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The eutrophication degree in the coastal bay has been increasing significantly for the past
years, due to the increasing nutrient discharge. However, the factors controlling sources
and nitrogen (N) cycling in the different types of bays are still poorly understood. In this
comparative study, nitrate dual isotopes (d15N − NO−

3  and d18O − NO−
3) and ammonium

nitrogen isotope (d15N − NH+
4), were used to determine the origin of nitrate in Qinzhou Bay

(with riverine input) and Tieshangang Bay (without riverine input) in Beibu Gulf and to study
biogeochemical processes associated with nitrogen cycling. The nutrient concentrations
generally showed a decreased trend from the upper bay to the outer bay. The isotopic
values in Tieshangang Bay were generally higher than that in the Qinzhou Bay, suggesting
that there are differences in nitrate sources and transformation processes between the
two bays. The dominant sources from manure and sewage (41%) and soil N (30%) from
runoff input were responsible for the high nitrate observed in the upper Qinzhou Bay.
Though manure and sewage (59%) were also dominant nitrate sources in the upper
Tieshangang Bay, a decrease in source from soil N (20%) occurred due to less runoff
input. Nutrients were retained in the upper Tieshangang Bay due to weak hydrodynamic
conditions, which caused higher NH+

4 concentrations in the upper bay. Significant nitrate
loss occurred in the outer Qinzhou Bay, which was related to the intense hydrodynamic
condition. Moreover, phytoplankton assimilation mainly utilized NH+

4 due to sufficient NH+
4

in the outer Qinzhou Bay. In contrast, nitrate loss was also found in the outer Tieshangang
Bay, which is mainly related to the phytoplankton assimilation due to the weak
hydrodynamic condition. In addition, the greater enrichment of d18O − NO−

3 than d15N −

NO−
3 during both bays suggests that atmospheric deposition also contributes to the nitrate

pool in the water and the impact of atmospheric deposition on the whole Beibu Gulf is
relatively consistent. By this comparative study, we found that different nitrate
in.org May 2022 | Volume 9 | Article 8850371
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biogeochemical processes occurred in these two types of bays, which were mainly
determined by the difference of human activities and hydrodynamic conditions.
Keywords: nitrogen, stable nitrogen isotopes, biogeochemical processes, nitrogen cycling, Beibu Gulf
INTRODUCTION

As a transition zone between ocean and land, coastal oceans
receive anthropogenic nutrient inputs, which have significantly
increased over the past decades (Gruber and Galloway, 2008;
Sharples et al., 2017; Yan et al., 2017; Lao et al., 2019a; Chen et al.,
2020). This has resulted in serious nutrient load in the coastal
environment and has caused a host of environmental problems
such as eutrophication, harmful algal blooms, and seasonal
hypoxia in the coastal areas, which greatly impacts the original
functions of coastal ecosystems and biogeochemical cycles
(Carstensen and Conley, 2019; Gobler, 2020; Yu et al., 2020;
Anderson et al., 2021; Lao et al., 2021a). In addition, nitrogen (N)
is also a key element that regulates marine primary productivity
and its availability influences the storage of anthropogenic
carbon dioxide in coastal areas and climate change (Moore
et al., 2013; Tremblay et al., 2015). Thus, tracing nitrogen
sources and its cycles are very important to design effective
management practices to protect coastal ecosystems.

Among many methods for studying N dynamics, stable
nitrogen isotope (d15N) of various N pools combined with
oxygen isotope of nitrate (d 18O −NO−

3 ), is considered a
powerful tool to trace sources and biogeochemical processes of
N. Generally, various sources of N can be distinguished by their
different ranges of nitrogen and oxygen isotopic values (Kendall,
1998; Xue et al., 2009). For example, nitrate sources originating
from sewage and manure are more enriched in d15N (4-25‰)
than fertilizer and atmospheric deposition due to the
volatilization of 15N-depleted ammonia from human and
animal waste (Kendall, 1998; Xue et al., 2009), while d 18O −
NO−

3 values from atmospheric deposition are generally high
(>50‰) compared to those from other sources (<25‰)
(Ye et al., 2016). In addition, the isotopic ratios can also
reflect biological processes. For example, assimilation and
denitrification cause a synchronous increase of d15N and d18O
in the residual water NO−

3 as the lighter isotopes (14N and 16O)
are preferentially utilized by microorganisms (Granger et al.,
2004; Sigman et al., 2005). Therefore, a better understanding of
sources and biogeochemical processes of N in the coastal
ecosystem could be achieved by the distribution and variation
of isotopic signatures of various N pools.

The Beibu Gulf located in the northwestern South China Sea
(SCS), is a newly developing port, mariculture, and industrial
area in south China. Its rich biology and high productivity make
the gulf a key fishing ground and source of fisheries products in
China (Liu et al., 2020; Lao et al., 2021b; Xu et al., 2021).
However, the increasing population and intensification of
industrial and agriculture activities around the coastal gulf for
the past years have greatly increased nutrient loading to the gulf
(Lao et al., 2020; Lao et al., 2021a; Lao et al., 2021c; Xu et al.,
in.org 2
2021). This has resulted in an increase in the degree of
eutrophication in the coastal gulf for the past years,
particularly in the coastal bay of the Beibu Gulf (Lao et al.,
2021a; Lao et al., 2021c). There are several rivers that flow into
the Beibu Gulf (Figure 1), and the nutrient input into the gulf
shows a different seasonal change between the rivers (Lao et al.,
2020). However, due to the difference in river distribution (most
of which are concentrated in the middle of the Beibu Gulf) and
different depths, there are obvious differences in hydrodynamic
conditions between the coastal bays of the Beibu Gulf. For
example, there are many rivers around the Qinzhou Bay in the
gulf (Figure 1), which carry a large amount of nutrients such as
nitrogen and phosphorus into the bay every year, and thus
causing high nutrient load and increasing the eutrophication in
the bay (Lao et al., 2020; Lao et al., 2021a; Lao et al., 2021c).
Different from Qinzhou Bay, Tieshangang Bay is a natural deep-
water port in Guangxi Province and an important port area in
the Beibu Gulf. There are no large rivers flowing to the
Tieshanggang Bay, thus hydrodynamic conditions are weak
and the water exchange is mainly affected by the tide (Jiang
et al., 2017). In addition, due to the unique ecological resources
and environment of freshwater and saltwater in Qinzhou Bay,
the bay is an important aquaculture area in Guangxi Province
and the largest natural oyster spawning and breeding area in
China (Liu et al., 2020; Xu et al., 2020; Lao et al., 2021c).
However, since there is less influence from freshwater input
and weak hydrodynamic conditions in the Tieshangang Bay, the
aquaculture scale is much smaller than that of Qinzhou Bay. But
as an industrial area and port, the ecological environment of the
Tieshangang Bay is significantly affected by human activities
(Gan et al., 2013; Lao et al., 2019b; Lao et al., 2021d). Thus, with
such great differences in hydrological conditions, their nutrient
sources are different between the two bays in the Beibu Gulf.
However, the factors controlling sources and nitrogen cycling in
the different types of bays are still poorly understood.

