
chooses the observing network and, importantly, the number
of locations. In a realistic setting however, the observational
resources available may be the determining factor and a user may
want to instead specify the number of locations N. There are two
ways that the MGSC method may be modified further to allow
for this. The first and simplest method is to take the largest N
subsets from the greedy solution. However, this means that there
will be areas of the domain lacking representation. The method
adopted in this paper is a further iterative scheme.

A line search type method is used (Box et al., 1969) to search
through g until the desired N is reached (or some small threshold
around it). This is done by defining an initial search value g0 and
initial search step a0. The MGSC method is performed for these
initial values and if the resulting solution does not have N
observations (or within some threshold) then the search step a
= a0 is added to g. This is repeated until the desired N is
exceeded. The search step a is then iteratively halved and
added to the last g that gave a solution with less than N
observations. This is done until N is reached (or within some
predefined threshold). To distinguish it from the MGSC (g)
method, we call thisiterative scheme the MGSC(N) method.
June 2022 | Volume 9 | Article 879003
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It is important to note that the MGSC (g) and MGSC (N)
algorithms are close to being equivalent. Given a perfect solution
using the MGSC (N), the two algorithms should give solutions
that are similar. For example, suppose using MGSC (g0) gives a
solution with N0 points then MGSC (N0) will inversely give a
solution providing a minimum correlation of close to g0. In
practice this is not strictly true due to the stopping conditions
imposed on the line search. However, experimentation showed
that for an appropriate choice of stopping parameters, these
differences could be reduced to negligible levels. Consequently,
throughout this paper we refer to only the MGSC algorithm
where the input type is not important to the results.

2.3 Data and Experiments
In this paper we test and evaluate the MGSC algorithm. Output
from the method is analysed and compared against physical
quantities such as correlation length scales. We compare
observing networks created using the MGSC method with two
other types of network: regular and random. The random
network is generated by placing N observations randomly
throughout the ocean part of the domain. An ensemble of
1000 random observing networks has been generated for this
purpose, and results will be presented as ensemble means and
standard deviations. The regular network is created by placing
observations in a regular latitude-longitude grid throughout the
ocean part of the domain. This is done by extracting regular
subsamples of the original data along the X and Y (lonand lat)
axes. The result is that the possible values of N when generating a
regular grid are a function of the original dimension sizes and the
distribution of land and ocean points in the data. Therefore, N
cannot be any arbitrary value in this case. When comparing to
this network type, we have sometimes determined the N to be
used in the MGSC and random networks from the possible
values for the regular grid.

In this study we use reanalysis data based on the Coastal
Ocean (CO) model configuration (O’Dea et al., 2017) to create
recommendations for observing network placement. In the
following sections, we look at monthly mean sea surface
temperature (SST) and sea surface salinity (SSS). We have used
the NWSHELF_MULTIYEAR_PHY_004_009 reanalysis
product from the CMEMS database, which offers gridded data
at a 7km horizontal resolution. This data covers the Northwest
European Shelf, with a 3DVar system to assimilate temperature
and salinity observations from profiles and at the surface. Before
use, SST data is deseasoned and detrended using the statsmodels
Python package (Seabold and Perktold, 2010). Observation
locations and linear best fits are determined using correlations
estimated from the time period 2000-2010 and data
reconstruction is done using data from 2010-2020. This is to
ensure that the reconstructed data are independent from the
MGSC fitting procedure.

2.4 Network Scoring
2.4.1 Data Reconstruction
To help score the different network types, we use time series from
observation locations to reconstruct a full dataset. As we have
used absolute correlation as a representation metric, we use
Frontiers in Marine Science | www.frontiersin.org 5
simple linear regression to reconstruct 10 years of temperature
and salinity data. As an initial step, and for each point within a
subset, a linear model must be fitted between its time series and
the times series at the observation site/node. This linear model
can then be used to reconstruct the time series, at the point, from
the observation site alone. This fit is done using a 10-year period
between 2000 and 2010. It is then used to reconstruct a time
series for every location during the 10-year period 2010 to 2020.
The reconstructed fields are used to obtain metrics which assess
how effectively a set of locations can be used to represent the full
2-dimensional data across all length scales.

2.4.2 Correlations
Correlations form a key element of the analysis in this study. We
use them both to generate observing networks using the MGSC
method but also to validate them in an independent way. We use
the same correlation matrix as the MGSC method to assess
average and minimum levels of explained variance across the
domain. Once every grid point has been assigned to the
observation that best correlates with it, we may take their
mean and minimum. This tells us both how well a network
represents a domain on average and also identifies how it
performs in its weakest areas. We also use the reconstructed
dataset to assess temporal correlations independently of the
fitting period. These correlations are calculated between the 10
years of reconstructed data and the actual data from that period.
This will result in a 2 dimensional map of correlations, which can
be averaged in order to compare network types.

2.4.3 Root Mean Square Error
Similarly, to how correlations were constructed above, we can
use the reconstructed data to calculate Root Mean Square Errors
(or differences). This will again give us a 2 dimensional map of
RMSE, which can be averaged to obtain a single score that gives
information about a networks ability to reconstruct data, and
therefore represent it.

2.4.4 Effective Coverage Ratio
The Effective Coverage Ratio (ECR) describes the percentage of a
gridded domain that is represented by an observing network (She
et al., 2007; Fu et al., 2011). It can be thought of as the inverse of
the MGSC method, deriving a score from an existing network
rather than generating a network from a prescribed quality
threshold. Any given grid point p0 can be said to be ‘effectively
covered’ if there is either an observation at that point or another
point p1 exists that can be used to represent it. We can then
calculate the ECR taking the ratio of covered ocean points to the
total number of ocean points.
3 RESULTS

In this section we demonstrate the MGSC method and evaluate
its output. We begin in Section-3.1 by viewing the direct results
of the algorithm and evaluating the output. In Section-3.2, we
have used the different observing networks to reconstruct 10
June 2022 | Volume 9 | Article 879003

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Byrne et al. Designing an Autonomous Observing Network
years of data, yielding error and correlation estimates. This
allows us to score each network. Finally in Section-3.3, we
present and discuss some sources of variability in the output
from the MGSC algorithm.

3.1 Analysis of Algorithm
Figure 2 shows the recommended observation locations given by
the MGSC(N) algorithm for SST and SSS when N = 100, 200 and
300. The shading in this figure also shows an estimate of the
horizontal density of points (points per 1000km2). This has been
estimated by using a radial neighbourhood averaging scheme, in
which point density is calculated in successively larger radial
neighbourhoods. The maximum density is taken across the
resulting fields at each point. The figure shows that as N
increases, the spatial structure of point density remains
unchanged, with more points being added in areas of high
density. This is encouraging for the MGSC algorithm as it
suggests that there is an underlying structure to the output,
and it isn’t randomly placed in the domain.

For SSS, areas ofhighpoint density are in coastal areas, especially
in the Irish Sea and Southern North Sea. These are areas which are
strongly influenced by river outflows and tidal flows, perhaps
leading to more spatial variation at the surface. There are also two
Frontiers in Marine Science | www.frontiersin.org 6
areas off shelf which have a higher density of points: in the Atlantic
ocean southwest of IrelandandNorthof the Shetland Islands.These
are areas subject to a relatively high eddy kinetic energy resulting
from the tail end of Gulf Stream.We seemany similar structures in
SST, although there are also differences.Most notably, the density of
points is greatly reduced in the southernNorth Sea and is increased
in the Northwest of the domain. This figure also shows the
minimum and mean absolute correlations achieved throughout
the domain for each set of locations.We can see that as the number
of points increases, so does the minimum andmean correlation for
both SST and SSS. In all three cases SST obtains higher correlations
than SSS, suggesting longer correlation length scales, possibly
because it is strongly influenced by large scale atmospheric fluxes.