In this comparative study, nitrate dual isotopes (d 15N−NO−
3

 and d 18O − NO−
3 ) and ammonium nitrogen isotope (d 15N −

NH+
4), were used to determine the origin of nitrate in two

types of bays in Beibu Gulf (Qinzhou Bay and Tieshanggang
Bay) and to study biogeochemical processes associated with
nitrogen cycling.
MATERIALS AND METHODS

Study Area and Sampling
The Beibu Gulf is a semi-enclosed gulf located in south China
and the northwestern part of the SCS. The climate of Beibu Gulf
is affected by the East Asian monsoon, whereas the northeast
monsoon prevails in winter and the southwest monsoon prevails
May 2022 | Volume 9 | Article 885037
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in summer. The annual rainfall in the gulf is 1,775mm and most
occurs in the rainy season (April to October, accounting for
nearly 90% of the annual total) (http://data.cma.cn). Qinzhou
Bay and Tieshangang Bay are two semi-enclosed bays in the
center and northeastern coastal Guangxi Province (Figure 1).
They are all bays that are significantly affected by industrial and
aquaculture activities but they are still quite different.
Geographically, Qinzhou Bay is a shallow semi-enclosed bay
located in the northernmost part of the Beibu Gulf, with a water
depth of 2-18 m. In addition, there are many rivers around
Qinzhou Bay, including Maoling River, Qin River, Jingu River
(Figure 1). The annual freshwater discharge from Qin River and
Maoling River (the two largest rivers around the bay) is
599.33×108 m3 and 885.98×108 m3, respectively (Lao et al.,
2020). By contrast, there are no large river flowing into the
Tieshanggang Bay and the hydrodynamic conditions are weak.

In this study, the cruises were carried out in Tieshangang Bay
and Qinzhou Bay from March 31 to April 1, 2021 and April 8,
2021, respectively. A total of 13 and 20 stations were conducted
in Qinzhou Bay and Tieshangang Bay, respectively (Figure 1). A
total of 13 and 20 seawater samples were collected from the
surface water (0.5 m) in Qinzhou Bay and Tieshangang Bay,
respectively, using a rosette sampler fitted with 10 L Niskin
bottles. The temperature, salinity, pH, and DO were measured in
the field. For nutrients and isotopic samples, seawater was
filtered using precombustion (450°C, 4h) glass fiber filters
(47 mm diameter, Whatman GF/F). Then, the filtrate was
transferred into a precleaned (acid-washed) polyethylene bottle
and stored at -20°C until analysis. For Chl a, about 1000-2000
Frontiers in Marine Science | www.frontiersin.org 3
mL of seawater samples were filtered using the GF/F and stored
at -20°C until further analysis.

Chemical Analysis
The Chl a samples of GF/F filter were extracted using 90%
acetone and determined by a spectrophotometer (Lorenzen,
1967). DO samples were measured using the Winkler titration
method. The nutrient (PO3−

4 , NO−
2 , NO

−
3  and NH

+
4) samples were

measured using a San++ continuous flow analyzer (Skalar,
Netherlands), with detection limits for PO3−

4 , NO−
2 , NO

−
3 and

NH+
4 were 0.02 μmol L-1, 0.1 μmol L-1, 0.1 μmol L-1 and 0.1 μmol

L-1, respectively. The analysis of d 15N − NO−
3 and d 18O −NO−

3

samples were using a cadmium-azide method modified from
Mcilvin et al. (2005). The sulfamic acid was added to each sample
to remove preexisting NO−

2 , followed the procedure from
Granger and Sigman (2009). Spongy cadmium (Cd) was added
to reduce NO−

3 to NO
−
2 , and further reduce to N2O, sodium azide

buffered with acetic acid to pH 4-5 was added. The d 15N − NH+
4

samples were first quantitatively oxidized to NO−
2 by adding BrO

-

at pH 12, and then excess BrO- was removed by NaAsO2 and the
yield was verified via colorimetric nitrite determination. Then,
NO−

2 was further reduced to N2O by adding sodium azide
buffered with acetic acid (Zhang et al., 2007). N2O was
separated and analyzed for d 18O − NO−

3 and d 15N − NO−
3 by a

Precon-GasBench II-253 plus (253 Plus, Thermo Scientific,
United States). To ensure the quality of monitoring data, a
standard sample (IAEA-N-1) was inserted into each batch of
samples (10 samples) to monitor the stability of the instrument.
In addition, the d 15N − NH+

4 values were calibrated by the
FIGURE 1 | Map of Beibu Gulf and sampling stations. The red boxes are the sampling areas, including Qinzhou Bay and Tieshangang Bay in the Beibu Gulf.
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international standards of USGS 25, USGS26, and IAEA-N1. The
d 15N − NO−

3 and d 18O −NO−
3 values were calibrated by the

IAEA-N3 international standard. The reproducibility of
duplicate analysis of d 15N −NH+

4 , d 15N −NO−
3 , and d 18O −

NO−
3 were <0.3‰ (mean ± 0.1‰), <0.3‰ (mean ± 0.1‰),

and <0.6‰ (mean ± 0.3‰), respectively.

Mixing Model
To evaluate the behavior of nitrogen along the salinity gradient,
nitrogen concentration and the isotopic values from simple
physical mixing between two endmembers (coastal diluted
water and outer seawater) can be calculated by a salinity-based
conservative mixing model (Fry, 2002), as follows:

q1 + q2 =  1 (1)

q1S1 + q2S2 =  Smix (2)

q1N1 + q2N2 =  Nmix (3)

q1N1d1 + q2N2d2 =  Nmixdmix (4)

where q terms denote the fractional contributions of the two
endmembers (denoted by the subscripts qr and qm). The S, N, d
terms denote the parameters being mixed: salinity, NO−

3 or NH
+
4

concentration and d 15N −NO−
3 or d 18O − NO−

3 value. Smix, Nmix

and dmix terms denote the theoretical value of a mixture from the
two endmembers. Based on equation (1)-(4):

q1 =  ðSmix −  S2Þ=(S1 −  S2) (5)

Nmix =  N2  +  ðN1 –N2Þq1 (6)

dmix = q1 d1N1 − d2N2ð Þ + d2N2½ �=Nmix (7)

According to the above equations, the salinity-based NO−
3 or

NH+
4 mixing shows linear conservative mixing (equation 6),

whereas the salinity-based isotopic mixing shows curvilinear,
which reflects the ½NO−

3 � or ½NH+
4 � -based weighting of

endmember isotopic contributions. The NO−
3 or NH+

4

concentration and the isotopic value distributions, are expected
to fall on the physical mixing line between the two endmembers.
However, deviations from the mixing line indicate the presence
of N transformation processes or other sources or both (Wankel
et al., 2007). For example, the processes of nitrification and
mineralization cause nitrate distribution above the mixing line,
whereas d 15N −NO−

3 and d 18O −NO−
3 cause distributions below

the mixing line (Yang et al., 2018). In contrast, the processes of
assimilation and denitrification cause nitrate distribution below
the mixing line whereas d 15N −NO−

3 and d 18O − NO−
3

distributions above the mixing lines (Yang et al., 2018).

SIAR Mixing Model
The contribution of potential nitrate sources to nitrate in water
can be quantified by using a Bayesian mixing model created by
and run in the stable isotope analysis in the R (SIAR) package
This model has been widely used to estimate the proportional
Frontiers in Marine Science | www.frontiersin.org 4
contribution of different nitrate sources (Korth et al., 2014; Davis
et al., 2015; Zhang et al., 2018; Lao et al., 2019a; Torres-Martıńez
et al., 2020; Lao et al., 2021b). The framework is as follows
(Moore and Semmens, 2008; Xue et al., 2009):

Xij =ok
k=1Pk(Sjk + cjk) + ϵij (8)

Sjk eN(mjk,w
2
jk) (9)

cjk eN(ljk, t
2
jk) (10)

ϵjk eN(0,s 2
j ) (11)

where Xij and Sjk represent nitrate dual isotope values in a mixed
sample and the values of nitrate dual isotopes from nitrate
sources, respectively; mjk and wjk represent mean value and
standard deviation from the normally distributed of Sjk; Pk is
the proportional contribution of source k; cjk is the fractionation
factor for nitrate dual isotopes on source k; and ljk and tjk are the
mean value and standard deviation from the normally
distributed of cjk; ϵjk is the residual error of the additional
unquantified variation between individual samples, and 0 and
sj are the normally distributed of ϵjk. The detail information of
the model can be found in Moore and Semmens (2008); Xue
et al. (2009) and Zhang et al. (2018).
RESULTS

Distribution Characteristics of
Physicochemical Parameters
The distribution characteristics of temperature, salinity, DO, and
Chl a in Qinzhou Bay and Tieshangang Bay are presented in
Figure 2. The temperature in Qinzhou Bay and Tieshangang Bay
ranged from 24.4°C to 26.0°C and from 24.0°C to 27.3°C, with an
average of 24.9°C and 25.3°C, respectively. The salinity in
Qinzhou Bay and Tieshangang Bay increases seaward, i.e.,
from the inner bay to the outer bay, ranging overall from 29.89
to 31.54 and 30.59 to 31.82, with an average of 30.79 and 31.54
during the sampling period, respectively. The lowest salinity was
observed in the inner Qinzhou Bay (station Q1), which could be
influenced by the freshwater input from the rivers around the
bay. The DO levels in Qinzhou Bay (ranging from 6.44 to 7.01
mg L-1, an average of 6.68 mg L-1) were slightly higher than those
in Tieshangang Bay (ranging from 5.53 to 7.72 mg L-1, an average
of 6.42 mg L-1). A relatively low DO level (< 6.5 mg L-1) was also
found in the upper Qinzhou Bay (Figure 2E). Similarly, a
significantly low DO level (< 6.0 mg L-1) was observed in the
upper Tieshanggang Bay, whereas a higher DO level was in the
outer bay (Figure 2F). The Chl a levels in Qinzhou Bay and
Tieshangang Bay ranged from 1.70 to 4.50 μg L-1 and 0.90 to 2.80
μg L-1, with an average of 2.45 μg L-1 and 1.89 μg L-1, respectively.
Except for a lower Chl a level was found in the station Q12 in the
most seaward in Qinzhou Bay, the higher Chl a level (>2.0μg L-1)
was found in other stations. In contrast, a lower Chl a level was
May 2022 | Volume 9 | Article 885037
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found in the inner Tieshangang Bay whereas a higher Chl a level
in the outer bay (Figure 2H). Generally, the Chl a level in
Qinzhou Bay was higher than that in the Tieshangang Bay. The
pH ranged from 7.86 to 8.07 and 7.76 to 8.21 in Qinzhou Bay and
Tieshangang Bay, respectively, and generally showed an
increasing trend from the upper bay to the outer bay in both
bays (Figures 3A, B). The total suspended matter (TSM) ranged
from 13.7 to 30.8 mg L-1 and 16.6 to 37.6 mg L-1 in Qinzhou Bay
and Tieshangang Bay, respectively. Corresponding to the lower
temperature in the outer Qinzhou Bay, a higher TSM level also
occurred in the outer bay (Figure 3C), suggesting that the
vertical mixing of water may be strong in the outer bay. The
TSM level in Tieshanggang Bay generally showed a decreasing
trend from the upper bay to the outer bay (Figure 3D).
Frontiers in Marine Science | www.frontiersin.org 5
Nutrient Concentrations
The distribution characteristics of PO3−

4 ,  NO−
2 ,  NO

−
3 and NH+

4

concentrations were similar in Qinzhou Bay and Tieshangang
Bay, which exhibited the highest concentration in the most upper
station (Q1 and T1), and increasing trend from the upper bay to
the outer bay (Figure 4). The concentrations of PO3−

4 ,  NO−
2 ,  

NO−
3 and NH+

4 were ranged 0.15 to 1.06 μmol L-1, 0.37 to 0.82
μmol L-1, 1.24 to 19.21 μmol L-1 and 0.65 to 1.16 μmol L-1, with
an average of 0.48 μmol L-1, 0.53 μmol L-1, 6.23 μmol L-1 and 0.93
μmol L-1 in Qinzhou bay, respectively; concentrations of PO3−

4 ,  
NO−

2 ,  NO
−
3 and NH+

4ranged from 0.02 to 0.92 μmol L-1, 0.05 to
1.28 μmol L-1, 0.23 to 10.07 μmol L-1 and 0.60 to 2.31 μmol L-1,
with an average of 0.25 μmol L-1, 0.46 μmol L-1, 3.17 μmol L-1

and 1.21 μmol L-1 in Tieshangang Bay, respectively. Generally,
A B

D

E F

G

C

H

FIGURE 2 | Spatial distributions of temperature (A, B), salinity (C, D), DO (E, F) and Chl a level (G, H) in Qinzhuo Bay and Tieshangang Bay during the sampling period.
May 2022 | Volume 9 | Article 885037
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the concentrations of nutrients decreased from the upper bay to
outer bay in both Qinzhou Bay and Tieshangang Bay (except for
NH+