Figure 3 summarises these values for different values ofN and
compares them to the resulting correlations obtained when using
a regular grid of observations and an ensemble of random
locations. For both SSS and SST, the mean correlations are
comparable across all values of N, with the regular grid being
slightly better at low values and the random grids being worse
across all N. However, the largest differences are seen when
examining minimum correlations, which are significantly better
for the MGSCmethod, improving upon those for the regular and
random grids by 2-3 times across all N.
FIGURE 2 | Suggested observation locations (orange squares) due to the Modified Greedy Set Cover algorithm for different numbers of points. Results are shown
for Temperature (deseasonalized) and Salinity at 0m. The left, middle and right columns show results for 100, 200 and 300 points respectively. Blue shading shows
estimates of the density of observation locations throughout the domain. Black dashed lines show the 200m bathymetric contour. In the top left panel, three
geographical locations are indicated: (A) North Sea, (B) Irish Sea and (C) Bay of Biscay.
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This shows that the MGSC method is successfully positioning
the observing network to guarantee a higher level of minimum
representation without compromising the mean representation.
These areas of improved representation are likely to be those
with smaller correlation length scales as it is here where the
MGSC algorithm places more points (discussed below). In
addition, the MGSC method does not place more points than
necessary in areas where length are very large. We can
demonstrate this more rigorously by comparing point density
estimates with correlation length scales. We estimate length
scales by averaging correlations into distance bins and fitting
an exponential curve of the form:bD p0, rð Þ  =  ĝ   =  e−ar , (7)

where a is a constant to be determined using a least squares fit, r
is distance and p0 is that point at which want to estimate the
Frontiers in Marine Science | www.frontiersin.org 7
length scale. We use an approximate e-folding scale at
each point to then estimate the local length scale by solving D̂(
p0, r)  =  0:3. Computing point densities as before, Figure 4
shows how density varies with independently calculated length
scales. This comparison is shown for N = 100, 200 and 300. In all
cases, there is an inverse relationship between point density and
length scale, with point density decreasing as length scales
increase. This confirms that the MGSC method is doing as we
expected: placing more observations in areas where the
dominant length scales are smaller.

In Figure 5, we show an example of the correlations achieved
between each point and the best associated observation location.
This example is shown for SSS when again using N = 100, 200
and 300. We can see a decay in correlations away from
observations, as expected. The decay rate itself is dependant
upon the length scale at the observation location. This gives us a
FIGURE 4 | A comparison of length scale and observation density estimates. Observation densities are estimated from outputs of the MSC algorithm for N = 100,
200 and 300 points. The upper bounds on the x-axes are chosen to be the 97.5th percentile of the data, after which the binning process yields much noisier results
due to the sparsity of data.
FIGURE 3 | Mean and minimum correlations that can be achieved throughout the domain using three different observation placement methods: set cover algorithm,
regular gridding and an ensemble of random placements. Solid lines show the mean correlations for each placement method and dashed lines show the minimum.
For the random placements, lines show the ensemble mean and the shaded areas show 1 standard deviation either side of the mean.
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good visualization how which locations represent different parts
of the domain. By comparing with Figure 2 we also get a good
visual representation of the relationship between length scales
and point density. In areas with higher point density,
correlations decay more quickly with distance – suggesting
shorter length scales. This figure also shows how the
background correlations increase alongside N.

Figure 6 shows a comparison of the Effective Coverage Ratio
(ECR) for the three network types. This analysis was conducted
by calculating the MGSC (g) solution for a list of correlation
thresholds (g) . The equivalent or nearest network was then
calculated for the regular and random cases. The ECR was then
calculated using g as its definition of coverage, as described in
Section-2.4.4. Here we see that the MGSC algorithm generates a
network that is able to provide a representation level of at least g
for 100% of the points in the domain. The same cannot be said
for the other two network types, which fail to represent up to
15% of the domain for the regular grid and 20% of the domain
for the random grids.

3.2 Data Reconstruction Assessment
In this section, we examine and compare how effectively the
different observing network placement methods are able to
reconstruct a full dataset. The data reconstruction is described
in Section-2.4.1.