4 in Qinzhou Bay) (Figure 4). This suggests that it is greatly
influenced by terrigenous input in both two bays. However, the
hydrodynamic condition may be another important factor
affecting the spatial distribution of nutrients. For example, in
Qinzhou Bay, with strong hydrodynamic conditions, the
difference between nutrient concentration in the upper bay and
outer bay is significantly higher than that in Tieshangang Bay.
This is mainly due to the strong hydrodynamic conditions,
which are conducive to the diffusion of nutrients and easily
diluted by the low nutrient concentration in the outer bay
seawater. Notably, the NO−

3 concentration in the upper
Qinzhou Bay (average of 17.05 μmol L-1) was significantly
higher than that in the upper Tieshangang Bay (average of
5.96 μmol L-1). In contrast, the NH+

4 concentration in the
upper Tieshangang Bay (average of 1.74 μmol L-1) was higher
than that in the upper Qinzhou Bay (average of 1.05 μmol L-1)
(Figure 4). Among the components of dissolved inorganic
nitrogen (DIN, inc luding NO−

2 ,  NO
−
3 and NH+

4 ) , the
proportion of NO−

3 was the highest in both Qinzhou Bay
(80%) and Tieshangang Bay (65%), followed by NH+

4 (13% in
Qinzhou Bay and 25% in Tieshangang Bay), and the lowest by
NO−

2 (7% in Qinzhou Bay and 9% in Tieshangang Bay). The ratio
of N/P ½ðNO−

2 � + (NO−
3 ) + (NH+

4 )=(PO
3−
4 Þ� ranged from 6.9 to

36.1 (average of 16.23) in Qinzhou Bay and from 8.4 to 120.4
(average of 29.7) in Tieshangang Bay. The ratios in Qinzhou Bay
and Tieshangang Bay were all in the range of previous studies in
the Beibu Gulf (Lai et al., 2014; Lao et al., 2021b). Comparing
with the rivers around the bay, the N/P ratio in the Qinzhou Bay
Frontiers in Marine Science | www.frontiersin.org 6
was higher than that in Maoling River (11) but significantly
lower than in the Qin River (145) during a similar period (Lao
et al., 2020). This suggested that the river input may change the
nutrient structure in the bay. The N/P ratio in Qinzhou Bay was
similar to the Redfield ratio (i.e., the ratio of the nutrients utilized
by marine phytoplankton) of 16 (Justić et al., 1995). However,
the N/P ratio in Tieshangang Bay was higher than the Redfield
ratio, suggesting that phosphorus (P) could be limited to
producing phytoplankton in the bay; and this is consistent
with the results of the previous studies on the coast of Beihai
city (Lao et al., 2021b) and the western coastal Beibu Gulf (Lao
et al., 2021a).

Isotopic Compositions
The distribution characteristics of d 15N − NO−

3 , d 18O − NO−
3 and

d 15N − NH+
4 in Qinzhou Bay and Tieshangang Bay during the

sampling period were presented in Figure 5. The d 15N −NO−
3 ,

d 18O − NO−
3 and d 15N − NH+

4 values in Qinzhou Bay ranged
from 11.4 to 14.2‰, 1.3 to 13.5‰ and -35.6 to 16.7‰, with an
average of 13.0‰, 8.2‰ and -4.8‰, respectively; the values in
Tieshangang Bay ranged from 9.8 to 18.3‰, 2.7 to 18.0‰ ang
-18.6 to 18.9‰, with an average of 15.2‰, 11.7‰ and 4.98‰,
respectively. The lower d 15N − NO−

3 , and d 18O − NO−
3 values

were found in the upper Qinzhou Bay and Tieshangang Bay
and exhibited an increasing trend from the upper bay to the outer
bay (Figures 5A–D). In contrast, the highest d 15N − NH+

4 value
was found in the upper Tieshangang Bay and the value exhibited a
decreasing trend from the upper to the outer bay (Figure 5F).
While in the Qinzhou Bay, fewer spatial variations of d 15N −NH+

4

value were found in Qinzhou Bay (Figure 5E). Generally, isotopic
A B

DC

FIGURE 3 | Spatial distributions of pH (A, B) and TSM (C, D) in Qinzhuo Bay and Tieshangang Bay during the sampling period.
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values in the Tieshangang Bay were higher than those in the
Qinzhou Bay, suggesting that there may be differences in nutrient
sources and transformation processes between the two bays.
DISCUSSION

To further analyze the nitrogen sources and their biological
transformations in the Qinzhou Bay and Tieshangang Bay, we
classified the sampling sites into two analysis regions based on
the characteristics of physicochemical parameters, nutrients, and
isotopic compositions: the upper bay, including stations Q1-Q3
in Qinzhou Bay and stations T1-T8 in Tieshangang Bay, was
Frontiers in Marine Science | www.frontiersin.org 7
characterized by the effect of terrestrial freshwater discharge
having lower salinity and higher nutrient concentration; and
the outer bay, including other stations except for the upper bay in
Qinzhou Bay and Tieshangang Bay, was characterized by higher
salinity and lower nutrient concentrations (Figure 1). The
physico-chemical parameters of the two end-members of
Tieshangang Bay and Qinzhou Bay are presented in Table 1.

Nitrate Sources and Their Biogeochemical
Processes in Qinzhou Bay
In the Qinzhou Bay, nutrient concentrations in the upper bay
were significantly higher than that in the outer bay (Figure 4),
which has also been observed previously, particularly in rainy
A B

D

E F

G H

C

FIGURE 4 | Spatial distributions of nutrients ½PO3−
4 (A, B) NO−

2 (C, D), NO−
3 (E, F) and NH+

4 (G, H)] in Qinzhuo Bay and Tieshangang Bay during the sampling period.
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seasons, as reported by Lao et al. (2021a) and Lao et al. (2021c).
In addition, the nutrients showed significantly negative
correlation with salinity in both Qinzhou Bay and Tieshangang
Bay (Figure 6), suggesting that the lower salinity water with
higher nutrient concentrations in the upper bay is well mixed
with the higher salinity water with lower nutrient concentrations
in the outer bay. In the Beibu Gulf, the heavy rainfall mainly
occurred from April to October, and the runoff in the rivers
around the gulf increased significantly from April (Lao et al.,
2020). More importantly, although the runoff was higher in the
rainy seasons, the nutrient concentrations in some rivers around
the Beibu Gulf and the coastal areas during the rainy season were
still higher than that in the dry seasons, indicating that the
Frontiers in Marine Science | www.frontiersin.org 8
significant influence by the heavy land-sources discharge from
anthropogenic activities (Lao et al., 2020; Lao et al., 2021a). Thus,
the high nutrient concentration in the upper bay may be largely
influenced by the land-source inputs. The increasing land-source
input has resulted in the significant increase of eutrophication in
Qinzhou Bay over the past 40 years (Lao et al., 2021c). In
addition, the submarine groundwater discharge (SGD) was also
considered as another nutrient source in the Maowei Sea, which
is a semi-enclosed bay located close to the upper Qinzhou Bay,
and the SGD-derived nutrients were even more important than
the amounts in the local river input (Chen et al., 2018). Thus, the
higher nutrient concentration in the upper bay may be also
influenced by the SGD. In the upper bay, the N/P (ranged from
A B