Figure 7 shows reconstruction RMSE averaged into length
scale bins. This has been done for N=198, 442 and 735, which
correspond to the number of points in three regular networks of
different sizes. Generally as N increases, errors decrease for all
location methods, especially at smaller length scales. For the
regular observation grids and random locations, errors are larger
where length scales are smaller (for both SSS and SST). However,
the MGSC method sees significantly smaller errors in these
regions, especially for larger values of N. Figure 8 shows
similar results for correlations, also averaged into length scale
bins. Correlations are significantly smaller at finer length scales
Frontiers in Marine Science | www.frontiersin.org 8
for both the regular and random observation placements.
However, the MGSC method provides a consistent correlation
level across all length scales. For smaller values of N, this means
improvement at small length scales but also smaller correlations
at larger length scales. This difference decreases for larger values
of N.

These results show that the MGSC method is able to provide
observing network recommendations that do indeed guarantee a
minimum level of representation across the domain and across
all length scales. On the other hand, regular or random
observation placement neglects areas of small length scales
resulting in poorer representation. The improvement in these
areas by the MGSC method comes at a cost however. Areas of
high length scales inevitably have more observation locations
when using the regular and random methods, leading to smaller
errors and higher correlations for these methods. However, the
MGSC method never drops below the prescribed level of
quality in these areas and the difference quickly decreases as
N increases.

3.3 Variability Considerations
The MGSC method will choose locations which are useful for
reconstructing the time series of data that is used as an input. For
example, if monthly mean data is used to estimate correlations,
then the suggested observing network will be best for
representing monthly mean data. Similarly, for other data
frequencies such as daily means or instantaneous data. It is
also important to consider how the data is filtered and variations
with depth, time, horizontal resolution and domain size. We
discuss these considerations further in the following sections.

In a linear context, the correlation between two random
variables X and Y is related to the square root of the variance
explained. As a result, if there are any frequencies in the data
which dominate the variance consistently throughout the
domain, then it is this that the MGSC method will attempt to
capture. For example, SST is strongly influenced by a seasonal
FIGURE 5 | ‘Best’ correlations with an observation location for the Modified Greedy Set Cover algorithm. The algorithm has been run for N = 100, 200 and 300,
shown from left to right respectively. Orange squares show the suggested observation locations.
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cycle in both fluxes from the atmosphere and radiative heating.
This is why the temperature data was deseasonalized before
being used for analysis.

We can further investigate this using an EOF (empirical
orthogonal function) analysis. This is a method which can be
used to decompose a 2D signal into orthogonal spatial patterns
and time series. The result is a set of time series describing a
consistent signal across the data (e.g. seasonality or diurnal
periodicity) and associated covariance fields, which describe the
Frontiers in Marine Science | www.frontiersin.org 9
2D structure of the signal component. Figure 9 shows the largest
three EOF modes for SST during the 2010-2020 period, calculated
using the COAsT Python package (Polton et al., 2021). The first
mode shows a domain-scale signal with an annual period that
explains 93.5% of the variance in the domain. As the whole domain
is moving together at this frequency, applying the MGSC method
immediately to it will result in very few observation locations with
very high correlations. For example, applying the method to the full
SST signal shows that a minimum correlation of 0.9 may be
FIGURE 6 | Effective Coverage Ratio (ECR) vs. Correlation threshold g. The MGSC method has been used to generate a set of points for varying correlation thresholds. The
corresponding regular and random grids were then generated with equivalent numbers of points. For each grid, the ECR has been calculated by using g as the definition of
coverage. For the random placements, lines show the ensemble mean and the shaded areas show 1 standard deviation either side of the mean.
FIGURE 7 | Area mean RMSE resulting from a 10 year data construction using simple linear regression. Means are calculated in length scale bins. Three different
numbers of observations are considered (columns): N=198, 442 and 735. These values match up with the numbers of points in three different regular observation
grids. For the random placements, lines show the ensemble mean and the shaded areas show 1 standard deviation either side of the mean.
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achieved with just 5 points, as opposed to 350 when the data has had
seasonality removed.

Of course, this is acceptable if it is the seasonal trend that the
user is most interested in observing but temporal filtering is a
very important aspect to consider when using the method. The
MSGC method will recommended an observing network that is
well suited to reconstruct the variance of the data used as input.
Care must be taken when choosing how to preprocess data to
ensure that it is a good representation of what you want to
the reconstruct.