D

E F

C

FIGURE 5 | Spatial distributions of d15N − NO−
3 (A, B), d18O − NO−

3 (C, D) and d15N − NH+
4 (E, F) in Qinzhuo Bay and Tieshangang Bay during the sampling period.
TABLE 1 | Endmember parameters of Qinzhou Bay and Tieshangang Bay, including salinity, nutrient concentrations and nitrate dual isotopes, used in the two-
endmember mixing model in equation (5–7) .

Areas Station Salinity PO3�
4 [mmol L-1] NH+

4 [mmol L-1] NO�
2 [mmol L-1] NO�

3 [mmol L-1] d15N�NO�
3 [‰] d 18O�NO�

3 [‰] d15N�NH+
4 [‰]

Qinzhou
bay

Q1 29.89 1.06 1.16 0.82 19.21 11.4 1.3 -10
Q12 31.54 0.18 0.89 0.45 1.66 13.4 12.8 -11.1

Tieshangang
bay

T1 30.59 0.92 2.11 1.28 10.07 9.8 2.7 15.8
T18 31.82 0.08 0.84 0.20 0.36 18.2 15.6 -3.4
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19.9 to 24.0, an average of 22.4) was higher than the throughout
Qinzhou Bay (average of 16.2), as well as the Redfield ratio
(16.0), suggesting that higher DIN concentrations input in the
upper bay compared to the P. However, the high PO3−

4

concentrations [with a minimum (PO3−
4 ) of >0.70 μmol L-1]

suggested that neither N nor P acted as a limiting nutrient in the
upper bay, which were suitable for phytoplankton blooms.
Notably, the N/P ratio also decreased significantly and closer
to the Redfield ratio for the past years, mainly due to the
increasing P input (Lao et al., 2021c). This has caused the
harmful algal blooms to increase in frequency over the past ten
years, particularly in the spring (Xu et al., 2019; Kang et al., 2020;
Frontiers in Marine Science | www.frontiersin.org 9
Guan et al., 2022). This may be the reason that the higher Chl a
level was observed in Qinzhou Bay during the sampling
period (Figure 2G).

Lower d 15N − NO−
3 and d 18O − NO−

3 values but relatively
high d 15N − NH+

4 values were found in the upper bay
(Figures 5A, C, E), suggesting that nitrification may occur in
the area. The light N in the presence of excess NH+

4 is
preferentially used by the microorganisms, which could result
in heavier 15N in the residual NH+

4 pool, whereas adding,
depleted 14N to the residual NO−

3 pool (Sigman et al., 2005;
Chen et al., 2009; Ye et al., 2016). Isotope fractionation during
the biological processes of nitrification can be approximated by
A B

D

E F

G H

C

FIGURE 6 | Linear relationship between nutrient ½PO3−
4 (A, B), NO−

2 (C, D), NO−
3 (E, F), and NH+

4 (G, H) ] and salinity in the Qinzhou Bay and Tieshangang Bay.
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the open-system Rayleigh fractionation (Altabet, 2006; Ye et al.,
2016), the equation is as follows:

dm = di + ϵ� fNH4

where dm and di represent the measured and initial values for
d 15N − NH+

4 , respectively; ϵ represents the fractionation
factor; fNH4 represent the fraction of measured ½NH+

4 � relative
to the initial ½NH+

4 � ½ðNH+
4)m=(NH+

4 )i�. However, there is no
relationship between d 15N −NH+

4 and fNH4 (p>0.05). Moreover,
the overall estimated ϵ (6.7‰) in the upper bay was significantly
deviated from the reported values for N fractionation factors in
nitrification (-14 to -38‰) (Casciotti et al., 2003; Ye et al., 2016).
This suggested that microbial nitrification was not the dominant
biological process in the upper bay and the isotopic signal in this
area may reflect the mixing of sources. According to a classical
nitrate dual isotopic approach (Xue et al., 2009; Zhang et al.,
2018), the d 15N − NO−

3 (from 11.4 to 12.9‰) and d 18O − NO−
3

(from 1.3 to 5.3‰) values in the upper bay would suggest that
sewage and manure might be the dominant nitrate sources to this
region (Figure 7).

In the outer bay, there was a clear d 15N −NO−
3 and d 18O −

NO−
3 values increase. In addition, significantly NO−

3 loss and
relatively high offset d 15N −NO−

3 and d 18O −NO−
3 values were

found in the outer Qinzhou Bay (Figure 8), suggesting that
Frontiers in Marine Science | www.frontiersin.org 10
substantial NO−
3 loss or consumption occurred in the outer bay.

There could be several reasons for the increase of isotopic values,
including phytoplankton assimilation, denitrification, and
intense physical sediment-water interaction. However,
denitrification could be firstly ruled out as the cause of the
increase of isotopic anomalies due to high DO levels (>6.50 mg
L-1) in the outer bay (Figure 2E). Hence, phytoplankton
assimilation may be responsible for the NO−

3 loss and relatively
positive isotope values in the outer bay. Phytoplankton
assimilation can cause isotopic enrichment of d 15N −NO−

3 , d 18

O − NO−
3 and d 15N − NH+

4 , during which fractionation factors
vary among different species (Granger et al., 2004; Wankel et al.,
2009; Yan et al., 2017). Indeed, a spring phytoplankton bloom
was indicated by a higher Chl a level (average of 2.5 μg L-1) in the
outer bay and the highest Chl a level (4.5 μg L-1) was observed in
station Q7 (Figure 2G). However, there is no relationship
between d 15N − NO−

3 and d 18O − NO−
3 values in the outer bay

and the increase of isotopic values were noticeably deviated from
the assimilation line (1:1) (Figure 7). The uptake of NO−

3 by
phytoplankton causes isotope enrichment in the residual NO−

3

pool due to preferential consumption of light nitrate (14NO−
3 ) by

phytoplankton, with coupled d 15N − NO−
3 and d 18O −NO−

3

fractionation effects (18ϵ:15ϵ) of ~1 (Sigman et al., 1999;
Granger et al., 2004). Moreover, based on the open-system
Rayleigh fractionation (equation 10), the fractionation factor
FIGURE 7 | Values of d15N − NO−
3 and d18O − NO−