In this study we have presented results over a single long period
of time, therefore observing network recommendations are
stationary. In reality, length scales may change from month to
month, season to season, over longer time periods or even with the
tidal cycle. A truly automated and flexible observing system would
be able to move and adapt where necessary. Below we show an
example of how the MGSC algorithm can be used in an adaptive
and dynamic manner, giving changing recommendations based on
seasonal changes in length scales.

Figure 10 shows the difference in MGSC network placement
for winter (DJF) and summer (JJA) during the 2000-2020 time
period. The algorithm has been run for N = 300 points in each
case presented. For SSS, 300 points is able to achieve the same
level of minimum correlation of 0.76 throughout the domain
and point densities are similar in most locations. There is
however a notable shift of points from the southwestern
North Sea in the winter to the southeastern North Sea in the
summer. Differences in SST between winter and summer are
Frontiers in Marine Science | www.frontiersin.org 10
more significant. A higher minimum correlation was achieved
in the summer (0.92) when compared to the winter (0.89) when
using 300 points. In the winter, there is a good distribution of
points in most areas of the domain, however in the summer
they are shifted dramatically to shallower, coastal areas. This
implies finer SST length scales throughout the region during
the winter.

As length scales can vary with depth, so will the
recommendations made by the MGSC method. In this paper
we have only considered results for surface variables and
implicitly treated horizontal and vertical correlations as
independent. Different networks may be generated for different
depth levels by passing the relevant data to the algorithm. There
is also no requirement for the data to lie on a specific depth level.
Indeed, it could lie on any user defined surface, based on
pressure, density or simply the bottom layer of the data. By
generating a set of networks throughout the vertical dimension
of the data, suitable decisions could be made around how to
make the most of the available observations for observing the full
3-dimensional ocean. Another option is the generation of 3-
dimensional correlation matrices and using these in the MGSC
algorithm. This would result in a selection of volumes which
would be used to represent the ocean, in place of tile shaped
subsets. The problem of treating the ocean as 2-dimensional
slices is common to many areas of applied oceanography, such as
discussed by Levin et al. (2018). More work is required to
improve the algorithm such that it does not ignore the full
dimension of the true ocean and structure of observations.
FIGURE 8 | Area mean correlations resulting from a 10 year data construction using simple linear regression. Means are calculated in length scale bins. Three different
numbers of observations are considered (columns): N=198, 442 and 735. These values match up with the numbers of points in three different regular observation grids.
For the random placements, lines show the ensemble mean and the shaded areas show 1 standard deviation either side of the mean.
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FIGURE 9 | The 3 largest modes (top to bottom) of an EOF analysis of Sea Surface Temperature (SST). The largest mode dominates the SST signal, explaining
93.5% of the signal variance.
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The resolution of the data used to derive correlations as input
to the MGSC method will affect how many locations are
recommended. Coarser resolutions will not contain smaller
scale features whereas finer resolutions will. The inclusion of
smaller scale features may reduce length scales in some areas
(depending upon how the data has been filtered), requiring
additional points. Conversely, coarser resolutions will only
include broader length scale features, increasing the mean
length scale and decreasing the number of points required.

Figure 11 shows a comparison of the number of points
required to obtain a minimum correlation of 0.75 when using
data downscaled to different horizontal resolutions. Also shown
is N expressed as a percentage of the total number of datapoints
Frontiers in Marine Science | www.frontiersin.org 11
in each dataset of different resolution. The number of points
required to maintain this correlation level decreases along with
the resolution. These results offer a compromise between
resource availability and the length scale which is to be
resolved. If only a few new observations are available, then
decisions must be made around whether it is acceptable to
only represent large scale features.
4 DISCUSSION

In this study we have introduced and demonstrated a new
method for recommending how to build new observational
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FIGURE 10 | MGSC observing networks for N=300. Top row shows results for sea surface salinity (SSS) and bottom shows sea surface temperature (SST). Results
for two seasons are shown: Winter (DJF) in the left column and summer (JJA) in the right column. Blue shading shows an estimate of horizontal point density.
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networks – the Modified Greedy Set Cover (MGSC) algorithm.
This algorithm reposed the question of where to put observations
into the context of a set cover optimization problem. Our
approach allows us to guarantee a minimum representation
metric throughout the whole domain. In our case we used
linear correlation as a measure of how well a point is represented.

The MGSCmethod was compared against a regular observing
network and ensemble of random networks. In Figures 2–4 we
presented an analysis of how well the different networks
represented the whole domain. We showed that the MGSC
was able to successfully prioritise higher observation densities
in areas with smaller length scales. In doing so, it was able to
provide a similar level of average representation whilst
significantly increasing the minimum levels over the domain
when compared to the regular or random observing networks.
The high MGSC minimum correlation in Figure 3 indicates that
by choosing MGSC as opposed to a gridded or random
assignment, a monitoring network could offer an improved
reconstruction of the domain using the same number
of observations.
Frontiers in Marine Science | www.frontiersin.org 12
When reconstructing 10 years of data using simple linear
regression, we saw similar results, which were presented in
Figures 7, 8. The MGSC method provided consistent RMSE
and reconstruction correlations across all length scales. When
aiming to resolve all features in a spectrum of data within a
domain, both the gridded and random approaches assign
disproportionately high numbers of observations to regions of
high length scale. These methods will resolve long length scale
regions very well, but in real terms this comes at a cost to the
resolution in regions of lower length scales, as seen in Figure 8.
The MGSC approach will balance observations to capture
features in the data across all length scales, which will
generally be preferable where the aim is to measure the full
range of data in the underlying population. The random or
gridded approaches may be preferred in cases where only
characterising large-scale variability is important and there is
no requirement to know where these large-scale measurements
sit in the full population of data.

This analysis described above supports our claim that the
MGSC methodology offers a purely objective computer-
June 2022 | Volume 9 | Article 879003
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optimised approach for placing and updating observation
networks. However, implementing the MGSC output in reality
may not be trivial. Our experiments (presented in Figures 9–11)
showed that there is some sensitivity in the exact locations of
points in an MGSC network. Exact locations may change with
the data period used, the number of observations to place, depth,
time frequency and data resolution. However, there is
consistency in the density of points. This metric, especially
with further study, may be more pragmatic for applied
decision makers. Along dimensions where density may not be
invariant such as depth, careful consideration must be made
when designing an observing network.

In this study we have used reanalysis data to generate network
recommendations and score them. This data is a combination of
simulated and observed data. The full spatial realization of this
data in 3 dimensions over long time periods gives us flexibility to
use the MGSC algorithm for any region, any time period and any
depth. It is important to acknowledge that these datasets contain
errors, meaning that observation locations may not be optimal
for real data. However, we don’t know the true fields (hence why
we must observe) so by using accurate reanalysis data, we can
still generate useful recommendations for the design of observing
networks. In a completely flexible observing network, it may be
possible to use an iterative process which would generate
progressively better results. Each iteration would generate a
reanalysis from the MGSC observations and then a new
network recommendation based on that data. If the reanalysis
can be improved with each subsequent iteration then so can the
MGSC network. This requires further study to determine
its feasibility.

We took a simple linear approach to applying the MGSC by
choosing linear correlation as our representation metric. There
are, however, nonlinear equivalents; using a nonlinear model
(e.g. polynomial or exponential) may be more appropriate in
some parts of the domain. It would be possible to extend the
Frontiers in Marine Science | www.frontiersin.org 13
MGSC algorithm by looking at a collection of potential models
and choosing that which fits best for each point. This would
result in a set of correlation metrics (linear and nonlinear) over
which the best could be chosen for each point, ensuring that the
number of recommended points is reduced. The model chosen
would need to be tailored to a particular observational need (e.g.
marine management policy objective or scientific challenge).
This extended approach would of course add to the
computational resources required.