3 in Qinzhou Bay (red dots and circles) and Tieshangang Bay (blue dots and circles) and in various source
reservoirs (boxes). In the larger graph, the isotopic composition of five potential nitrate sources are adapted from Chen et al. (2019), (Kendall 1998), Xue et al. (2009)

and Zhang et al. (2018). The inset in the upper right corner is the plots of d15N − NO−
3 and d18O − NO−

3 in outer Qinzhou Bay (red dots) and outer Tieshangang Bay
(blue dots). Assimilative uptake would cause nitrate dual isotopes to increase along a slope of 1.
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associated with the assimilation process was calculated. No
relationship between d 15N −NO−

3 and fNO3 (p>0.05) was found
in the outer bay and the overall estimated ϵ (-0.7‰) in the outer
bay was significantly deviated from the range of reported values
(-3 to -9‰) for the process of assimilation (York et al., 2007; Ye
et al., 2016). Additionally, the concentration of NH+

4 does not
decrease too much in the outer bay (average of 0.90 μmol L-1,
which is close to the upper bay [average of 1.05μmol L-1)]. Thus,
when NH+

4 is sufficient, phytoplankton preferentially assimilates
NH+

4 (Glibert et al., 2016). However, the d 15N −NH+
4 values did

not increase significantly in the outer bay (Figure 5E), which
may be related to the continuous outward transportation of NH+

4

in the upper bay under the strong hydrodynamic force, resulting
in the isotopic signal of NH+

4 sources covering the signal of
isotopic fractionation caused by assimilation. Thus,
phytoplankton assimilation is unlikely to be the dominant
cause for the increase of nitrate dual isotopes in the outer bay.
The intense physical sediment-water interaction may be
responsible for the nitrate loss in the outer bay. Previous
studies suggest that active consumption of nitrate due to
denitrification in the sediments, causing an efflux of nitrate
from the water column to the sediments, which resulted in the
enrichment of d 15N − NO−

3 and concurrent nitrate loss in the
water (Zhang et al., 2013; Ye et al., 2016). Because advective flux
returning nitrate to the upper overlying water environment
caused by wind-induced mixing and tidal pumping, d 15N −
NO−

3 and d 18O −NO−
3 values in the overlying water are

substantially high, reflecting more closely nitrate isotopic
fractionation by denitrification (Lehmann et al., 2007; Wankel
et al., 2009). This suggestion was agreeable with the previous
work that suggested the physical perturbation in the surface
sediments could be very significant in spring period, when wind-
induced mixing and tidal pumping in the northern Beibu Gulf
was strong (Lao et al., 2021b). Indeed, the depth of the Qinzhou
Bay is shallow (most stations are less than 6m, and the deeper
Frontiers in Marine Science | www.frontiersin.org 11
depth in station Q12 is only 10.1m), and wind-induced mixing
could aggravate the exchange of bottom and surface water. In
addition, the air temperature has increased from the spring
(March) in Beibu Gulf, but lower surface temperature (average
of 24.7°C) in the Qinzhou Bay was found when compared to that
in Tieshangang Bay (average of 25.4°C) during the same
sampling period (Figures 2A, B), suggesting that the lower
surface temperature in Qinzhou Bay originated from the
bottom water upwelling. Moreover, an increasing TSP level
(average of 20.0 mg L-1) was also found in the outer bay
(Figure 3C). Such a dynamic environment would result in the
bidirectional exchange of substances, including nitrate, between
the overlying water and the sediment pore water. This process
would finally lead to the increase of nitrate isotopic values
but the decrease of nitrate concentration in the bay due to
denitrification-induced isotopic enrichment in sediments.
However, due to the lack of other water layers in the bay, i.e.,
the bottom layer, this hypothesis still needs further evaluation in
the field investigation.

Nitrate Sources and Its Biogeochemical
Processes in Tieshangang Bay
In the Tieshangang Bay, significantly high nutrient
concentrations were observed in the upper bay and showed a
decrease trend from the upper bay to the outer bay (Figure 4).
Different from Qinzhou Bay, there is no large rivers around the
bay. Thus, the nutrient sources in the bay are mainly influenced
by local human activities. In the upper bay, significantly positive
offset NO−

3 values were found, with the values ranging from 0.01
to 2.85 μmol L-1 (average of 1.77 μmol L-1) (Figure 8), which
could be new nitrate added into the waters in the upper bay. The
new nitrate could be sourced from direct nitrate input, and/or
decomposition and/or nitrification of NH+

4 in the upper bay.
Indeed, significantly low DO level (Figure 2F) and lower pH
(Figure 3B) and nitrate dual isotope values (Figures 4B, D) were
A B

FIGURE 8 | Relationships between offset d15N − NO−
3 (A) and d18O − NO−

3 (B) and offset NO−
3 in the Qinzhou Bay and Tieshangang Bay. The offset values are the

difference between measured and expected values, which area calculated using the end-member mixing model.
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found in the upper bay. This suggested that oxygen consumption
processes could have occurred in the upper bay, which is
probably decomposition. Moreover, a lower Chl a level was
found in the upper bay (Figure 2H), indicating that oxygen
consumption by decomposition is more important than
photosynthesis. A large oxygen consumption and a large
amount of CO2 release caused by the decomposition process
could be responsible for the low DO level and pH in the upper
bay. Similar results were also reported in the other coastal bays in
Beibu Gulf (Lao et al., 2021a; Lao et al., 2021c). Correspondingly,
a higher NH+

4 concentration occurred in the upper bay
(Figure 4H). The rainy seasons in the coastal Beibu Gulf
would carry a relatively huge transport of sewage from the
coastal cities and soil organic nitrogen (SON) from the soil to
the coastal bay (Lao et al., 2020), where SON could have been
easily remineralized due to the priming effect to NH+

4 (Bianchi
et al., 2015), and then nitrified to nitrate in the water (Guo et al.,
2015; Ye et al., 2015). However, if the mineralization/nitrification
processes are the dominant in the upper bay, the d 15N − NO−

3

values should be close to 0‰, because the process generally adds
isotopically light isotopes to the nitrate pool (Burns and Kendall,
2002; Ye et al., 2015). In contrast, although relatively low d 15N −
NO−

3 values occurred in the upper bay compared to the outer bay,
the most values were still higher than 12‰ (average of 13.2‰)
(Figure 5B), which is much higher than 0‰. This suggests that
the mineralization/nitrification processes are unlikely to be the
dominant cause for the increase of d 15N −NO−

3 and d 18O − NO−
3

in the outer bay. Notably, significantly high d 15N −NH+
4 values

(average of 15.1‰) were also found in the upper bay (Figure 5F),
which are possibly associated with municipal sewage effluents
from the coastal area. Generally, nitrate originated from sewage
and manure is usually characterized by high isotopic values of
nitrate (4 to 25‰) due to the volatilization of 15N-depleted
ammonia formed from human and animal waste, which results
in an enrichment of 15N in residual nitrate pool (Xue et al., 2009).
Thus, the nitrate sources from sewage and manure may be
responsible for the higher isotopic signal in the upper
bay (Figure 7).