Similarly, we used simple linear regression to reconstruct a 10
year dataset from a collection of time series at the locations
recommended by the MGSCmethod. If using a nonlinear model,
then the analogue here would be to reconstruct the data using the
chosen model at each location, which may vary throughout the
domain. Multiple regression or ideas from data assimilation such
as Optimal Interpolation or variational methods could also be
used to reconstruct the data. After all, it is these methods that
would be used to generate a reanalysis type dataset. An analysis
of the results of this may also yield further reductions in the
numbers of points required to represent the whole domain.
Similarly, we have used a stationary correlation matrix, derived
from using coincident time series across the domain. Extra
information may be inserted into the method by using a
correlation matrix derived from an analysis of lagged time
series. This would be especially useful where advective effects
are strong.

For this study, we have used ideas for scoring an observing
network, in a similar way as you might score a model. Our work
focused on the context of a simple data reconstruction, however a
good observing network will serve a number of purposes. The
first is (to reiterate) the ability to represent variance across all
length scales and regions. Secondly, to provide a challenging
validation for models. It is possible that models may appear to
perform better when compared against some observing networks
than others. Developing this idea of network scoring further will
FIGURE 11 | A comparison of the number of points required to obtain a minimum correlation of 0.75 when the data has been downscaled to different resolutions.
Each plot is for Sea Surface Salinity, which is used as an example. Left: The number of points required for each downscaled latitudinal resolution. Right: The number
of points required as a percentage of the total number of data points within the downscaled dataset.
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help ensure that these two design criteria are satisfied and will aid
decision makers in the future.

Here, we have performed an in depth analysis of surface
temperature and salinity. However, as remote sensing techniques
improve, measuring surface values in-situ may become less
important. On the other hand, oceanographic parameters cannot
be acquired below the sea surface using remote sensing techniques,
instead requiring in-situ using monitoring platforms such as vessels,
moorings and gliders. One fundamental ocean monitoring system
which could be optimised using the MGSC methodology is that of
subsurface chlorophyll, oxygen and nutrient monitoring. These are
routinely monitored by countries pledged to monitor and mitigate
against eutrophication. Whilst coordinating in-situ monitoring
systems for these mixed parameters is not a trivial task, a MGSC-
based framework to coordinate and optimise these systems could
become an invaluable cost-saving observation coordination tool.
The tool could either distribute the available funds (consistent with
the available N ) or the required accuracy requirement (consistent
with a desired g ).

In the case of eutrophication in the UK shelf seas, the
environmental status is quantified through the OSPAR
Commission’s Common Procedure (COMP) assessments (Garcıá-
Garcıá et al., 2019). The outcomes from the COMP assessments
determine whether remedial action against eutrophication is
required by contracting parties of European Community
legislation, in line with their obligations and commitments. A key
step of these common procedure assessments is to quantify the
confidence in the observations. By designing monitoring systems
using theMGSCmethodology, the number of monitoring platforms
could theoretically be minimised whilst achieving the level of
confidence required from the marine observation system.

If monitoring fails to identify developing eutrophication at an
early stage (incorrectly designating an area as “non-problem”
when there is a problem), there may be a range of avoidable
consequences as a result of ecological damage, including
financial consequences for example through impacts on
tourism, fishing and carbon sequestration (Pretty et al., 2002;
Jiang et al., 2018). For this reason, adequate monitoring is
essential. Similarly, if monitoring fails to provide adequate
evidence of good environmental status in areas where
anthropogenic enrichment by nutrients does not in fact
threaten the marine ecosystem, those accountable could be
subjected to avoidable costs associated with emergency
monitoring or unnecessary remedial work.
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This work lays the foundation for a mathematical approach to
generating dynamic and adaptive large scale observing networks
based on reanalysis data. As autonomous observing technologies
improve, this kind of approach will serve as a vital step in
informing decision makers and the equipment itself. A
completely flexible network may be able to shift according the
seasons, the tidal cycle or climate change. If used strategically, it
may be able to serve different purposes and clients on different
days. These recommendations are also compatible with the large
range of observation platforms available. Fixed observations
could be strategically placed in areas where there is less
variance in network placement. More flexible instruments
could then be assigned to those areas that change periodically
and quickly.
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