In the outer bay, the nutrient concentrations decrease but
nitrate dual isotopic values increase. In addition, a relatively
negative offset NO−

3 (average of -0.29 μmol L-1) but positive offset
d 15N − NO−

3 (average of 4.0‰) and d 18O −NO−
3 value (average

of -6.8‰) was found in the outer bay, suggesting that nitrate loss
or consumption occurred in the outer bay. However, the
denitrification could be ruled out due to the high DO level
(>7.0 mg L-1) in the outer bay (Figure 2F), which did not favor
the occurrence of denitrification. Moreover, the influence of
physical sediment-water interaction should be less in the outer
bay. Different from the Qinzhou Bay, the depth of outer
Tieshangang Bay is deeper (most station >10m, and the
deepest station in T19 reach 20m). With the air temperature
increasing in spring, the surface water temperature increases in
the outer bay (average of 25.4°C), opposite to the outer Qinzhou
Bay (Figures 2A, B). This suggests that with the increase of
surface water temperature, there is no bottom water upwelling in
Tieshangang Bay as in Qinzhou Bay. Thus, the phytoplankton
Frontiers in Marine Science | www.frontiersin.org 12
assimilation may be related to the nitrate loss but increasing
isotopic nitrate values in the outer bay. Indeed, a higher Chl a
level was found in the outer bay (average 2.41 μg L-1)
(Figure 2H). In addition, although the slope (1.25) has slightly
deviated from the assimilation line (1:1), a significantly positive
relationship between d 15N − NO−

3 and d 18O − NO−
3 values were

found in the outer bay (Figure 7). Moreover, the fractionation
factor associated with assimilation was calculated and the 15N
fractionation with isotope effects of -3.3‰ in the outer bay was
also within the range of reported values (-3 to -9‰) for
phytoplankton assimilation (York et al., 2007). This suggests
that NO−

3 uptake by phytoplankton was the dominant process for
NO−

3 decrease and its isotopic increase in the outer bay. However,
the d 15N − NH+

4 value did not increase in the outer bay. This
may be because the assimilation by phytoplankton mainly
utilizes NO−

3 due to significantly low NH+
4 concentration in the

outer bay (Figure 4H). NO−
3 is assimilated by phytoplankton

when NH+
4 is insufficient in the water environment (Glibert et al.,

2016). However, extremely higher d 18O − NO−
3 values were also

observed in the outer bay (>10‰, average of 14.1‰)
(Figure 5E). Neither phytoplankton assimilation nor mixing
with other water masses from outer Beibu Gulf or the northern
South China Sea is enough to lead to d 18O − NO−

3 values higher
than 10 ‰ (Ye et al., 2015; Ye et al., 2016; Lao et al., 2021b).
Synthetic NO−

3 fertilizer and atmospheric N precipitation have
much higher d 18O − NO−

3 values (Chen et al., 2009; Chen et al.,
2019), and those sources may be related to the high d 18O −NO−

3

values in the outer bay. However, the source from synthetic NO−
3

fertilizer can be readily ruled out since it only accounts for <2%
of the synthetic N fertilizer applied in China (Chen et al., 2009).
Thus, the high d 18O − NO−

3 values are partly influenced by the
atmospheric deposition, which could be responsible for the
nitrate dual isotopes slightly deviation of assimilation line (1:1).

To quantify the contribution of atmospheric N deposition to
the NO−

3 pool in the outer bay, a simple isotope mass balance
model was utilized [equations (11) and (12)]. This model is based
on nitrate isotope anomalies, such as the deviation from the
conservative mixing, which has also been used to calculate the
relative contribution of atmospheric deposition in the coastal
area (Ye et al., 2016; Lao et al., 2019a; Lao et al., 2021b). In this
model, we assumed that nitrate isotope anomalies are mainly
influenced by assimilation and atmospheric deposition in the
outer Tieshangang Bay.

Dd 15N  = d 15Natmosphere �  Natmosphere=(Natmosphere

+  Nmixing)  + 15ϵassimilation � fNO3, (11)

Dd 18O  = d 18Oatmosphere �  Natmosphere=(Natmosphere

+  Nmixing)  + 18ϵassmilation � fNO3, (12)

where △d15N and △d18O are the measured d 15N −NO−
3 and

d 18O − NO−
3 anomalies relative to the mixing line. The process of

assimilation cause d 15N − NO−
3 and d 18O − NO−

3 values increase
of 1:1 (15ϵ =18ϵ) (Granger et al., 2004). Thus,
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Dd15N − Dd 18O = (d 15Natmosphere − d 18Oatmosphere)

�Natmosphere=(Natmosphere + Nmixing)

where we define Natmosphere/(Natmosphere + Nmixing) as fatmosphere,
and obtained

fatmosphere = (Dd 15N − Dd18O)=(d 15Natmosphere

− d 18Oatmosphere) (13)

where fatmosphere is the proportional contribution of atmospheric
deposition. The d 15N −NO−

3 and d 18O −NO−
3 values of

atmospheric deposition (0:8 for    d 15N − NO−
3  and 52:4 for d 18O

−NO−
3  values) were obtained from Zhanjiang, where located at

the eastern coast of the Tieshangang Bay (distance less than
60 km). The result shows that the proportional contribution of
atmospheric deposition to the NO−

3 pool in the outer bay ranged
from 0 to 17%, with an average of 7%. This is similar to the
previous study in the northeastern Beibu Gulf (more seaward of
Tieshangang Bay), which suggests that the contribution of NO−

3

from atmospheric deposition in the offshore area of Beibu Gulf
was 6% (Lao et al., 2021b).

Quantification of Nitrate Sources in
Qinzhou Bay and Tieshangang Bay
Since the biological processes were not the dominant factor that
affected the nitrate in the upper bay of both Qinzhou Bay and
Tieshangang Bay, the isotopic characteristics may provide a signal
on the various sources that contributed to the mixture. According
Frontiers in Marine Science | www.frontiersin.org 13
to a classical nitrate dual isotopic approach in Figure 7, the nitrate
dual isotopic values in the two bays were significantly deviated from
the potential nitrate source from fertilizer, since the d 15N −NO−

3

and d 18O − NO−
3 values were generally higher than that from the

fertilizer. Thus, the nitrate source from fertilizer could be less in
the Beibu Gulf. Although the manure and sewage might be the
dominant nitrate sources in both two upper bays, the isotopic
fingerprints in the upper bays were close to the source from soil N,
and the extremely high d 18O − NO−

3 values that were influenced by
atmospheric deposition as discussed above, were considered. Thus,
four potential nitrate sources, including manure and sewage, soil N,
fertilizer, and atmospheric deposition, were applied to quantify the
proportional contribution of the nitrate sources by a Bayesian
mixing model. The d 15N − NO−

3 and d 18O − NO−
3 values of these

four potential sources are presented in Table 2. The result is
presented in Figure 9. The manure and sewage are the dominant
nitrate sources in the coastal bays and the contribution
in Tieshangang Bay (a total of 59%) was higher than that in
Qinzhou Bay (41%), while the nitrate source from soil N in
Qinzhou Bay (30%) was higher than that in the Tieshangang Bay
(20%). Although both bays are affected by industrial and
aquaculture activities, Tieshangang Bay does not have the rivers
around the bay input as Qinzhou Bay. Thus, less soil N was carried
into the Tieshangang Bay, and the dominant sources from sewage
and manure could also bring the NH+

4 into the bay. In addition, the
NH+

4 would retain in the bay due to weak hydrodynamic conditions
(Jiang et al., 2017), resulting in a high NH+

4 concentration in the
upper Tieshangang Bay. In contrast, river input could bring more
soil nitrogen from the coastal cities into Qinzhou Bay. This may be
TABLE 2 | The values (‰) of dual isotopes for the four potential nitrate sources at the river mouth.

15N 18O

Source Range Mean ± SD Literature Range Mean ± SD Literature

AND -1.8~4.1 0.8 ± 1.5 (Chen et al., 2019) 42.7~61.6 52.4 ± 5.1 (Chen et al., 2019)
Manure and sewage 4~25 10.3 ± 4.0 (Xue et al., 2009) -5~15 4.08 ± 0.33 (Kendall, 1998; Zhang et al., 2018)
Fertilizer -1.87~2.96 0.04 ± 1.87 (Kendall, 1998; Zhang et al., 2018) -5~15 4.08 ± 0.33 (Kendall, 1998; Zhang et al., 2018)
Soil N -0.05~8.25 4.52 ± 2.67 (Kendall, 1998; Zhang et al., 2018) -5~15 4.08 ± 0.33 (Kendall, 1998; Zhang et al., 2018)
May
A B

FIGURE 9 | The proportional contribution of potential sources of nitrate in the water of upper bay of Qinzhou Bay (A) and Tieshangang Bay (B), including soil N,
manure and sewage (M&S), fertilizer, and atmospheric deposition (AD).
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responsible for the high NO−
3 concentration observed in the upper

Qinzhou Bay. In the river basin, the nitrification coupled
denitrification process in the soil can convert ammonium into
nitrate and the river can bring it into the coastal environment (Chen
et al., 2009). In addition, although the dominant sources from
sewage and manure could bring the NH+

4 into the bay, the strong
hydrodynamic conditions accelerate the exchange of seawater
between the upper bay and the outer bay, resulting in the
dilution of NH+

4 concentration. Thus, the concentration of NH+
4

in Qinzhou Bay is not as high as that in Tieshangang Bay due to
accumulation. The contribution of atmospheric deposition was
similar between the two upper bays (Figure 9), and also similar
to the outer Tieshanggang Bay (8%) and the offshore area of the
northeastern Beibu Gulf (6%) reported by previous studies (Lao
et al., 2021b). This suggests that the impact of atmospheric
deposition on the Beibu Gulf is relatively consistent.

According to the results of quantitative calculation, the
sources of nitrate in the two bays are obviously different. In
the Qinzhou Bay with riverine input, the contribution of the soil
Frontiers in Marine Science | www.frontiersin.org 14
N and fertilizer is higher than that without riverine input in the
Tieshangang Bay, while the source from manure and sewage in
the Tieshangang Bay is higher than that in the Qinzhou Bay. This
suggests that for the bay with riverine input, rivers can import a
large number of land-based pollutants into the coastal waters,
while the bay without riverine input reflects the discharge of
industrial or urban manure and sewage, which needs the
attention of environmental managers.
CONCLUSION

Nitrate dual isotopes (d 15N − NO−
3  and d 18O − NO−

3 ) and
ammonium nitrogen isotope (d 15N − NH+

4), were used to
determine the origin of nitrate in the coastal bays of Beibu Gulf
(Qinzhou Bay and Tieshanggang Bay) and to study biogeochemical
processes associated with nitrogen cycling. The summary of the
nitrate sources and its biogeochemical processes is presented in
Figure 10. The nutrient concentrations generally showed a
A

B

FIGURE 10 | Conceptual diagram of sources and cycling of nitrogen between a bay with riverine input (A) and a bay without riverine input (B) in the Beibu Gulf.
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decreased trend from the upper bay to the outer bay, while the
d 15N −NO−

3 and d 18O −NO−
3 values increased seaward in both

bays. The d 15N −NH+
4 values decreased from the upper

Tieshangang Bay to the outer bay. Although the isotopic
distribution trends of the two bays are similar, the isotopic values
in Tieshangang Bay were higher than that in the Qinzhou Bay,
suggesting that there may be differences in nutrient sources and
transformation processes between the two bays. Manure and
sewage were the dominant nitrate sources in the both upper
bays, but the contribution in Tieshangang Bay (59%) was higher
than that in the Qinzhou Bay (41%). While the nitrate source from
soil N in upper Qinzhou Bay (30%) was higher than that in the
upper Tieshangang Bay (20%), whichmay relate to the runoff input
from the coastal cities around the Qinzhou Bay. Moreover,
nutrients were retained in the upper Tieshangang Bay due to
weak hydrodynamic conditions, which caused higher NH+

4

concentrations in the upper bay. Significant nitrate loss occurred
in the outer Qinzhou Bay, which is related to the intense physical
sediment-water interaction. Moreover, phytoplankton assimilation
mainly utilized NH+

4 due to sufficient NH+
4 in the outer Qinzhou

Bay. Nitrate loss was also found in the outer Tieshangang Bay
which mainly related to the phytoplankton assimilation. In
addition, the greater enrichment of d 18O −NO−

3 than d 15N −
NO−

3 in both bays suggests that atmospheric deposition also
contributes to the nitrate pool in the water and the impact of
atmospheric deposition on the Beibu Gulf is relatively consistent.
Frontiers in Marine Science | www.frontiersin.org 15
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